# Exact Solutions of the (2+1)-Dimensional Stochastic Chiral Nonlinear Schrödinger Equation

^{1}

^{2}

^{3}

^{4}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. The Exact Solutions of the 2D-CNLSE

#### 2.1. Riccati–Bernoulli Sub-ODE Method

#### 2.2. He’s Variational Principle Method

#### 2.3. Sine–Cosine Method

## 3. Physical Interpretation

## 4. The Effect of Multiplicative Noise on the Solutions of the 2D-CNLSE

## 5. Conclusions

## Author Contributions

## Funding

## Acknowledgments

## Conflicts of Interest

## References

- Eslami, M. Soliton-like solutions for the coupled Schrödinger’s-Boussinesq equation. Opt. Int. J. Light Electron Opt.
**2016**, 126, 3987–3991. [Google Scholar] [CrossRef] - Abdelrahman, M.A.E.; Hassan, S.Z.; Inc, M. The coupled nonlinear Schrödinger-type equations. Mod. Phys. Lett.
**2020**, 34, 2050078. [Google Scholar] [CrossRef] - Abdelrahman, M.A.E.; Mohammed, W.W. The impact of multiplicative noise on the solution of the Chiral nonlinear Schrödinger equation. Phys. Scr.
**2020**, 95, 085222. [Google Scholar] [CrossRef] - Malik, H.K.; Srivastava, R.; Kumar, S.; Singh, D. Small amplitude dust acoustic solitary wave in magnetized two ion temperature plasma. J. Taibah Univ. Sci.
**2020**, 14, 417–422. [Google Scholar] [CrossRef] [Green Version] - Abdelwahed, H.G. Nonlinearity contributions on critical MKP equation. J. Taibah Univ. Sci.
**2020**, 14, 777–782. [Google Scholar] [CrossRef] - Abouelregal, A.E. A novel model of non-local thermoelasticity with time derivatives of higher order. Math. Methods Appl. Sci.
**2020**, 43, 6746–6760. [Google Scholar] [CrossRef] - Liu, S.; Zhou, Q.; Biswas, A.; Liu, W. Phase-shift controlling of three solitons in dispersion-decreasing fibers. Nonlinear Dyn.
**2019**, 98, 395–401. [Google Scholar] [CrossRef] - Mohammed, W.W.; Abdelrahman, M.A.E.; Inc, M.; Hamza, A.E.; Akinlar, M.A. Soliton solutions for system of ion sound and Langmuir waves. Opt. Quant. Elect.
**2020**, 52, 460. [Google Scholar] [CrossRef] - Abouelregal, A.E.; Mohammed, W.W. Effects of nonlocal thermoelasticity on nanoscale beams based on couple stress theory. Math. Methods Appl. Sci.
**2020**, 1–17. [Google Scholar] [CrossRef] - Wang, M.L.; Li, X.Z.; Zhang, J.L. The ($\frac{{G}^{\prime}}{G}$)-expansion method and travelling wave solutions of nonlinear evolution equations in mathematical physics. Phys. Lett. A
**2008**, 372, 417–423. [Google Scholar] [CrossRef] - Zhang, H. New application of the ($\frac{{G}^{\prime}}{G}$)-expansion method. Commun. Nonlinear Sci. Numer. Simul.
**2009**, 14, 3220–3225. [Google Scholar] [CrossRef] - Wazwaz, A.M. Exact solutions to the double sinh-Gordon equation by the tanh method and a variable separated ODE. method. Comput. Math. Appl.
**2005**, 50, 1685–1696. [Google Scholar] [CrossRef] [Green Version] - Wazwaz, A.M. A sine-cosine method for handling nonlinear wave equations. Math. Comput. Model.
**2004**, 40, 499–508. [Google Scholar] [CrossRef] - He, J.H. An approximate solution technique depending on an artificial parameter: A special example. Commun. Nonlinear Sci. Numer. Simul.
**1998**, 3, 92–97. [Google Scholar] [CrossRef] - Hirota, R. Exact solution of the Korteweg-de Vries equation for multiple collisions of solitons. Phys. Rev. Lett.
**1971**, 27, 1192–1194. [Google Scholar] [CrossRef] - Ieda, J.; Uchiyama, M.; Wadati, M. Inverse scattering method for square matrix nonlinear Schrödinger equation under nonvanishing boundary conditions. J. Math. Phys.
**2007**, 48, 013507. [Google Scholar] [CrossRef] [Green Version] - Petrov, E.Y.; Kudrin, A.V. Exact Axisymmetric Solutions of the Maxwell Equations in a Nonlinear Nondispersive Medium. Phys. Rev. Lett.
**2010**, 104, 190404. [Google Scholar] [CrossRef] [Green Version] - Xiong, H.; Si, L.; Ding, C.; Lü, X.; Yang, X.; Wu, Y. Solutions of the cylindrical nonlinear Maxwell equations. Phys. Rev. E
**2012**, 85, 016602. [Google Scholar] [CrossRef] [Green Version] - Mohammed, W.W. Approximate solution of the Kuramoto-Shivashinsky equation on an unbounded domain. Chin. Ann. Math. Ser. B
**2018**, 39, 145–162. [Google Scholar] [CrossRef] - He, J.H. An new approach to nonlinear partial differential equations. Commun. Nonlinear Sci. Numer. Simul.
**1997**, 2, 230–235. [Google Scholar] [CrossRef] - Yusufoglu, E. The variational iteration method for studying the Klein-Gordon equation. Appl. Math. Lett.
**2008**, 21, 669–674. [Google Scholar] [CrossRef] [Green Version] - Yang, X.F.; Deng, Z.C.; Wei, Y. A Riccati-Bernoulli sub-ODE method for nonlinear partial differential equations and its application. Adv. Diff. Equ.
**2015**, 1, 117–133. [Google Scholar] [CrossRef] [Green Version] - Abdelrahman, M.A.E.; Sohaly, M.A. Solitary waves for the nonlinear Schrödinger problem with the probability distribution function in stochastic input case. Eur. Phys. J. Plus
**2017**, 132, 339. [Google Scholar] [CrossRef] - Wazwaz, A.M. The tanh method: Exact solutions of the Sine–Gordon and Sinh–Gordon equations. Appl. Math. Comput.
**2005**, 167, 1196–1210. [Google Scholar] [CrossRef] - Yan, Z.L. Abunbant families of Jacobi elliptic function solutions of the-dimensional integrable Davey-Stewartson-type equation via a new method. Chaos Solitons Fractals
**2003**, 18, 299–309. [Google Scholar] [CrossRef] - Khan, K.; Akbar, M.A. The exp(-(ξ))-expansion method for finding travelling wave solutions of Vakhnenko-Parkes equation. Int. J. Dyn. Syst. Differ. Equ.
**2014**, 5, 72–83. [Google Scholar] [CrossRef] - Triki, H.; Bensalem, C.; Biswas, A.; Khan, S.; Zhou, Q.; Adesanya, S.; Moshokoa, S.P.; Belic, M. Self-similar optical solitons with continuous-wave background in a quadratic-cubic non-centrosymmetric waveguide. Opt. Commun.
**2019**, 437, 392–398. [Google Scholar] [CrossRef] - Biswas, A. Conservation laws for optical solitons with anti-cubic and generalized anti-cubic nonlinearities. Optik
**2019**, 176, 198–201. [Google Scholar] [CrossRef] - Wazwaz, A.M. The integrable time-dependent sine-Gordon with multiple optical kink solutions. Optik
**2019**, 182, 605–610. [Google Scholar] [CrossRef] - Xiong, H.; Gan, J.; Wu, Y. Kuznetsov-Ma Soliton Dynamics Based on the Mechanical Effect of Light. Phys. Rev. Lett.
**2017**, 201, 153901. [Google Scholar] [CrossRef] - Prévôt, C.; Röckner, M. A Concise Course on Stochastic Partial Differential Equations; Springer: Berlin/Heidelberg, Germany, 2007. [Google Scholar]
- Shi, Y.; Pana, M.; Peng, D. Replicator dynamics and evolutionary game of social tolerance: The role of neutral agents. Econ. Lett.
**2017**, 159, 10–14. [Google Scholar] [CrossRef] - Mohammed, W.W. Modulation Equation for the Stochastic Swift—Hohenberg Equation with Cubic and Quintic Nonlinearities on the Real Line. Mathematics
**2019**, 7, 1217. [Google Scholar] [CrossRef] [Green Version] - Eslami, M. Trial solution technique to chiral nonlinear Schrödinger’s equation in (1+2)-dimensions. Nonlinear Dyn.
**2016**, 85, 813–816. [Google Scholar] [CrossRef] - ⌀Ksendal, B. Stochastic Differential Equations: An Introduction with Applications, 6th ed.; Springer: Berlin/Heidelberg, Germany, 2003. [Google Scholar]
- Raza, N.; Javid, A. Optical dark and dark-singular soliton solutions of (1 + 2)-dimensional chiral nonlinear Schrodinger’s equation. Waves Random Complex Media
**2019**, 29, 496. [Google Scholar] [CrossRef] - Javid, A.; Raza, N. Chiral solitons of the (1+2)-dimensional nonlinear Schrodinger’s equation. Mod. Phys. Lett.
**2019**, 33, 1950401. [Google Scholar] [CrossRef] - He, J.H. Variational principles for some nonlinear partial dikerential equations with variable coencients. Chaos Solitons Fractals
**2004**, 19, 847–851. [Google Scholar] [CrossRef] - He, J.H. Some asymptotic methods for strongly nonlinear equations. Int. J. Mod. Phys. B
**2006**, 20, 1141–1199. [Google Scholar] [CrossRef] [Green Version] - Ye, Y.H.; Mo, L.F. He’s variational method for the Benjamin–Bona–Mahony equation and the Kawahara equation. Comput. Math. Appl.
**2009**, 58, 2420–2422. [Google Scholar] [CrossRef] [Green Version] - Scott, A.C. Encyclopedia of Nonlinear Science; Routledge: New York, NY, USA, 2005. [Google Scholar]
- Taylor, J.R. Optical Solitons: Theory and Experiment; Cambridge University Press: Cambridge, UK, 1992. [Google Scholar]
- Bailung, H.; Sharma, S.K.; Nakamura, Y. Observation of Peregrine Solitons in a Multicomponent Plasma with Negative Ions. Phys. Rev. Lett.
**2011**, 107, 255005. [Google Scholar] [CrossRef] - Kibler, B.; Fatome, J.; Finot, C.; Millot, G.; Dias, F.; Genty, G.; Akhmediev, N.; Dudley, J.M. The Peregrine soliton in nonlinear fibre optics. Nat. Phys.
**2010**, 6, 790–795. [Google Scholar] [CrossRef] - Chabchoub, A.; Hoffmann, N.P.; Akhmediev, N. Rogue wave observation in a water wave tank. Phys. Rev. Lett.
**2011**, 106, 204502. [Google Scholar] [CrossRef] [PubMed] - Pathak, P.; Sharma, S.K.; Akamura, Y.N.; Bailung, H. Observation of ion acoustic multi-Peregrine solitons in multicomponent plasma with negative ions. Phys. Lett. A
**2017**, 381, 4011–4018. [Google Scholar] [CrossRef]

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Albosaily, S.; Mohammed, W.W.; Aiyashi, M.A.; Abdelrahman, M.A.E.
Exact Solutions of the (2+1)-Dimensional Stochastic Chiral Nonlinear Schrödinger Equation. *Symmetry* **2020**, *12*, 1874.
https://doi.org/10.3390/sym12111874

**AMA Style**

Albosaily S, Mohammed WW, Aiyashi MA, Abdelrahman MAE.
Exact Solutions of the (2+1)-Dimensional Stochastic Chiral Nonlinear Schrödinger Equation. *Symmetry*. 2020; 12(11):1874.
https://doi.org/10.3390/sym12111874

**Chicago/Turabian Style**

Albosaily, Sahar, Wael W. Mohammed, Mohammed A. Aiyashi, and Mahmoud A. E. Abdelrahman.
2020. "Exact Solutions of the (2+1)-Dimensional Stochastic Chiral Nonlinear Schrödinger Equation" *Symmetry* 12, no. 11: 1874.
https://doi.org/10.3390/sym12111874