Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (124)

Search Parameters:
Keywords = Liouville transformation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 3053 KB  
Article
Dynamics and Chaos Analysis of the Fractional-Order Lü System Using a Hybrid Approach
by Mohamed Elbadri, Naseam Al-kuleab, Rania Saadeh, Mohamed Hafez and Mohamed A. Abdoon
Fractal Fract. 2026, 10(1), 51; https://doi.org/10.3390/fractalfract10010051 - 13 Jan 2026
Viewed by 128
Abstract
In this study, an analysis of fractional-order Lü systems is performed through a framework approach consisting of analytical solution strategies in combination with numerical methods. On the analytical methodology front, the recently developed form of the new generalized differential transform method (NGDTM) is [...] Read more.
In this study, an analysis of fractional-order Lü systems is performed through a framework approach consisting of analytical solution strategies in combination with numerical methods. On the analytical methodology front, the recently developed form of the new generalized differential transform method (NGDTM) is adopted for its efficiency in providing an approximate solution with high capability in tracking the behavior of these systems. On the other hand, the Grünwald–Letnikov via Riemann–Liouville scheme (GLNS) is adopted within this study as one of its tools in confirming whether chaos exists within these systems. The performance and accuracy of the proposed method are also rigorously tested, and comparisons are made numerically with the Adams–Bashforth–Moulton method, which is used here as a standard method for validation purposes. It is clear from the results that the combination of analytical and numerical methods can greatly enhance both the speed of computation and the accuracy of results. Additionally, the proposed method or approach is found to be quite robust and accurate and can thus be employed for analyzing various fractional dynamical systems that display chaotic attractors. The proposed method can also be expanded upon in the future for analyzing complex models in science and engineering. Full article
(This article belongs to the Special Issue Advances in Fractional-Order Chaotic and Complex Systems)
Show Figures

Figure 1

16 pages, 298 KB  
Article
Biharmonic Identity Maps Between Euclidean Spaces and Warped Product Spaces
by Ze-Ping Wang and Xue-Yi Chen
Axioms 2026, 15(1), 2; https://doi.org/10.3390/axioms15010002 - 20 Dec 2025
Viewed by 186
Abstract
In this paper, we study biharmonic identity maps between Euclidean spaces and warped product spaces of the form Rr×f2Rnr. Our main results characterize both orientations of the identity map in terms of partial differential [...] Read more.
In this paper, we study biharmonic identity maps between Euclidean spaces and warped product spaces of the form Rr×f2Rnr. Our main results characterize both orientations of the identity map in terms of partial differential equations: For the map from Euclidean space to the warped space, biharmonicity is equivalent to the warping function satisfying a stationary Hamilton–Jacobi-type equation. While the only global solution is constant, we construct infinitely many explicit local solutions. Conversely, for the map from the warped space to Euclidean space, biharmonicity corresponds to a logarithmic transformation of the warping function satisfying this same PDE. This equation admits abundant explicit nonconstant global solutions and can be reduced to a Liouville-type equation via a suitable transformation. Full article
(This article belongs to the Section Geometry and Topology)
21 pages, 590 KB  
Article
Nonrelativistic Quantum Dynamics in a Twisted Screw Spacetime
by Faizuddin Ahmed and Edilberto O. Silva
Universe 2025, 11(12), 391; https://doi.org/10.3390/universe11120391 - 27 Nov 2025
Viewed by 472
Abstract
We investigate the nonrelativistic quantum dynamics of a spinless particle in a screw-type spacetime endowed with two independent twist controls that interpolate between a pure screw dislocation and a homogeneous twist. From the induced spatial metric, we build the covariant Schrödinger operator, separate [...] Read more.
We investigate the nonrelativistic quantum dynamics of a spinless particle in a screw-type spacetime endowed with two independent twist controls that interpolate between a pure screw dislocation and a homogeneous twist. From the induced spatial metric, we build the covariant Schrödinger operator, separate variables to obtain a single radial eigenproblem, and include a uniform axial magnetic field and an Aharonov–Bohm (AB) flux by minimal coupling. Analytically, we identify a clean separation between a global, AB-like reindexing set by the screw parameter and a local, curvature-driven mixing generated by the distributed twist. We derive the continuity equation and closed expressions for the azimuthal and axial probability currents, establish practical parameter scalings, and recover limiting benchmarks (AB, Landau, and flat space). Numerically, a finite-difference Sturm–Liouville solver (with core excision near the axis and Langer transform) resolves spectra, wave functions, and currents. The results reveal AB periodicity and reindexing with the screw parameter, Landau fan trends, twist-induced level tilts and avoided crossings, and a geometry-induced near-axis backflow of the axial current with negligible weight in cross-section integrals. The framework maps the geometry and fields directly onto measurable spectral shifts, interferometric phases, and persistent-current signals. Full article
(This article belongs to the Section Foundations of Quantum Mechanics and Quantum Gravity)
Show Figures

Figure 1

38 pages, 601 KB  
Article
A New Laplace-Type Transform on Weighted Spaces with Applications to Hybrid Fractional Cauchy Problems
by Samten Choden, Jakgrit Sompong, Ekkarath Thailert and Sotiris K. Ntouyas
Fractal Fract. 2025, 9(11), 751; https://doi.org/10.3390/fractalfract9110751 - 20 Nov 2025
Viewed by 708
Abstract
This paper develops a generalized Laplace transform theory within weighted function spaces tailored for the analysis of fractional differential equations involving the ψ-Hilfer derivative. We redefine the transform in a weighted setting, establish its fundamental properties—including linearity, convolution theorems, and action on [...] Read more.
This paper develops a generalized Laplace transform theory within weighted function spaces tailored for the analysis of fractional differential equations involving the ψ-Hilfer derivative. We redefine the transform in a weighted setting, establish its fundamental properties—including linearity, convolution theorems, and action on δψ derivatives—and derive explicit formulas for the transforms of ψ-Riemann–Liouville, ψ-Caputo, and ψ-Hilfer fractional operators. The results provide a rigorous analytical foundation for solving hybrid fractional Cauchy problems that combine classical and fractional derivatives. As an application, we solve a hybrid model incorporating both δψ derivatives and ψ-Hilfer fractional derivatives, obtaining explicit solutions in terms of multivariate Mittag-Leffler functions. The effectiveness of the method is illustrated through a capacitor charging model and a hydraulic door closer system based on a mass-damper model, demonstrating how fractional-order terms capture memory effects and non-ideal behaviors not described by classical integer-order models. Full article
Show Figures

Figure 1

37 pages, 10271 KB  
Article
The Cotangent Derivative with Respect to Another Function: Theory, Methods and Applications
by Lakhlifa Sadek and Ali Algefary
Fractal Fract. 2025, 9(11), 690; https://doi.org/10.3390/fractalfract9110690 - 27 Oct 2025
Viewed by 698
Abstract
This paper introduces a generalization of the Riemann–Liouville and Caputo cotangent derivatives and their corresponding integrals, known as the Riemann–Liouville and Caputo cotangent derivatives with respect to another function (RAF). These fractional derivatives possess the advantageous property of forming a semigroup. The paper [...] Read more.
This paper introduces a generalization of the Riemann–Liouville and Caputo cotangent derivatives and their corresponding integrals, known as the Riemann–Liouville and Caputo cotangent derivatives with respect to another function (RAF). These fractional derivatives possess the advantageous property of forming a semigroup. The paper also presents a collection of theorems and lemmas, providing solutions to linear cotangent differential equations using the generalized Laplace transform. Moreover, we present the numerical approach, the application for solving the Caputo cotangent fractional Cauchy problem, and two examples for testing this approach. Full article
Show Figures

Figure 1

20 pages, 547 KB  
Article
An Efficient Spectral Method for a Class of Asymmetric Functional-Order Diffusion–Wave Equations Using Generalized Chelyshkov Wavelets
by Quan H. Do and Hoa T. B. Ngo
Symmetry 2025, 17(8), 1230; https://doi.org/10.3390/sym17081230 - 4 Aug 2025
Viewed by 597
Abstract
Asymmetric functional-order (variable-order) fractional diffusion–wave equations (FO-FDWEs) introduce considerable computational challenges, as the fractional order of the derivatives can vary spatially or temporally. To overcome these challenges, a novel spectral method employing generalized fractional-order Chelyshkov wavelets (FO-CWs) is developed to efficiently solve such [...] Read more.
Asymmetric functional-order (variable-order) fractional diffusion–wave equations (FO-FDWEs) introduce considerable computational challenges, as the fractional order of the derivatives can vary spatially or temporally. To overcome these challenges, a novel spectral method employing generalized fractional-order Chelyshkov wavelets (FO-CWs) is developed to efficiently solve such equations. In this approach, the Riemann–Liouville fractional integral operator of variable order is evaluated in closed form via a regularized incomplete Beta function, enabling the transformation of the governing equation into a system of algebraic equations. This wavelet-based spectral scheme attains extremely high accuracy, yielding significantly lower errors than existing numerical techniques. In particular, numerical results show that the proposed method achieves notably improved accuracy compared to existing methods under the same number of basis functions. Its strong convergence properties allow high precision to be achieved with relatively few wavelet basis functions, leading to efficient computations. The method’s accuracy and efficiency are demonstrated on several practical diffusion–wave examples, indicating its suitability for real-world applications. Furthermore, it readily applies to a wide class of fractional partial differential equations (FPDEs) with spatially or temporally varying order, demonstrating versatility for diverse applications. Full article
(This article belongs to the Topic Numerical Methods for Partial Differential Equations)
Show Figures

Figure 1

33 pages, 403 KB  
Article
Some Further Insight into the Sturm–Liouville Theory
by Salvatore De Gregorio, Lamberto Lamberti and Paolo De Gregorio
Mathematics 2025, 13(15), 2405; https://doi.org/10.3390/math13152405 - 26 Jul 2025
Viewed by 723
Abstract
Some classical texts on the Sturm–Liouville equation (p(x)y)q(x)y+λρ(x)y=0 are revised to highlight further properties of its solutions. Often, in the [...] Read more.
Some classical texts on the Sturm–Liouville equation (p(x)y)q(x)y+λρ(x)y=0 are revised to highlight further properties of its solutions. Often, in the treatment of the ensuing integral equations, ρ=const is assumed (and, further, ρ=1). Instead, here we preserve ρ(x) and make a simple change only of the independent variable that reduces the Sturm–Liouville equation to yq(x)y+λρ(x)y=0. We show that many results are identical with those with λρq=const. This is true in particular for the mean value of the oscillations and for the analog of the Riemann–Lebesgue Theorem. From a mechanical point of view, what is now the total energy is not a constant of the motion, and nevertheless, the equipartition of the energy is still verified and, at least approximately, it does so also for a class of complex λ. We provide here many detailed properties of the solutions of the above equation, with ρ=ρ(x). The conclusion, as we may easily infer, is that, for large enough λ, locally, the solutions are trigonometric functions. We give the proof for the closure of the set of solutions through the Phragmén–Lindelöf Theorem, and show the separate dependence of the solutions from the real and imaginary components of λ. The particular case of q(x)=αρ(x) is also considered. A direct proof of the uniform convergence of the Fourier series is given, with a statement identical to the classical theorem. Finally, the proof of J. von Neumann of the completeness of the Laguerre and Hermite polynomials in non-compact sets is revisited, without referring to generating functions and to the Weierstrass Theorem for compact sets. The possibility of the existence of a general integral transform is then investigated. Full article
13 pages, 9670 KB  
Article
Exact Solitary Wave Solutions and Sensitivity Analysis of the Fractional (3+1)D KdV–ZK Equation
by Asif Khan, Fehaid Salem Alshammari, Sadia Yasin and Beenish
Fractal Fract. 2025, 9(7), 476; https://doi.org/10.3390/fractalfract9070476 - 21 Jul 2025
Cited by 3 | Viewed by 1022
Abstract
The present paper examines a novel exact solution to nonlinear fractional partial differential equations (FDEs) through the Sardar sub-equation method (SSEM) coupled with Jumarie’s Modified Riemann–Liouville derivative (JMRLD). We take the (3+1)-dimensional space–time fractional modified Korteweg-de Vries (KdV) -Zakharov-Kuznetsov (ZK) equation as a [...] Read more.
The present paper examines a novel exact solution to nonlinear fractional partial differential equations (FDEs) through the Sardar sub-equation method (SSEM) coupled with Jumarie’s Modified Riemann–Liouville derivative (JMRLD). We take the (3+1)-dimensional space–time fractional modified Korteweg-de Vries (KdV) -Zakharov-Kuznetsov (ZK) equation as a case study, which describes some intricate phenomena of wave behavior in plasma physics and fluid dynamics. With the implementation of SSEM, we yield new solitary wave solutions and explicitly examine the role of the fractional-order parameter in the dynamics of the solutions. In addition, the sensitivity analysis of the results is conducted in the Galilean transformation in order to ensure that the obtained results are valid and have physical significance. Besides expanding the toolbox of analytical methods to address high-dimensional nonlinear FDEs, the proposed method helps to better understand how fractional-order dynamics affect the nonlinear wave phenomenon. The results are compared to known methods and a discussion about their possible applications and limitations is given. The results show the effectiveness and flexibility of SSEM along with JMRLD in forming new categories of exact solutions to nonlinear fractional models. Full article
Show Figures

Figure 1

30 pages, 1358 KB  
Article
Super-Exponential Approximation of the Riemann–Liouville Fractional Integral via Gegenbauer-Based Fractional Approximation Methods
by Kareem T. Elgindy
Algorithms 2025, 18(7), 395; https://doi.org/10.3390/a18070395 - 27 Jun 2025
Cited by 1 | Viewed by 720
Abstract
This paper introduces a Gegenbauer-based fractional approximation (GBFA) method for high-precision approximation of the left Riemann–Liouville fractional integral (RLFI). By using precomputable fractional-order shifted Gegenbauer integration matrices (FSGIMs), the method achieves super-exponential convergence for smooth functions, delivering near machine-precision accuracy with minimal computational [...] Read more.
This paper introduces a Gegenbauer-based fractional approximation (GBFA) method for high-precision approximation of the left Riemann–Liouville fractional integral (RLFI). By using precomputable fractional-order shifted Gegenbauer integration matrices (FSGIMs), the method achieves super-exponential convergence for smooth functions, delivering near machine-precision accuracy with minimal computational cost. Tunable shifted Gegenbauer (SG) parameters enable flexible optimization across diverse problems, while rigorous error analysis confirms rapid error decay under optimal settings. Numerical experiments demonstrate that the GBFA method outperforms MATLAB’s integral, MATHEMATICA’s NIntegrate, and existing techniques by up to two orders of magnitude in accuracy, with superior efficiency for varying fractional orders 0<α<1. Its adaptability and precision make the GBFA method a transformative tool for fractional calculus, ideal for modeling complex systems with memory and non-local behavior. Full article
Show Figures

Figure 1

22 pages, 2193 KB  
Article
Novel Hybrid Function Operational Matrices of Fractional Integration: An Application for Solving Multi-Order Fractional Differential Equations
by Seshu Kumar Damarla and Madhusree Kundu
AppliedMath 2025, 5(2), 55; https://doi.org/10.3390/appliedmath5020055 - 10 May 2025
Viewed by 1442
Abstract
Although fractional calculus has evolved significantly since its origin in the 1695 correspondence between Leibniz and L’Hôpital, the numerical treatment of multi-order fractional differential equations remains a challenge. Existing methods are often either computationally expensive or reliant on complex operational frameworks that hinder [...] Read more.
Although fractional calculus has evolved significantly since its origin in the 1695 correspondence between Leibniz and L’Hôpital, the numerical treatment of multi-order fractional differential equations remains a challenge. Existing methods are often either computationally expensive or reliant on complex operational frameworks that hinder their broader applicability. In the present study, a novel numerical algorithm is proposed based on orthogonal hybrid functions (HFs), which were constructed as linear combinations of piecewise constant sample-and-hold functions and piecewise linear triangular functions. These functions, belonging to the class of degree-1 orthogonal polynomials, were employed to obtain the numerical solution of multi-order fractional differential equations defined in the Caputo sense. A generalized one-shot operational matrix was derived to explicitly express the Riemann–Liouville fractional integral of HFs in terms of the HFs themselves. This allowed the original multi-order fractional differential equation to be transformed directly into a system of algebraic equations, thereby simplifying the solution process. The developed algorithm was then applied to a range of benchmark problems, including both linear and nonlinear multi-order FDEs with constant and variable coefficients. Numerical comparisons with well-established methods in the literature revealed that the proposed approach not only achieved higher accuracy but also significantly reduced computational effort, demonstrating its potential as a reliable and efficient numerical tool for fractional-order modeling. Full article
Show Figures

Figure 1

42 pages, 518 KB  
Article
Exceptional Differential Polynomial Systems Formed by Simple Pseudo-Wronskians of Jacobi Polynomials and Their Infinite and Finite X-Orthogonal Reductions
by Gregory Natanson
Mathematics 2025, 13(9), 1487; https://doi.org/10.3390/math13091487 - 30 Apr 2025
Viewed by 929
Abstract
The paper advances a new technique for constructing the exceptional differential polynomial systems (X-DPSs) and their infinite and finite orthogonal subsets. First, using Wronskians of Jacobi polynomials (JPWs) with a common pair of the indexes, we generate the Darboux–Crum nets of the rational [...] Read more.
The paper advances a new technique for constructing the exceptional differential polynomial systems (X-DPSs) and their infinite and finite orthogonal subsets. First, using Wronskians of Jacobi polynomials (JPWs) with a common pair of the indexes, we generate the Darboux–Crum nets of the rational canonical Sturm–Liouville equations (RCSLEs). It is shown that each RCSLE in question has four infinite sequences of quasi-rational solutions (q-RSs) such that their polynomial components from each sequence form a X-Jacobi DPS composed of simple pseudo-Wronskian polynomials (p-WPs). For each p-th order rational Darboux Crum transform of the Jacobi-reference (JRef) CSLE, used as the starting point, we formulate two rational Sturm–Liouville problems (RSLPs) by imposing the Dirichlet boundary conditions on the solutions of the so-called ‘prime’ SLE (p-SLE) at the ends of the intervals (−1, +1) or (+1, ∞). Finally, we demonstrate that the polynomial components of the q-RSs representing the eigenfunctions of these two problems have the form of simple p-WPs composed of p Romanovski–Jacobi (R-Jacobi) polynomials with the same pair of indexes and a single classical Jacobi polynomial, or, accordingly, p classical Jacobi polynomials with the same pair of positive indexes and a single R-Jacobi polynomial. The common, fundamentally important feature of all the simple p-WPs involved is that they do not vanish at the finite singular endpoints—the main reason why they were selected for the current analysis in the first place. The discussion is accompanied by a sketch of the one-dimensional quantum-mechanical problems exactly solvable by the aforementioned infinite and finite EOP sequences. Full article
(This article belongs to the Special Issue Polynomials: Theory and Applications, 2nd Edition)
19 pages, 363 KB  
Article
Tempered Riemann–Liouville Fractional Operators: Stability Analysis and Their Role in Kinetic Equations
by Muhammad Umer, Muhammad Samraiz, Muath Awadalla and Meraa Arab
Fractal Fract. 2025, 9(3), 187; https://doi.org/10.3390/fractalfract9030187 - 18 Mar 2025
Cited by 2 | Viewed by 1047
Abstract
Mathematics and physics are deeply interconnected. In fact, physics relies on mathematical tools like calculus and differential equations. The aim of this article is to introduce tempered Riemann–Liouville (RL) fractional operators and their properties with applications in mathematical physics. The tempered RL substantial [...] Read more.
Mathematics and physics are deeply interconnected. In fact, physics relies on mathematical tools like calculus and differential equations. The aim of this article is to introduce tempered Riemann–Liouville (RL) fractional operators and their properties with applications in mathematical physics. The tempered RL substantial fractional derivative is also defined, and its properties are discussed. The Laplace transforms (LTs) of the introduced fractional operators are evaluated. The Hyers–Ulam stability and the existence of a novel tempered fractional differential equation are examined. Moreover, a fractional integro-differential kinetic equation is formulated, and the LT is used to find its solution. A growth model and its graphical representation are established, highlighting the role of novel fractional operators in modeling complex dynamical systems. The developed mathematical framework offers valuable insights into solving a range of scenarios in mathematical physics. Full article
Show Figures

Figure 1

43 pages, 521 KB  
Article
On Finite Exceptional Orthogonal Polynomial Sequences Composed of Rational Darboux Transforms of Romanovski-Jacobi Polynomials
by Gregory Natanson
Axioms 2025, 14(3), 218; https://doi.org/10.3390/axioms14030218 - 16 Mar 2025
Cited by 2 | Viewed by 926
Abstract
The paper presents the united analysis of the finite exceptional orthogonal polynomial (EOP) sequences composed of rational Darboux transforms of Romanovski-Jacobi polynomials. It is shown that there are four distinguished exceptional differential polynomial systems (X-Jacobi DPSs) of series J1, J2, J3, and W. [...] Read more.
The paper presents the united analysis of the finite exceptional orthogonal polynomial (EOP) sequences composed of rational Darboux transforms of Romanovski-Jacobi polynomials. It is shown that there are four distinguished exceptional differential polynomial systems (X-Jacobi DPSs) of series J1, J2, J3, and W. The first three X-DPSs formed by pseudo-Wronskians of two Jacobi polynomials contain both exceptional orthogonal polynomial systems (X-Jacobi OPSs) on the interval (−1, +1) and the finite EOP sequences on the positive interval (1, ∞). On the contrary, the X-DPS of series W formed by Wronskians of two Jacobi polynomials contains only (infinitely many) finite EOP sequences on the interval (1, ∞). In addition, the paper rigorously examines the three isospectral families of the associated Liouville potentials (rationally extended hyperbolic Pöschl-Teller potentials of types a, b, and a) exactly quantized by the EOPs in question. Full article
27 pages, 392 KB  
Article
L1 Scheme for Semilinear Stochastic Subdiffusion with Integrated Fractional Gaussian Noise
by Xiaolei Wu and Yubin Yan
Fractal Fract. 2025, 9(3), 173; https://doi.org/10.3390/fractalfract9030173 - 12 Mar 2025
Viewed by 1077
Abstract
This paper considers a numerical method for solving the stochastic semilinear subdiffusion equation which is driven by integrated fractional Gaussian noise and the Hurst parameter H(1/2,1). The finite element method is employed for spatial [...] Read more.
This paper considers a numerical method for solving the stochastic semilinear subdiffusion equation which is driven by integrated fractional Gaussian noise and the Hurst parameter H(1/2,1). The finite element method is employed for spatial discretization, while the L1 scheme and Lubich’s first-order convolution quadrature formula are used to approximate the Caputo time-fractional derivative of order α(0,1) and the Riemann–Liouville time-fractional integral of order γ(0,1), respectively. Using the semigroup approach, we establish the temporal and spatial regularity of the mild solution to the problem. The fully discrete solution is expressed as a convolution of a piecewise constant function with the inverse Laplace transform of a resolvent-related function. Based on the Laplace transform method and resolvent estimates, we prove that the proposed numerical scheme has the optimal convergence order O(τmin{H+α+γ1ε,α}),ε>0. Numerical experiments are presented to validate these theoretical convergence orders and demonstrate the effectiveness of this method. Full article
35 pages, 2025 KB  
Article
Fractional Calculus for Type 2 Interval-Valued Functions
by Mostafijur Rahaman, Dimplekumar Chalishajar, Kamal Hossain Gazi, Shariful Alam, Soheil Salahshour and Sankar Prasad Mondal
Fractal Fract. 2025, 9(2), 102; https://doi.org/10.3390/fractalfract9020102 - 5 Feb 2025
Cited by 6 | Viewed by 1450
Abstract
This paper presents a contemporary introduction of fractional calculus for Type 2 interval-valued functions. Type 2 interval uncertainty involves interval uncertainty with the goal of more assembled perception with reference to impreciseness. In this paper, a Riemann–Liouville fractional-order integral is constructed in Type [...] Read more.
This paper presents a contemporary introduction of fractional calculus for Type 2 interval-valued functions. Type 2 interval uncertainty involves interval uncertainty with the goal of more assembled perception with reference to impreciseness. In this paper, a Riemann–Liouville fractional-order integral is constructed in Type 2 interval delineated vague encompassment. The exploration of fractional calculus is continued with the manifestation of Riemann–Liouville and Caputo fractional derivatives in the cited phenomenon. In addition, Type 2 interval Laplace transformation is proposed in this text. Conclusively, a mathematical model regarding economic lot maintenance is analyzed as a conceivable implementation of this theoretical advancement. Full article
(This article belongs to the Special Issue Mathematical and Physical Analysis of Fractional Dynamical Systems)
Show Figures

Figure 1

Back to TopTop