Current Knowledge on Novel Semi-Arid Photovoltaic Ecosystems, Their Impacts on Biodiversity and Implications for the Sustainability of Renewable Energy Production
Abstract
:1. Introduction
2. Methods
3. Overview of the Pressures, State and Impacts Associated with the Different Stages of Solar Energy Production
3.1. Module Manufacturing Phase
3.2. PVP Construction and Operation Phase
3.3. Decommissioning Phase
4. Main Pressures of PVPs on Arid and Semi-Arid Ecosystems
5. Characteristics and Functioning of Novel Semi-Arid Photovoltaic Ecosystems
5.1. Microclimatic Characteristics
5.2. Soil
5.3. Vegetation
5.4. Wildlife
6. Discussion
- Changes at the landscape level that hinder the use of habitats by fauna (habitat loss) and movements across the landscape (habitat fragmentation);
- Altered soil properties that hinder plant establishment;
- An altered microclimate because of the shadow created by the panels;
- Ruderalization of communities, which produces losses of valuable species.
- In the framework of agricultural land restoration, creating specific elements to benefit wildlife and particular services [86]. Actions can include (1) creating living fences; (2) planting isolated trees to take advantage of their disproportionate positive value for biodiversity conservation and potential for seed dispersal; (3) the creation of pollinator-friendly areas using plant enrichment; (4) the introduction of beetle banks, stone walls, stone mounds and other strategic refuges for fauna; (5) the introduction of perches and nest boxes for birds; (6) the introduction or restoration of drinking troughs; (7) the reconstruction of rural architecture specifically intended to restore and value cultural services but also serving as a refuge for fauna.
- In the context of PVPs, where mowing is an integral part of the management, it is key to create ecosystems based on short plants as grasslands, which, in fact, form the spontaneous vegetation in many drylands. Grassland species are usually introduced by means of sowing, but in most drylands around the world, there are two main challenges to seed-based restoration: (1) finding enough seeds and of high enough quality, and (2) the low establishment rates of sown seeds. To overcome these obstacles in relation to seeds, seed coating and scarification technologies can improve germination rates and seedling establishment in arid conditions to improve success with low quantities of seeds [93]. With regard to soil, techniques such as mulching, harrowing and creating microhabitats (e.g., pits or other site preparation techniques) can enhance soil moisture retention and seedling survival [94,95].
- Another option is using seed bank transfer—removing the top 2–3 cm of the substrate before PVP construction and subsequently placing it over the surface of the PVP. This ensures the permanence of species from the original community [96] but would be more effective on natural rather than agricultural land.
- Controlling vegetation growth, substituting regular maintenance operations, minimizing or even eliminating the use of herbicides, lawnmowers and weed eaters, which have negative impacts on the environment and can also damage PVP systems [99], also reduce greenhouse gas emissions [100] and contribute to fertilizing the soil.
- Livestock grazing is also compatible with pollinator projects, such as the creation of habitats for wild pollinators or the placement of beehives [101].
- Solar grazing enterprises could increase and diversify the income of sheep farmers and thus benefit the livelihoods and financial viability of rural communities [100].
- Choose the grazing animal according to the risk of damage to solar panels by animals and vice versa [10].
- Stocking rates must be calculated to establish a rotational grazing system [101].
- Local pastoralists’ knowledge is indispensable [104] and needs to be taken into account when designing grazing plans.
- Move livestock throughout the landscape, from species-rich natural pastures to PVPs, to help the dispersal of suitable species [105].
- Consider sowing some forage species in the early stages of restoration to encourage sward establishment.
- An intense monitoring program is necessary to ensure that livestock rotations are performed properly, that there are no problems between grazing and the actions necessary for the normal operation of the PVPs, e.g., maintenance tasks, and that livestock do not damage the infrastructure or harm themselves.
7. Conclusions
- Novelty. The recent emergence and expansion of PVPs (and other renewable energies), which means that there are large gaps in knowledge on their effects on ecosystems.
- PVPs affect natural areas of high ecological value. First, the literature shows that many valuable natural areas are affected by the construction of PVPs, which indicates a limited consideration of biodiversity during the process of site selection for PVPs.
- PVPs create novel ecosystems. PVP construction produces changes in microclimatic and soil conditions that affect the pre-existing biodiversity, altering the functioning and composition of the previous plant and animal communities and creating a novel ecosystem that needs to be studied in detail.
- The complexity of systems and interactions have not been considered. The literature usually addresses the effects of PVPs with a focus on isolated processes or species, but PVPs may affect the ecological network. Understanding the effects of PVPs on interactions between species and processes is essential for determining their impact on ecosystem functioning.
- There is a lack of long-term monitoring and complex research on these novel ecosystems. There is no scientific monitoring of the evolution of ecosystems after the establishment of PV facilities, and there is also a lack of research and monitoring at the landscape and ecosystem levels or on the cumulative environmental impacts of existing and proposed renewable energy projects. Moreover, scientific research to date is limited to very basic (but much needed) questions about the effects of PVPs on biodiversity, and more complex studies at large spatial and temporal scales are needed.
- Grazing can be used as a useful restoration tool in PVPs. Although ecological restoration in semi-arid environments is a challenge, incorporating a well-designed grazing plan can contribute to restoring plant communities and improve the quality of the habitat.
- Current knowledge on ecological restoration in PVPs in drylands is scarce, and more applied research is needed.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
GW | Gigawatts |
IEA | International Energy Agency |
MW | Megawatts |
PV | Photovoltaic |
PVP | Photovoltaic plant |
SDGs | Sustainable Development Goals |
References
- United Nations Framework Convention on Climate Change. Annual Report. 2019. Available online: https://unfccc.int/ (accessed on 15 May 2023).
- IRENA. Future of Solar Photovoltaic: Deployment, Investment, Technology, Grid Integration and Socio-Economic Aspects; International Renewable Energy Agency: Dubai, United Arab Emirates, 2019; ISBN 978-92-9260-156-0. [Google Scholar]
- Obama, B. The Irreversible Momentum of Clean Energy. Science 2017, 355, 126–129. [Google Scholar] [CrossRef] [PubMed]
- Renewables 2022—Analysis. Available online: https://www.iea.org/reports/renewables-2022 (accessed on 10 September 2024).
- REN21. Renewables 2024 Global Status Report Collection, Renewables in Energy Supply; REN21: France, Paris, 2024; ISBN 978-3-948393-17-5. [Google Scholar]
- Dhar, A.; Naeth, M.A.; Jennings, P.D.; Gamal El-Din, M. Perspectives on Environmental Impacts and a Land Reclamation Strategy for Solar and Wind Energy Systems. Sci. Total Environ. 2020, 718, 134602. [Google Scholar] [CrossRef] [PubMed]
- Rehbein, J.A.; Watson, J.E.M.; Lane, J.L.; Sonter, L.J.; Venter, O.; Atkinson, S.C.; Allan, J.R. Renewable Energy Development Threatens Many Globally Important Biodiversity Areas. Glob. Chang. Biol. 2020, 26, 3040–3051. [Google Scholar] [CrossRef]
- de Andrés-Ruiz, C.; Iranzo-García, E.; Espejo-Marín, C. Solar Thermoelectric Power Landscapes in Spain. In Renewable Energies and European Landscapes: Lessons from Southern European Cases; Frolova, M., Prados, M.-J., Nadaï, A., Eds.; Springer: Dordrecht, The Netherlands, 2015; pp. 237–254. ISBN 978-94-017-9843-3. [Google Scholar]
- Kim, J.Y.; Koide, D.; Ishihama, F.; Kadoya, T.; Nishihiro, J. Current Site Planning of Medium to Large Solar Power Systems Accelerates the Loss of the Remaining Semi-Natural and Agricultural Habitats. Sci. Total Environ. 2021, 779, 146475. [Google Scholar] [CrossRef]
- Mamun, M.A.A.; Dargusch, P.; Wadley, D.; Zulkarnain, N.A.; Aziz, A.A. A Review of Research on Agrivoltaic Systems. Renew. Sustain. Energy Rev. 2022, 161, 112351. [Google Scholar] [CrossRef]
- Cameron, D.R.; Cohen, B.S.; Morrison, S.A. An Approach to Enhance the Conservation-Compatibility of Solar Energy Development. PLoS ONE 2012, 7, e38437. [Google Scholar] [CrossRef]
- Moore-O’Leary, K.A.; Hernandez, R.R.; Johnston, D.S.; Abella, S.R.; Tanner, K.E.; Swanson, A.C.; Kreitler, J.; Lovich, J.E. Sustainability of Utility-Scale Solar Energy—Critical Ecological Concepts. Front. Ecol. Environ. 2017, 15, 385–394. [Google Scholar] [CrossRef]
- Grodsky, S.M.; Hernandez, R.R. Reduced Ecosystem Services of Desert Plants from Ground-Mounted Solar Energy Development. Nat. Sustain. 2020, 3, 1036–1043. [Google Scholar] [CrossRef]
- Lovich, J.; Ennen, J. Wildlife Conservation and Solar Energy Development in the Desert Southwest, Unites States. BioScience 2011, 61, 982–992. [Google Scholar] [CrossRef]
- Hobbs, R.J.; Higgs, E.; Harris, J.A. Novel Ecosystems: Implications for Conservation and Restoration. Trends Ecol. Evol. 2009, 24, 599–605. [Google Scholar] [CrossRef]
- Tölgyesi, C.; Bátori, Z.; Pascarella, J.; Erdős, L.; Török, P.; Batáry, P.; Birkhofer, K.; Scherer, L.; Michalko, R.; Košulič, O.; et al. Ecovoltaics: Framework and Future Research Directions to Reconcile Land-Based Solar Power Development with Ecosystem Conservation. Biol. Conserv. 2023, 285, 110242. [Google Scholar] [CrossRef]
- European Environment Agency. Environmental Indicators: Typology and Overview (Technical Report No. 25); European Environment Agency: Copenhagen, Denmark, 1999; Available online: https://www.eea.europa.eu/publications/TEC25 (accessed on 10 April 2025).
- Tawalbeh, M.; Al-Othman, A.; Kafiah, F.; Abdelsalam, E.; Almomani, F.; Alkasrawi, M. Environmental Impacts of Solar Photovoltaic Systems: A Critical Review of Recent Progress and Future Outlook. Sci. Total Environ. 2021, 759, 143528. [Google Scholar] [CrossRef] [PubMed]
- Espinosa, N.; Laurent, A.; Krebs, F.C. Ecodesign of Organic Photovoltaic Modules from Danish and Chinese Perspectives. Energy Environ. Sci. 2015, 8, 2537–2550. [Google Scholar] [CrossRef]
- Obaideen, K.; AlMallahi, M.N.; Alami, A.H.; Ramadan, M.; Abdelkareem, M.A.; Shehata, N. On the Contribution of Solar Energy to Sustainable Developments Goals: Case Study on Mohammed Bin Rashid Al Maktoum Solar Park. Int. J. Thermofluids 2021, 12, 100123. [Google Scholar] [CrossRef]
- Rahman, A.; Farrok, O.; Haque, M.M. Environmental Impact of Renewable Energy Source Based Electrical Power Plants: Solar, Wind, Hydroelectric, Biomass, Geothermal, Tidal, Ocean, and Osmotic. Renew. Sustain. Energy Rev. 2022, 161, 112279. [Google Scholar] [CrossRef]
- Lambert, Q.; Bischoff, A.; Cueff, S.; Cluchier, A.; Gros, R. Effects of Solar Park Construction and Solar Panels on Soil Quality, Microclimate, CO2 Effluxes, and Vegetation under a Mediterranean Climate. Land Degrad. Dev. 2021, 32, 5190–5202. [Google Scholar] [CrossRef]
- Yavari, R.; Zaliwciw, D.; Cibin, R.; McPhillips, L. Minimizing Environmental Impacts of Solar Farms: A Review of Current Science on Landscape Hydrology and Guidance on Stormwater Management. Environ. Res. Infrastruct. Sustain 2022, 2, 032002. [Google Scholar] [CrossRef]
- Liu, H.; Wu, C.; Yu, Y.; Zhao, W.; Liu, J.; Yu, H.; Zhuang, Y.; Yetemern, O. Effect of solar farms on soil erosion in hilly environments: A modeling study from the perspective of hydrological connectivity. Water Resour. Res. 2023, 59, e2023WR035067. [Google Scholar] [CrossRef]
- Hernandez, R.R.; Easter, S.B.; Murphy-Mariscal, M.L.; Maestre, F.T.; Tavassoli, M.; Allen, E.B. Environmental impacts of utility-scale solar energy. Renew. Sust. Energ. Rev. 2014, 29, 766–779. [Google Scholar] [CrossRef]
- Benítez-López, A.; Alkemade, R.; Verweij, P.A. The Impacts of Roads and Other Infrastructure on Mammal and Bird Populations: A Meta-Analysis. Biol. Conserv. 2010, 143, 1307–1316. [Google Scholar] [CrossRef]
- Dorsey, B.; Olsson, M.; Rew, L.J. Ecological effects of railways on wildlife. In Handbook of Road Ecology; van der Ree, R., Smith, D.J., Grilo, C., Eds.; Wiley: Hoboken, NJ, USA, 2015; pp. 219–227. [Google Scholar]
- Biasotto, L.D.; Kindel, A. Power Lines and Impacts on Biodiversity: A Systematic Review. Environ. Impact Assess. Rev. 2018, 71, 110–119. [Google Scholar] [CrossRef]
- Chowdhury, M.S.; Rahman, K.S.; Chowdhury, T.; Nuthammachot, N.; Techato, K.; Akhtaruzzaman, M. An Overview of Solar Photovoltaic Panels’ End-of-Life Material Recycling. Energy Strat. Rev. 2020, 27, 100431. [Google Scholar] [CrossRef]
- Phillips, S.E.; Cypher, B.L. Solar Energy Development and Endangered Species in the San Joaquin Valley, California: Identification of Conflict Zones. West. Wildl. 2019, 6, 29–44. [Google Scholar]
- Irie, N.; Kawahara, N.; Esteves, A.M. Sector-Wide Social Impact Scoping of Agrivoltaic Systems: A Case Study in Japan. Renew. Energy 2019, 139, 1463–1476. [Google Scholar] [CrossRef]
- Torma, G.; Aschemann-Witzel, J. Social Acceptance of Dual Land Use Approaches: Stakeholders’ Perceptions of the Drivers and Barriers Confronting Agrivoltaics Diffusion. J. Rural Stud. 2023, 97, 610–625. [Google Scholar] [CrossRef]
- Agha, M.; Lovich, J.E.; Ennen, J.R.; Todd, B.D. Wind, Sun, and Wildlife: Do Wind and Solar Energy Development ‘Short-Circuit’ Conservation in the Western United States? Environ. Res. Lett. 2020, 15, 075004. [Google Scholar] [CrossRef]
- Sawyer, H.; Korfanta, N.M.; Kauffman, M.J.; Robb, B.S.; Telander, A.C.; Mattson, T. Trade-offs between Utility-scale Solar Development and Ungulates on Western Rangelands. Front. Ecol. Environ. 2022, 20, 345–351. [Google Scholar] [CrossRef]
- Graham, M.; Ates, S.; Melathopoulos, A.P.; Moldenke, A.R.; DeBano, S.J.; Best, L.R. Partial Shading by Solar Panels Delays Bloom, Increases Floral Abundance during the Late-Season for Pollinators in a Dryland, Agrivoltaic Ecosystem. Sci. Rep. 2021, 11, 7452. [Google Scholar] [CrossRef] [PubMed]
- Lambert, Q.; Gros, R.; Bischoff, A. Ecological Restoration of Solar Park Plant Communities and the Effect of Solar Panels. Ecol. Eng. 2022, 182, 106722. [Google Scholar] [CrossRef]
- Zhang, N.; Zhang, Z.; Cong, Z.; Lei, H.; Luo, Y. The Impact of Photovoltaic Power Plants on Surface Energy Budget Based on an Ecohydrological Model. Renew. Energy 2023, 212, 589–600. [Google Scholar] [CrossRef]
- Chang, R.; Shen, Y.; Luo, Y.; Wang, B.; Yang, Z.; Guo, P. Observed Surface Radiation and Temperature Impacts from the Large-Scale Deployment of Photovoltaics in the Barren Area of Gonghe, China. Renew. Energy 2018, 118, 131–137. [Google Scholar] [CrossRef]
- Suuronen, A.; Muñoz-Escobar, C.; Lensu, A.; Kuitunen, M.; Guajardo Celis, N.; Espinoza Astudillo, P. The Influence of Solar Power Plants on Microclimatic Conditions and the Biotic Community in Chilean Desert Environments. Environ. Manag. 2017, 60, 630–642. [Google Scholar] [CrossRef]
- Armstrong, A.; Ostle, N.J.; Whitaker, J. Solar Park Microclimate and Vegetation Management Effects on Grassland Carbon Cycling. Environ. Res. Lett. 2016, 11, 074016. [Google Scholar] [CrossRef]
- Tanner, K.E.; Moore-O’Leary, K.A.; Parker, I.M.; Pavlik, B.M.; Hernandez, R.R. Simulated solar panels create altered microhabitats in desert landforms. Ecosphere 2020, 11, e03089. [Google Scholar] [CrossRef]
- Yin, D.Y.; Ma, L.; Qu, J.J.; Zhao, S.P.; Yu, Y.; Tan, L.H. Effect of Large Photovoltaic Power Station on Microclimate of Desert Region in Gonghe Basin. Bull. Soil Water Conserv. 2017, 37, 15–21. [Google Scholar] [CrossRef]
- Noor, N.F.M.; Reeza, A.A. Effects of Solar Photovoltaic Installation on Microclimate and Soil Properties in UiTM 50MWac Solar Park, Malaysia. IOP Conf. Ser. Earth Environ. Sci. 2022, 1059, 012031. [Google Scholar] [CrossRef]
- Zhou, M.R.; Wang, X.J. Influence of Photovoltaic Power Station Engineering on Soil and Vegetation: Taking the Gobi Desert Area in the Hexi Corridor of Gansu as an Example. Sci. Soil Water Conserv. 2019, 17, 132–138. [Google Scholar] [CrossRef]
- Wu, C.; Liu, H.; Yu, Y.; Zhao, W.; Liu, J.; Yu, H.; Yetemen, O. Ecohydrological Effects of Photovoltaic Solar Farms on Soil Microclimates and Moisture Regimes in Arid Northwest China: A Modeling Study. Sci. Total Environ. 2022, 802, 149946. [Google Scholar] [CrossRef]
- Li, C.; Liu, J.; Bao, J.; Wu, T.; Chai, B. Effect of Light Heterogeneity Caused by Photovoltaic Panels on the Plant–Soil–Microbial System in Solar Park. Land 2023, 12, 367. [Google Scholar] [CrossRef]
- Liu, Y.; Ding, C.; Su, D.; Wang, T.; Wang, T. Solar Park Promoted Microbial Nitrogen and Phosphorus Cycle Potentials but Reduced Soil Prokaryotic Diversity and Network Stability in Alpine Desert Ecosystem. Front. Microbiol. 2022, 13, 976335. [Google Scholar] [CrossRef]
- Elamri, Y.; Cheviron, B.; Lopez, J.-M.; Dejean, C.; Belaud, G. Water Budget and Crop Modelling for Agrivoltaic Systems: Application to Irrigated Lettuces. Agric. Water Manag. 2018, 208, 440–453. [Google Scholar] [CrossRef]
- Barron-Gafford, G.A.; Pavao-Zuckerman, M.A.; Minor, R.L.; Sutter, L.F.; Barnett-Moreno, I.; Blackett, D.T. Agrivoltaics Provide Mutual Benefits across the Food–Energy–Water Nexus in Drylands. Nat. Sustain. 2019, 2, 848–855. [Google Scholar] [CrossRef]
- Willockx, B.; Kladas, A.; Lavaert, C.; Bert, U.; Cappelle, J. How Agrivoltaics Can Be Used as a Crop Protection System. In EUROSIS Proceedings; EUROSIS: Ostend, Belgium, 2022. [Google Scholar]
- Willockx, B.; Lavaert, C.; Cappelle, J. Geospatial Assessment of Elevated Agrivoltaics on Arable Land in Europe to Highlight the Implications on Design, Land Use and Economic Level. Energy Rep. 2022, 8, 8736–8751. [Google Scholar] [CrossRef]
- Zhai, B.; Gao, Y.; Dang, X.-H.; Chen, X.; Cheng, B.; Liu, X.-J.; Zhang, C. Effects of Photovoltaic Panels on the Characteristics and Diversity of Leymus Chinensis Community. Chin. J. Ecol. 2018, 37, 2237–2243. [Google Scholar] [CrossRef]
- Grodsky, S.M.; Campbell, J.W.; Hernandez, R.R. Solar Energy Development Impacts Flower-Visiting Beetles and Flies in the Mojave Desert. Biol. Conserv. 2021, 263, 109336. [Google Scholar] [CrossRef]
- Bennun, L.; Bochove, J.; Ng, C.; Fletcher, C.; Wilson, D.; Phair, N.; Carbone, G. Mitigating Biodiversity Impacts Associated with Solar and Wind Energy Development. Guidelines for Project Developers; IUCN: Gland, Switzerland, 2021. [Google Scholar]
- Parker, G.E.; McQueen, C. Can Solar Farms Deliver Significant Benefits for Biodiversity? 2013. Available online: https://wychwoodbiodiversity.co.uk/wp-content/uploads/2021/11/Solar-and-Biodiversity-Report-Parker-McQueen-2013d.pdf (accessed on 16 February 2023).
- Montag, H.; Parker, G.; Clarkson, T. The Effects of Solar Farms on Local Biodiversity: A Comparative Study; Clarkson and Woods and Wychwood Biodiversity: Blackford, UK, 2016. [Google Scholar]
- Patel, V.; Pauli, N.; Biggs, E.; Barbour, L.; Boruff, B. Why Bees Are Critical for Achieving Sustainable Development. Ambio 2021, 50, 49–59. [Google Scholar] [CrossRef]
- Blaydes, H.; Potts, S.G.; Whyatt, J.D.; Armstrong, A. Opportunities to Enhance Pollinator Biodiversity in Solar Parks. Renew. Sustain. Energy Rev. 2021, 145, 111065. [Google Scholar] [CrossRef]
- Oudes, D.; Stremke, S. Next Generation Solar Power Plants? A Comparative Analysis of Frontrunner Solar Landscapes in Europe. Renew. Sust. Energ. Rev. 2021, 145, 111101. [Google Scholar] [CrossRef]
- Randle-Boggis, R.J.; White, P.C.L.; Cruz, J.; Parker, G.; Montag, H.; Scurlock, J.M.O.; Armstrong, A. Realising Co-Benefits for Natural Capital and Ecosystem Services from Solar Parks: A Co-Developed, Evidence-Based Approach. Renew. Sustain. Energy Rev. 2020, 125, 109775. [Google Scholar] [CrossRef]
- Garratt, M.P.; Senapathi, D.; Coston, D.J.; Mortimer, P.; Potts, S.G. The Benefits of Hedgerows for Pollinators and Natural Enemies Depends on Hedge Quality and Landscape Context. Agric. Ecosyst. Environ. 2017, 247, 363–370. [Google Scholar] [CrossRef]
- Grodsky, S.; Moore-O’Leary, K.; Hernandez, R. From Butterflies to Bighorns: Multi-Dimensional Species-Species and Species-Process Interactions May Inform Sustainable Solar Energy Development in Desert Ecosystems. In Proceedings of the 31st Annual Desert Symposium, Zzyzx, CA, USA, 14–15 April 2017; pp. 15–17. [Google Scholar]
- Harrison, C.; Lloyd, H.; Field, C. Evidence Review of the Impact of Solar Farms on Birds, Bats and General Ecology; Natural England Technical Report; Natural England: York, UK, 2017.
- Visser, E.; Perold, V.; Ralston-Paton, S.; Cardenal, A.C.; Ryan, P.G. Assessing the Impacts of a Utility-Scale Photovoltaic Solar Energy Facility on Birds in the Northern Cape, South Africa. Renew. Energy 2019, 133, 1285–1294. [Google Scholar] [CrossRef]
- DeVault, T.L.; Seamans, T.W.; Schmidt, J.A.; Belant, J.L.; Blackwell, B.F.; Mooers, N. Bird Use of Solar Photovoltaic Installations at US Airports: Implications for Aviation Safety. Landsc. Urban Plan. 2014, 122, 122–128. [Google Scholar] [CrossRef]
- Taylor, R.; Conway, J.; Gabb, O.; Gillespie, J. Potential Ecological Impacts of Ground-Mounted Photovoltaic Solar Panels (Report) 2019. Available online: https://www.bsg-ecology.com/wp-content/uploads/2019/04/Solar-Panels-and-Wildlife-Review-2019.pdf (accessed on 5 April 2023).
- Ministerio para la Transición Ecológica y el Reto Demográfico. Guía Metodológica Para La Valoración De Repercusiones De Las Instalaciones Solares Sobre Especies De Avifauna Esteparia. Available online: https://www.miteco.gob.es/es/biodiversidad/temas/conservacion-de-especies/especies-silvestres/guia-solares-avifauna.html (accessed on 1 October 2021).
- Serrano, D.; Margalida, A.; Pérez-García, J.M.; Juste, J.; Traba, J.; Valera, F. Renewables in Spain threaten biodiversity. Science 2020, 370, 1282–1283. [Google Scholar] [CrossRef] [PubMed]
- Silva, J.P.; Arroyo, B.; Marques, A.T.; Morales, M.B.; Devoucoux, P.; Mougeot, F. Threats Affecting Little Bustards: Human Impacts. In Little Bustard: Ecology and Conservation; Springer International Publishing: Cham, Switzerland, 2022; pp. 243–271. [Google Scholar]
- Kosciuch, K.; Riser-Espinoza, D.; Gerringer, M.; Erickson, W. A Summary of Bird Mortality at Photovoltaic Utility Scale Solar Facilities in the Southwestern U.S. PLoS ONE 2020, 15, e0232034. [Google Scholar] [CrossRef]
- Chock, R.Y.; Clucas, B.; Peterson, E.K.; Blackwell, B.F.; Blumstein, D.T.; Church, K. Evaluating Potential Effects of Solar Power Facilities on Wildlife from an Animal Behavior Perspective. Conserv. Sci. Pract. 2021, 3, e319. [Google Scholar] [CrossRef]
- Cypher, B.L.; Boroski, B.B.; Burton, R.K.; Meade, D.E.; Phillips, S.E.; Leitner, P.H. Photovoltaic Solar Farms in California: Can We Have Renewable Electricity and Our Species, Too? Calif. Fish. Wildl. 2021, 107, 231–248. [Google Scholar] [CrossRef]
- Szabadi, K.L.; Kurali, A.; Rahman, N.A.; Froidevaux, J.S.; Tinsley, E.; Jones, G. The Use of Solar Farms by Bats in Mosaic Landscapes: Implications for Conservation. Glob. Ecol. Conserv. 2023, 44, e02481. [Google Scholar] [CrossRef]
- Tinsley, E.; Froidevaux, J.S.P.; Zsebők, S.; Szabadi, K.L.; Jones, G. Renewable Energies and Biodiversity: Impact of Ground-Mounted Solar Photovoltaic Sites on Bat Activity. J. Appl. Ecol. 2023, 60, 1752–1762. [Google Scholar] [CrossRef]
- Barré, K.; Baudouin, A.; Froidevaux, J.S.P.; Chartendrault, V.; Kerbiriou, C. Insectivorous Bats Alter Their Flight and Feeding Behaviour at Ground-Mounted Solar Farms. J. Appl. Ecol. 2024, 61, 328–339. [Google Scholar] [CrossRef]
- Peschel, R.; Peschel, T.; Marchand, M.; Hauke, J. Solar Parks-Profits for Bio-Diversity; Association of Energy Market Innovators: Berlin, Germany, 2019. [Google Scholar]
- Walston, L.J.; Mishra, S.K.; Hartmann, H.M.; Hlohowskyj, I.; McCall, J.; Macknick, J. Examining the Potential for Agricultural Benefits from Pollinator Habitat at Solar Facilities in the United States. Environ. Sci. Technol. 2018, 52, 7566–7576. [Google Scholar] [CrossRef]
- Grasby, S.; Campbell, K.; Stepanek, J.; MacKenzie, M.K.; Manapol, N.; McCann, R.; Hain, L.; Fox, L. Mount Morris Agrivoltaics Study: Co-Locating Solar and Agriculture at the Morris Ridge Solar Energy Center. 2020. Available online: https://www.agrisolarclearinghouse.org/wp-content/uploads/2022/01/MountMorris-AgrivoltaicReport2021-WEB.pdf (accessed on 2 May 2023).
- Semeraro, T.; Scarano, A.; Santino, A.; Emmanuel, R.; Lenucci, M. An Innovative Approach to Combine Solar Photovoltaic Gardens with Agricultural Production and Ecosystem Services. Ecosyst. Serv. 2022, 56, 101450. [Google Scholar] [CrossRef]
- Menta, C.; Remelli, S.; Andreoni, M.; Gatti, F.; Sergi, V. Can Grasslands in Photovoltaic Parks Play a Role in Conserving Soil Arthropod Biodiversity? Life 2023, 13, 1536. [Google Scholar] [CrossRef]
- Oudes, D.; Den Brink, A.; Stremke, S. Towards a Typology of Solar Energy Landscapes: Mixed-Production, Nature Based and Landscape Inclusive Solar Power Transitions. Energy Res. Soc. Sci. 2022, 91, 102742. [Google Scholar] [CrossRef]
- Zaplata, M.K. Solar Parks as Livestock Enclosures Can Become Key to Linking Energy, Biodiversity and Society. People Nat. 2023, 5, 1457–1463. [Google Scholar] [CrossRef]
- Semeraro, T.; Pomes, A.; Del Giudice, C.; Negro, D.; Aretano, R. Planning Ground Based Utility Scale Solar Energy as Green Infrastructure to Enhance Ecosystem Services. Energy Policy 2018, 117, 218–227. [Google Scholar] [CrossRef]
- Vallejo, V.R.; Smanis, A.; Chirino, E.; Fuentes, D.; Valdecantos, A.; Vilagrosa, A. Perspectives in Dryland Restoration: Approaches for Climate Change Adaptation. New For. 2012, 43, 561–579. [Google Scholar] [CrossRef]
- Safriel, U.; Adeel, S. Development Paths of Drylands: Thresholds and Sustainability. Sustain. Sci. 2008, 3, 117–123. [Google Scholar] [CrossRef]
- Rey Benayas, J.M.; Bullock, J.M. Restoration of Biodiversity and Ecosystem Services on Agricultural Land. Ecosystems 2012, 15, 883–899. [Google Scholar] [CrossRef]
- del Campo, A.D.; Navarro, R.M.; Ceacero, C.J. Seedling Quality and Field Performance of Commercial Stocklots of Containerized Holm Oak (Quercus Ilex) in Mediterranean Spain: An Approach for Establishing a Quality Standard. New For. 2010, 39, 19–37. [Google Scholar] [CrossRef]
- Valdecantos, A.; Cortina Segarra, J.; Vallejo, V.R. Nutrient Status and Field Performance of Tree Seedlings Planted in Mediterranean Degraded Areas. Ann. For. Sci. 2006, 63, 249–256. [Google Scholar] [CrossRef]
- Fuentes, D.; Smanis, A.; Valdecantos, A. Recreating Sink Areas on Semiarid Degraded Slopes by Restoration. Land Degrad. Dev. 2017, 28, 1005–1015. [Google Scholar] [CrossRef]
- Vicente, E.; las Heras, M.M.-d.; Merino-Martín, L.; Nicolau, J.M.; Espigares, T. Assessing the Effects of Nurse Shrubs, Sink Patches and Plant Water-Use Strategies for the Establishment of Late-Successional Tree Seedlings in Mediterranean Reclaimed Mining Hillslopes. Ecol. Eng. 2022, 176, 106538. [Google Scholar] [CrossRef]
- Navarro-Cano, J.A.; Goberna, M.; González Barberá, G.; Castillo, V.M.; Verdú, M. Restauración Ecológica En Ambientes Semiáridos Recuperar Las Interacciones Biológicas y Las Funciones Ecosistémicas; Navarro-Cano, J.A., Ed.; Consejo Superior de Investigaciones Científicas (España): Madrid, Spain, 2017. [Google Scholar]
- Castillo-Escrivà, A.; López-Iborra, G.M.; Cortina Segarra, J.; Tormo, J. The Use of Branch Piles to Assist in the Restoration of Degraded Semiarid Steppes. Restor. Ecol. 2019, 27, 102–108. [Google Scholar] [CrossRef]
- Jarrar, H.; El-Keblawy, A.; Ghenai, C.; Abhilash, P.C.; Bundela, A.K.; Abideen, Z.; Sheteiwy, M.S. Seed enhancement technologies for sustainable dryland restoration: Coating and scarification. Sci. Total Environ. 2023, 904, 166150. [Google Scholar] [CrossRef]
- Farrell, H.L.; Munson, S.M.; Butterfield, B.J.; Duniway, M.C.; Faist, A.M.; Gornish, E.S.; Havrilla, C.A.; Larios, L.; Reed, S.C.; Rowe, H.I.; et al. Soil surface treatments and precipitation timing determine seedling development across southwestern US restoration sites. Ecol. Appl. 2023, 33, e2834. [Google Scholar] [CrossRef]
- Pineiro, J.; Maestre, F.T.; Bartolomé, L.; Valdecantos, A. Ecotechnology as a tool for restoring degraded drylands: A meta-analysis of field experiments. Ecol. Eng. 2013, 61, 133–144. [Google Scholar] [CrossRef]
- Fowler, W.M.; Fontaine, J.B.; Enright, N.J.; Veber, W.P. Evaluating restoration potential of transferred topsoil. Appl. Veg. Sci. 2015, 18, 379–390. [Google Scholar] [CrossRef]
- Cortina, J.; Amat, B.; Derak, M.; Ribeiro Da Silva, M.J.; Disante, K.B.; Fuentes, D.; Tormo, J.; Trubat, R. On the restoration of degraded drylands. Secheresse 2011, 22, 69–74. [Google Scholar]
- Miguel, M.F.; Butterfield, H.S.; Lortie, C.J. A meta-analysis contrasting active versus passive restoration practices in dryland agricultural ecosystems. PeerJ 2020, 8, e10428. [Google Scholar] [CrossRef]
- Handler, R.; Pearce, J.M. Greener Sheep: Life Cycle Analysis of Integrated Sheep Agrivoltaic Systems. Clean. Energy Syst. 2022, 3, 100036. [Google Scholar] [CrossRef]
- Kochendoerfer, N.; Thonney, M.L. Grazing Sheep on Solar Sites in New York State: Opportunities and Challenges. Scope and Scaling-up of the NYS Sheep Industry to Graze Ground-Mounted Photovoltaic Arrays for Vegetation Management; Department of Animal Science, Cornell University: Ithaca, NY, USA, 2021. [Google Scholar]
- Agrivoltaic Solutions, LLC. Agricultural Integration Plan: Managed Sheep Grazing & Beekeeping; Morris Rifge Solar Energy Center Case; Agrivoltaic Solutions, LLC.: Whiting, VT, USA, 2022. [Google Scholar]
- Vaverková, M.D.; Winkler, J.; Uldrijan, D.; Ogrodnik, P.; Vespalcová, T.; Aleksiejuk-Gawron, J. Fire Hazard Associated with Different Types of Photovoltaic Power Plants: Effect of Vegetation Management. Renew. Sust. Energ. Rev. 2022, 162, 112491. [Google Scholar] [CrossRef]
- Kampherbeek, E.W.; Webb, L.E.; Reynolds, B.J.; Sistla, S.A.; Horney, M.R.; Ripoll-Bosch, R. A Preliminary Investigation of the Effect of Solar Panels and Rotation Frequency on the Grazing Behavior of Sheep (Ovis Aries) Grazing Dormant Pasture. Appl. Anim. Behav. Sci. 2023, 258, 105799. [Google Scholar] [CrossRef]
- Fernández-Giménez, M.E.; Fillat Estaque, F. Pyrenean Pastoralists’ Ecological Knowledge: Documentation and Application to Natural Resource Management and Adaptation. Hum. Ecol. 2012, 40, 287–300. [Google Scholar] [CrossRef]
- Auffret, A.G. Can Seed Dispersal by Human Activity Play a Useful Role for the Conservation of European Grasslands? Appl. Veg. Sci. 2011, 14, 291–303. [Google Scholar] [CrossRef]
- Smokorowski, K.E.; Randall, R.G. Cautions on Using the Before-After-Control-Impact Design in Environmental Effects Monitoring Programs. Facets 2017, 2, 212–232. [Google Scholar] [CrossRef]
- Gann, G.D.; McDonald, T.; Walder, B.; Aronson, J.; Nelson, C.R.; Jonson, J.; Hallett, J.G.; Eisenberg, C.; Guariguata, M.R.; Liu, J.; et al. International principles and standards for the practice of ecological restoration. Second Edition. Restor. Ecol. 2019, 27, S1–S46. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iranzo, E.C.; Nicolau, J.M.; Reiné, R.; Tormo, J. Current Knowledge on Novel Semi-Arid Photovoltaic Ecosystems, Their Impacts on Biodiversity and Implications for the Sustainability of Renewable Energy Production. Land 2025, 14, 1188. https://doi.org/10.3390/land14061188
Iranzo EC, Nicolau JM, Reiné R, Tormo J. Current Knowledge on Novel Semi-Arid Photovoltaic Ecosystems, Their Impacts on Biodiversity and Implications for the Sustainability of Renewable Energy Production. Land. 2025; 14(6):1188. https://doi.org/10.3390/land14061188
Chicago/Turabian StyleIranzo, Esperanza C., José Manuel Nicolau, Ramón Reiné, and Jaume Tormo. 2025. "Current Knowledge on Novel Semi-Arid Photovoltaic Ecosystems, Their Impacts on Biodiversity and Implications for the Sustainability of Renewable Energy Production" Land 14, no. 6: 1188. https://doi.org/10.3390/land14061188
APA StyleIranzo, E. C., Nicolau, J. M., Reiné, R., & Tormo, J. (2025). Current Knowledge on Novel Semi-Arid Photovoltaic Ecosystems, Their Impacts on Biodiversity and Implications for the Sustainability of Renewable Energy Production. Land, 14(6), 1188. https://doi.org/10.3390/land14061188