Sediment–Phosphorus Dynamics in the Yellow River Estuary
Abstract
1. Introduction
2. Distribution of Phosphorus in Overlying Water and Sediment of the YRE
3. Characteristics and Dynamics of Sediment in the YRE
4. Environmental Behavior of Phosphorus in the YRE
5. Model Simulating of Phosphorus and Sediment
6. Conclusions and Outlooks
6.1. Conclusions
6.2. Outlooks
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Pan, K.; Wang, W.X. Trace metal contamination in estuarine and coastal environments in China. Sci. Total Environ. 2012, 421–422, 3–16. [Google Scholar] [CrossRef] [PubMed]
- Chapman, P.M.; Wang, F. Assessing sediment contamination in estuaries. Environ. Toxicol. Chem. 2001, 20, 3–22. [Google Scholar] [CrossRef]
- Wang, W.X.; Pan, K.; Tan, Q.; Guo, L.; Simpson, S.L. Estuarine pollution of metals in China: Science and mitigation. Environ. Sci. Technol. 2014, 48, 9975–9976. [Google Scholar] [CrossRef] [PubMed]
- Bai, Y.; Xie, Q.; Xu, H. The evolution process of tidal characteristics in the last 60 years of the Yellow River Estuary. Mar. Sci. Bull. 2019, 38, 141–149. [Google Scholar] [CrossRef]
- Pan, F.; Guo, Z.; Cai, Y.; Fu, Y.; Wu, J.; Wang, B.; Liu, H.; Gao, A. Cyclical patterns and (im)mobilization mechanisms of phosphorus in sediments from a small creek estuary: Evidence from in situ monthly sampling and indoor experiments. Water Res. 2020, 171, 115479. [Google Scholar] [CrossRef]
- Ke, S.; Zhang, P.; Ou, S.; Zhang, J.; Chen, J.; Zhang, J. Spatiotemporal nutrient patterns, composition, and implications for eutrophication mitigation in the Pearl River Estuary, China. Estuar. Coast. Shelf Sci. 2022, 266, 107749. [Google Scholar] [CrossRef]
- Yu, G.; Li, B.; Li, F.; Qi, Z.; Zhang, M. Carbon, Nitrogen geochemical character and organic matter source study in the coastal sediment of Yellow River Estuary. Mar. Environ. Sci. 2019, 38, 862–867. [Google Scholar] [CrossRef]
- Syvitski, J.P.M.; Vörösmarty, C.J.; Kettner, A.J.; Green, P. Impact of humans on the flux of terrestrial sediment to the global coastal ocean. Science 2005, 308, 376–380. [Google Scholar] [CrossRef]
- Gan, Y.; Huang, X.; Li, S.; Liu, N.; Li, Y.C.; Freidenreich, A.; Wang, W.; Wang, R.; Dai, J. Source quantification and potential risk of mercury, cadmium, arsenic, lead, and chromium in farmland soils of Yellow River Delta. J. Clean. Prod. 2019, 221, 98–107. [Google Scholar] [CrossRef]
- Hulskamp, R.; Luijendijk, A.; Maren, V.B.; Moreno-Rodenas, A.; Calkoen, F.; Kras, E.; Lhermitte, S.; Aarninkhof, S. Global distribution and dynamics of muddy coasts. Nat. Commun. 2023, 14, 8259. [Google Scholar] [CrossRef]
- Ma, H.; Nittrouer, J.A.; Naito, K.; Fu, X.; Zhang, Y.; Moodie, A.J.; Wang, Y.; Wu, B.; Parker, G. The exceptional sediment load of fine-grained dispersal systems: Example of the Yellow River, China. Sci. Adv. 2017, 3, e1603114. [Google Scholar] [CrossRef]
- Yellow River Sediment Bulletin. Available online: http://yrcc.gov.cn/gzfw/nsgb (accessed on 21 March 2024).
- Chen, C. Searching for intellectual turning points: Progressive knowledge domain visualization. Proc. Natl. Acad. Sci. USA 2004, 101, 5303–5310. [Google Scholar] [CrossRef]
- Zhang, X. Study on Environmental Evolution and Degradation of Coastal Wetland in Modern Yellow River Delta. Ph.D. Thesis, Ocean University of China, Qingdao, China, 2005. [Google Scholar]
- Qu, F.; Yu, J.; Du, S.; Li, Y.; Lv, X.; Ning, K.; Wu, H.; Meng, L. Influences of anthropogenic cultivation on C, N and P stoichiometry of reed-dominated coastal wetlands in the Yellow River Delta. Geoderma 2014, 235–236, 227–232. [Google Scholar] [CrossRef]
- Qian, Y.; Liang, X.; Chen, Y.; Lou, L.; Cui, X.; Tang, J.; Li, P.; Cao, R. Significance of biological effects on phosphorus transformation processes at the water–sediment interface under different environmental conditions. Ecol. Eng. 2011, 37, 816–825. [Google Scholar] [CrossRef]
- Wu, F.; Jin, X.; Zhang, R.; Liao, H.; Wang, S.; Jiang, X.; Wang, L.; Guo, J.; Li, W.; Zhao, X. Effects and significance of organic nitrogen and phosphorus in the lake aquatic environment. J. Lake Sci. 2010, 22, 1–7. [Google Scholar] [CrossRef]
- Wang, H.; Cao, R.; Zhang, J.; Han, C.; Gu, X.; Geng, J.; Wang, X.; Qian, X. The non-negligible phosphorus form-reduced phosphorus in water. Sustain. Dev. 2011, 1, 59–64. [Google Scholar] [CrossRef]
- Xu, C.; Yuan, J.; Wang, Y.; Wang, S.; Dai, A. Speciation and release mechanism of phosphorus in sediments and analysis methods for sequential extraction. Rock Miner. Anal. 2011, 30, 785–794. [Google Scholar]
- Zhang, X.; Pan, G.; Wang, X.; Chen, H.; Guo, B.; Bao, H. Characteristics of phosphorus sorption on Yellow River sediments from Inner Mongolia reach. Environ. Sci. 2009, 30, 172–177. [Google Scholar]
- Reinhard, C.T.; Planavsky, N.J.; Gill, B.C.; Ozaki, K.; Robbins, L.J.; Lyons, T.W.; Fischer, W.W.; Wang, C.; Cole, D.B.; Konhauser, K.O. Evolution of the global phosphorus cycle. Nature 2017, 541, 386–389. [Google Scholar] [CrossRef]
- Qi, P. Preliminary study on the influence of extremely fine particle sediment concentration on the ability of sand carrying in the Yellow River. J. Sediment Res. 1981, 3, 93–101. [Google Scholar] [CrossRef]
- Yang, B.; Cao, L.; Liu, S.; Zhang, G. Biogeochemistry of bulk organic matter and biogenic elements in surface sediments of the Yangtze River Estuary and adjacent Sea. Mar. Pollut. Bull. 2015, 96, 471–484. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Yao, H.; Wu, B.; Wang, B.; Chen, J. Limited capacity of suspended particulate matter in the Yangtze River Estuary and Hangzhou Bay to carry phosphorus into coastal Seas. Estuar. Coast. Shelf Sci. 2021, 258, 107417. [Google Scholar] [CrossRef]
- Kolker, A.S.; Miner, M.D.; Weathers, H.D. Depositional dynamics in a river diversion receiving basin: The case of the West Bay Mississippi River diversion. Estuar. Coast. Shelf Sci. 2012, 106, 1–12. [Google Scholar] [CrossRef]
- Lane, R.R.; Day, J.W.; Justic, D.; Reyes, E.; Marx, B.; Day, J.N.; Hyfield, E. Changes in stoichiometric Si, N and P ratios of Mississippi River water diverted through coastal wetlands to the Gulf of Mexico. Estuar. Coast. Shelf Sci. 2004, 60, 1–10. [Google Scholar] [CrossRef]
- Lundberg, C.J.; Lane, R.R.; Day, J.W. Spatial and temporal variations in nutrients and water-quality parameters in the Mississippi River-influenced Breton Sound Estuary. J. Coast. Res. 2014, 294, 328–336. [Google Scholar] [CrossRef]
- Roy, E.D.; White, J.R.; Smith, E.A.; Bargu, S.; Li, C. Estuarine ecosystem response to three large-scale Mississippi River flood diversion events. Sci. Total Environ. 2013, 458–460, 374–387. [Google Scholar] [CrossRef] [PubMed]
- Roy, E.D.; Nguyen, N.T.; White, J.R. Changes in estuarine sediment phosphorus fractions during a large-scale Mississippi River diversion. Sci. Total Environ. 2017, 609, 1248–1257. [Google Scholar] [CrossRef]
- Russ, E.; Palinkas, C.; Cornwell, J. Evaluating estuarine sediment provenance from geochemical patterns in upper Chesapeake Bay. Chem. Geol. 2020, 533, 119404. [Google Scholar] [CrossRef]
- Cotovicz Junior, L.C.; Machado, E.d.C.; Brandini, N.; Zem, R.C.; Knoppers, B.A. Distributions of total, inorganic and organic phosphorus in surface and recent sediments of the sub-tropical and semi-pristine Guaratuba Bay Estuary, SE Brazil. Environ. Earth Sci. 2014, 72, 373–386. [Google Scholar] [CrossRef]
- Costa-Böddeker, S.; Thuyên, L.X.; Schwarz, A.; Huy, H.Đ.; Schwalb, A. Diatom assemblages in surface sediments along nutrient and salinity gradients of Thi Vai Estuary and Can Gio Mangrove Forest, Southern Vietnam. Estuar. Coasts 2017, 40, 479–492. [Google Scholar] [CrossRef]
- Noncent, D.; Strady, E.; Némery, J.; Thanh-Nho, N.; Denis, H.; Mourier, B.; Babut, M.; Nguyen, T.A.; Nguyen, T.N.T.; Marchand, C.; et al. Sedimentological and geochemical data in bed sediments from a tropical river-estuary system impacted by a developing megacity, Ho Chi Minh City—Vietnam. Data Brief. 2020, 31, 105938. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Chen, J.; Yang, J.; Liu, R. Comparative observation and analysis of shore tide level and deep water tide level near the Yellow River Estuary. Yellow River 2019, 41, 17–20. [Google Scholar]
- Zhou, Z.; Coco, G.; Townend, I.; Olabarrieta, M.; van der Wegen, M.; Gong, Z.; D’Alpaos, A.; Gao, S.; Jaffe, B.E.; Gelfenbaum, G.; et al. Is “morphodynamic equilibrium” an oxymoron? Earth Sci. Rev. 2017, 165, 257–267. [Google Scholar] [CrossRef]
- Liu, X.; Qiao, L.; Zhong, Y.; Wan, X.; Xue, W.; Liu, P. Pathways of suspended sediments transported from the Yellow River Mouth to the Bohai Sea and Yellow Sea. Estuar. Coast. Shelf Sci. 2020, 236, 106639. [Google Scholar] [CrossRef]
- Jia, Y.; Shan, H.; Yang, X. Sediment and Geologic Hazards in the Estuary of Yellow, China; Science Press: Beijing, China, 2011. [Google Scholar]
- Kong, D.; Miao, C.; Wu, J.; Duan, Q.; Sun, Q.; Ye, A.; Di, Z.; Gong, W. The hydro-environmental response on the lower Yellow River to the water–sediment regulation scheme. Ecol. Eng. 2015, 79, 69–79. [Google Scholar] [CrossRef]
- Hu, B.; Li, G.; Li, J.; Yang, M.; Wang, L.; Bu, R. Spatial variability of the 210Pb sedimentation rates in the Bohai and Huanghai and its influencing factors. Acta Oceanol. Sin. 2011, 33, 125–133. [Google Scholar]
- Zhang, Y.; Li, W.; Wen, W.; Zhuang, F.; Yu, T.; Zhang, L.; Zhuang, Y. Universal high-frequency monitoring methods of river water quality in China based on machine learning. Sci. Total Environ. 2024, 947, 174641. [Google Scholar] [CrossRef]
- Li, B.; Ma, Q.; Liu, P. Adsorption kinetics of phosphate onto sediments from the middle and lower reaches of the Yellow River. Ecol. Environ. Sci. 2010, 19, 1901–1905. [Google Scholar]
- Zhao, H.; Tang, H.; Li, Z.; Yuan, S.; Xiao, Y.; Ji, F. Review of effects of flow and sediment on the transport and transformation of phosphorus in rivers and lakes. South-North Water Transf. Water Sci. Technol. 2015, 13, 643–649. [Google Scholar] [CrossRef]
- Zhang, X.; Deng, C.; Wei, W.; Chen, H.; Mi, T.; Yu, Z. The distribution of dissolved inorganic phosphorus, dissolved organic phosphorus, dissolved total phosphorus in the Yellow River estuary and adjacent water. Acta Sci. Circumst. 2007, 27, 660–666. [Google Scholar] [CrossRef]
- He, H.; Chen, H.; Yao, Q.; Qin, Y.; Mi, T.; Yu, Z. Behavior of different phosphorus species in suspended particulate matter in the Changjiang estuary. Chin. J. Ocean. Limnol. 2009, 27, 859–868. [Google Scholar] [CrossRef]
- Xia, X.; Wang, J.; Zhang, L.; Zhang, S. Effects and environmental implications of suspended sediment on the transportation and transformation of nitrogen in the Yellow River. Estuar. J. Hydraul. Eng. 2020, 51, 1138–1148. [Google Scholar] [CrossRef]
- Li, B.; Liu, P.; Ma, Q. Phosphorus fractions and its adsorption thermodynamics onto sediments from the upper reaches of the Yellow River, China. In Proceedings of the International Conference on Energy and Environmental Protection, Inner Mongolia, China, 23 June 2012. [Google Scholar]
- Wang, X.; Bao, H. Character of phosphorus forms in surface sediments from upper and middle reaches of the Yellow River. Ecol. Environ. Sci. 2010, 19, 1358–1362. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, L. Character of phosphorus forms in surface sediments from middle and lower reaches of Yellow River. Ecol. Environ. Sci. 2011, 20, 904–907. [Google Scholar] [CrossRef]
- He, H.; Yu, Z.; Yao, Q.; Chen, H.; Mi, T. The hydrological regime and particulate size control phosphorus form in the suspended solid fraction in the dammed Huanghe (Yellow River). Hydrobiologia 2010, 638, 203–211. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, D.; Lee, K.; Dong, Z.; Di, B.; Wang, Y.; Zhang, J. Impact of water-sediment regulation scheme on seasonal and spatial variations of biogeochemical factors in the Yellow River Estuary. Estuar. Coast. Shelf Sci. 2017, 198, 92–105. [Google Scholar] [CrossRef]
- Li, P.; Ke, Y.; Wang, D.; Ji, H.; Chen, S.; Chen, M.; Lyu, M.; Zhou, D. Human impact on suspended particulate matter in the Yellow River Estuary, China: Evidence from remote sensing data fusion using an improved spatiotemporal fusion method. Sci. Total Environ. 2021, 750, 141612. [Google Scholar] [CrossRef]
- Liu, G.; Qiu, Z. Chemical Oceanography, 2nd ed.; China Ocean Press: Beijing, China, 1982; pp. 122–156. [Google Scholar]
- Xu, B.; Yang, D.; Burnett, W.C.; Ran, X.; Yu, Z.; Gao, M.; Diao, S.; Jiang, X. Artificial water sediment regulation scheme influences morphology, hydrodynamics and nutrient behavior in the Yellow River Estuary. J. Hydrol. 2016, 539, 102–112. [Google Scholar] [CrossRef]
- Rippey, B.; Campbell, J.; McElarney, Y.; Thompson, J.; Gallagher, M. Timescale of reduction of long-term phosphorus release from sediment in lakes. Water Res. 2021, 200, 117283. [Google Scholar] [CrossRef]
- Liu, Z.; Song, J.; Li, N. Phosphorus and Silicon in overlying waters and suspended matter near sediment-water interface of the southern Bohai Sea. Marine Sci. 2004, 28, 8–13. [Google Scholar] [CrossRef]
- Fang, T.H.; Wang, C.W. Dissolved and particulate phosphorus species partitioning and distribution in the Danshuei River Estuary, Northern Taiwan. Mar. Pollut. Bull. 2020, 151, 110839. [Google Scholar] [CrossRef]
- Bauer, J.E.; Cai, W.-J.; Raymond, P.A.; Bianchi, T.S.; Hopkinson, C.S.; Regnier, P.A.G. The Changing Carbon Cycle of the Coastal Ocean. Nature 2013, 504, 61–70. [Google Scholar] [CrossRef] [PubMed]
- Bai, J.; Yu, L.; Ye, X.; Yu, Z.; Wang, D.; Guan, Y.; Cui, B.; Liu, X. Dynamics of phosphorus fractions in surface soils of different flooding wetlands before and after flow-sediment regulation in the Yellow River Estuary, China. J. Hydrol. 2020, 580, 124256. [Google Scholar] [CrossRef]
- Wang, H.; Yang, Z.; Li, Y.; Guo, Z.; Sun, X.; Wang, Y. Dispersal pattern of suspended sediment in the shear frontal zone off the Huanghe (Yellow River) Mouth. Cont. Shelf Res. 2007, 27, 854–871. [Google Scholar] [CrossRef]
- Ling, Y. Variability of sediment distribution and analysis of hydrodynamic environment in the Huanghe Estuary and the Mid-South Bohai Sea. J. Ocean. Univ. Qingdao 2004, 34, 133–138. [Google Scholar] [CrossRef]
- Lin, R.; Wu, J. Forms of inorganic phosphorus in the sediments near the Huanghe River Estuary. Oceanol. Limnol. Sin. 1992, 23, 387–395. [Google Scholar]
- Borgnino, L.; Avena, M.; De Pauli, C. Surface properties of sediments from two argentinean reservoirs and the rate of phosphate release. Water Res. 2006, 40, 2659–2666. [Google Scholar] [CrossRef]
- Zhao, Y.; Yan, M. Geochemistry of Sediments of the China Shelf Sea; Science Press: Beijing, China, 1994. [Google Scholar]
- Dai, J.; Song, J.; Li, X.; Yuan, H.; Zheng, G.; Li, N. Sediment record of phosphorus and the primary study of its bioavailability in Jiaozhou Bay sediments. Environ. Sci. 2006, 27, 1953–1962. [Google Scholar] [CrossRef]
- Ren, M.E.; Shi, Y.L. Sediment discharge of the Yellow River (China) and its effect on the sedimentation of the Bohai and the Yellow Sea. Cont. Shelf Res. 1986, 6, 785–810. [Google Scholar] [CrossRef]
- Liu, S.M. Response of nutrient transports to water–sediment regulation events in the Huanghe Basin and its impact on the biogeochemistry of the Bohai. J. Marine Syst. 2015, 141, 59–70. [Google Scholar] [CrossRef]
- Tenenhaus, M.; Esposito, V.; Chatelin, Y.; Lauro, C. PLS path modeling. Comput. Stat. Data. Anal. 2005, 48, 159–205. [Google Scholar] [CrossRef]
- Qu, F.; Shao, H.; Meng, L.; Yu, J.; Xia, J.; Sun, J.; Li, Y. Forms and vertical distributions of soil phosphorus in newly formed coastal wetlands in the Yellow River Delta Estuary. Land Degrad. Dev. 2018, 29, 4219–4226. [Google Scholar] [CrossRef]
- Qu, F.; Meng, L.; Xia, J.; Huang, H.; Zhan, C.; Li, Y. Soil phosphorus fractions and distributions in estuarine wetlands with different climax vegetation covers in the Yellow River Delta. Ecol. Indic. 2021, 125, 107497. [Google Scholar] [CrossRef]
- Griggs, D.; Stafford-Smith, M.; Gaffney, O.; Rockström, J.; Öhman, M.C.; Shyamsundar, P.; Steffen, W.; Glaser, G.; Kanie, N.; Noble, I. Sustainable development goals for people and planet. Nature 2013, 495, 305–307. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Yin, B. Model study on Bohai ecosystem: 2. annual cycle of nutrient—Phytoplankton dynamics. Acta Oceanol. Sin. 2006, 25, 74–91. [Google Scholar]
- Yu, H.; Liu, G.; Yang, J. Review on the marine water quality model. Mar. Forecast. 2017, 34, 88–96. [Google Scholar] [CrossRef]
- Bouchard, D.; Knightes, C.; Chang, X.; Avant, B. Simulating multiwalled carbon nanotube transport in surface water systems using the Water Quality Analysis Simulation Program (WASP). Environ. Sci. Technol. 2017, 51, 11174–11184. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.; Li, S.; Pei, M.; Geng, B. Development and validation of a coupled one-and three-dimensional water quality model for the Pearl River delta. Oceanol. Limnol. Sin. 2012, 43, 1–9. [Google Scholar] [CrossRef]
- Jiang, H. Study on Eutrophication in Estuary and Its with Red tide Ecology. Ph.D. Thesis, Hohai University, Nanjing, China, 2002. [Google Scholar]
- Sun, X. Influence of Waves on Seabed Erosion and Deposition in the Yellow River Estuary. Master’s Thesis, Ocean University of China, Qingdao, China, 2013. [Google Scholar]
- Feng, Y. Study on the Influence of Tidal Flat Reclamation in Oujiang Estuary on Hydrodynamics and Water. Master’s Thesis, Hohai University, Nanjing, China, 2008. [Google Scholar]
- Wang, Y. Dense Current Process of High Concentration in the Yellow River Estuary: Field Observation and Numerical Simulation. Ph.D. Thesis, Ocean University of China, Qingdao, China, 2012. [Google Scholar]
- Wang, N. Sedimentary Dynamic Process and Topographic of Modern Yellow River Estuary. Ph.D. Thesis, Ocean University of China, Qingdao, China, 2014. [Google Scholar]
- Han, S.; Wang, S.; Zhao, M.; Wu, X.; Yuan, L.; Li, H.; Li, F.; Ma, T.; Li, W.; Zheng, Y. Ecological environmental changes and its impact on water resources and water-sediments relationship in Beiluo River Basin. Hydro. Eng. Geol. 2023, 50, 14–24. [Google Scholar] [CrossRef]
- Song, Y.; Li, M.; Liu, X.; Li, W.; Yao, H.; Liu, Y.; Chen, J. Effects of riverine nutrient enrichment and sediment reduction on high primary productivity zone in the Yangtze River estuary: Historical reconstruction and future perspective. Front. Mar. Sci. 2025, 12, 1529744. [Google Scholar] [CrossRef]
- Kong, D.; Miao, C.; Gou, J.; Zhang, Q.; Su, T. Sediment reduction in the middle Yellow River basin over the past six decades: Attribution, sustainability, and implications. Sci. Total Environ. 2023, 882, 163475. [Google Scholar] [CrossRef] [PubMed]
Grain-Size | Ads-P | Al-P | Fe-P | O-P | Ca-P |
---|---|---|---|---|---|
<4 μm | 0.77760 | 0.85724 | −0.70561 | 0.80638 | −0.14917 |
4–8 μm | 0.79770 | 0.79066 | −0.62012 | 0.78002 | −0.01973 |
8–16 μm | 0.62303 | 0.75495 | −0.53947 | 0.57025 | −0.16126 |
16–31 μm | 0.24156 | 0.35655 | −0.51925 | 0.07406 | 0.36867 |
31–63 μm | −0.72665 | −0.83287 | 0.61807 | −0.74046 | 0.32881 |
>63 μm | −0.61250 | −0.64824 | 0.67752 | −0.55074 | −0.37526 |
Model Name | Classification of Model | Application of Model |
---|---|---|
Based on a principle of mass conservation [74] | One-dimensional | The model simulates simplified physical and biochemical processes in considering the changes of state variables in one direction. |
MIKE21 [76] | Two-dimensional | The module coupling of wave, tide and sediment based on MIKE21 can be used for the numerical simulation of sediment siltation and erosion in the Yellow River Estuary. A fine triangular grid is used in the model to improve the spatial resolution of the numerical calculation. However, MIKE21 is a two-dimensional model, and the parameters of the three-dimensional feature (such as the hyperpycnal flows) are not involved. |
RMA4 [77] | Two-dimensional | The model mainly used in the calculation of pollutant discharge volume and pollutant transport in estuaries, rivers, lakes and coastal area. |
CE-QUAL-ICM [78] | Three-dimensional | The numerical simulation of sediment hyperpycnal flow in the Yellow River Estuary is carried out, and the variations of hyperpycnal flows derived from the numerical model is compared with the in situ observations, which can reveal the control effect of environmental factors in the formation and delivery of hyperpycnal flows. |
WASP [73] | Three-dimensional | The EUTRO module in the eutrophication model (EUTRO) can be used to simulate the contaminant transportation and transformation (i.e., DO, BOD and eutrophication), and has strong coupling capability with other models. |
MIKE3 [79] | Three-dimensional | The hydrodynamic and wave module can analyze the characteristics and evolution processes of tide, shear front and wave in estuaries based on annual water depth and shoreline data of the Yellow River Delta and Laizhou Bay, as well as high-resolution observation of oceanic dynamics, and simulate the process and dynamic mechanisms of sediment dispersal. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, Y.; Liu, K.; Li, S.; Li, W. Sediment–Phosphorus Dynamics in the Yellow River Estuary. Water 2025, 17, 2794. https://doi.org/10.3390/w17192794
Gao Y, Liu K, Li S, Li W. Sediment–Phosphorus Dynamics in the Yellow River Estuary. Water. 2025; 17(19):2794. https://doi.org/10.3390/w17192794
Chicago/Turabian StyleGao, Yuan, Kun Liu, Shengpin Li, and Wenpeng Li. 2025. "Sediment–Phosphorus Dynamics in the Yellow River Estuary" Water 17, no. 19: 2794. https://doi.org/10.3390/w17192794
APA StyleGao, Y., Liu, K., Li, S., & Li, W. (2025). Sediment–Phosphorus Dynamics in the Yellow River Estuary. Water, 17(19), 2794. https://doi.org/10.3390/w17192794