Cilantro Photosynthetic Parameters in Response to Different Flows of Nutrient Solutions Prepared with Brackish Waters Dominant in Na+, Cl−, or Ca2+
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Conditions
2.2. Experimental Treatments
2.3. Hydroponic System
2.4. Preparation and Management of the Nutrient Solution
2.5. Description and Management of the Culture
2.6. Analyzed Variables and Data Analysis
3. Results
3.1. Nutrient Solution Parameters
3.2. Photosynthetic Parameters
3.3. Photosynthetic Pigments
3.4. Chlorophyll a Fluorescence
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sá, F.V.d.S.; Brito, M.E.B.; Silva, L.d.A.; Moreira, R.C.L.; Fernandes, P.D.; Figueiredo, L.C.d. Fisiologia da percepção do estresse salino em híbridos de tangerineira “Sunki Comum” sob solução hidropônica salinizada. Comun. Sci. 2015, 6, 463. [Google Scholar] [CrossRef]
- Medeiros, J.F.d.; Terceiro Neto, C.P.C.; Dias, N.d.S.; Gheyi, H.R.; Silva, M.V.T.d.; Loiola, A.T. Salinidade e pH de um argissolo irrigado com água salina sob estratégias de manejo. Rev. Bras. Agric. Irrig. 2017, 11, 1407–1419. [Google Scholar] [CrossRef]
- Silva, M.G.d.; Soares, T.M.; Gheyi, H.R.; Santos, C.C.d.; Oliveira, M.G.B.d. Hydroponic cultivation of coriander intercropped with rocket subjected to saline and thermal stresses in the root-zone. Rev. Ceres 2022, 69, 148–157. [Google Scholar] [CrossRef]
- Gheyi, H.R.; Dias, N.S.; Lacerda, C.F.; Gomes Filho, E. Manejo da Salinidade na Agricultura: Estudos Básicos e Aplicados; INCTSal: Fortaleza, Brazil, 2016; p. 504. [Google Scholar]
- Silva, M.G.d.; Soares, T.M.; Gheyi, H.R.; Costa, I.P.; Vasconcelos, R.S. Ghowth, production and water consumption of coriander grown under different recirculation intervals and nutrient solution depths in hydroponic channels. Emir. J. Food Agric. 2020, 34, 281–294. [Google Scholar] [CrossRef]
- Tavakkoli, E.; Fatehi, F.; Coventry, S.J.; Rengasamy, P.; McDonald, G.K. Additive effects of Na⁺ and Cl⁻ ions on barley growth under salinity stress. J. Exp. Bot. 2011, 62, 2189–2203. [Google Scholar] [CrossRef]
- Martins, J.B.; Santos Júnior, J.A.; Leal, L.Y.d.C.; Paulino, M.K.S.S.; Souza, E.R.d.; Gheyi, H.R. Fluorescence emission and photochemical yield of parsley under saline waters of different cationic nature. Sci. Hortic. 2020, 273, 109574. [Google Scholar] [CrossRef]
- Mendonça, A.J.; Lima, G.S.d.; Soares, L.A.d.A.; Sá, V.K.d.; Silva, S.S.d.; Torres, R.A.; Ferreira, J.T.; Gheyi, H.R. Gas exchange, photochemical efficiency and growth of hydroponic okra under salt stress and salicylic acid. Rev. Caatinga 2024, 37, e12143. [Google Scholar] [CrossRef]
- Morais, P.L.D.d.; Dias, N.d.S.; Oliveira, A.M.d.; Sousa Neto, O.N.d.; Sarmento, J.D.A.; Gonzaga, M.I.S. Effects of Nutrient Solution Salinity on the Physiological Performance of Melon Cultivated in Coconut Fiber. Rev. Caatinga 2018, 31, 713–718. [Google Scholar] [CrossRef]
- Sousa, V.F.d.O.; Costa, C.C.; Diniz, G.L.; Santos, J.B.d.; Bomfim, M.P. Physiological behavior of melon cultivars submitted to soil salinity. Pesqui. Agropecu. Trop. 2018, 48, 271–279. [Google Scholar] [CrossRef]
- Sousa, V.F.d.O.; Costa, C.C.; Diniz, G.L.; Santos, J.B.d.; Bomfim, M.P.; Lopes, K.P. Growth and gas changes of melon seedlings submitted to water salinity. Rev. Bras. Eng. Agric. Ambient. 2019, 23, 90–96. [Google Scholar] [CrossRef]
- Silva, M.G.d.; Oliveira, I.d.S.; Soares, T.M.; Gheyi, H.R.; Santana, G.d.O.; Pinho, J.d.S. Growth, production and water consumption of coriander in hydroponic system using brackish waters. Rev. Bras. Eng. Agric. Ambient. 2018, 22, 547–552. [Google Scholar] [CrossRef]
- Viana, P.C.; Freitas, F.T.O.d.; Silva, N.D.d.; Soares, T.M.; Paz, M.G.F. da Estatística multivariada como ferramenta. descritiva na análise sensorial de alface hidropônica produzida com águas salobras. Rev. Bras. Agric. Irrig. 2018, 12, 2725–2730. [Google Scholar] [CrossRef]
- Bezerra, R.R.; Santos Júnior, J.A.; Pessoa, U.C.; Silva, Ê.F.d.F.e.; Oliveira, T.F.d.; Nogueira, K.F.; Souza, E.R.d. Water Efficiency of Coriander under Flows of Application of Nutritive Solutions Prepared in Brackish Waters. Water 2022, 14, 4005. [Google Scholar] [CrossRef]
- Encyclopaedia Britannica. Available online: https://www.britannica.com/plant/coriander (accessed on 11 December 2024).
- Rabiei, Z.; Hosseini, S.J.; Pirdashti, H.; Hazrati, S. Physiological and Biochemical Traits in Coriander Affected by Plant Growth-Promoting Rhizobacteria under Salt Stress. Heliyon 2020, 6, e05321. [Google Scholar] [CrossRef]
- Ferreira, J.F.S.; Liu, X.; Suarez, D.L. Fruit Yield and Survival of Five Commercial Strawberry Cultivars under Field Cultivation and Salinity Stress. Sci. Hortic. 2019, 243, 401–410. [Google Scholar] [CrossRef]
- Sandhu, D.; Pudussery, M.V.; William, M.; Kaundal, A.; Ferreira, J.F.S. Divergent Gene Expression Responses to Salinity Stress in 16 Geographically Diverse Spinach Genotypes. ACS Agric. Sci. Technol. 2023, 3, 795–804. [Google Scholar] [CrossRef]
- Furlani, P.R. Cultivo Hidropônico de Plantas; Instituto Agronômico: Campinas, Brazil, 1999. [Google Scholar]
- Arnon, D.I. Copper enzymes in isolated chloroplasts: Polyphenol oxidase in Beta vulgaris. Plant Physiol. 1949, 24, 1–15. [Google Scholar] [CrossRef]
- Ferreira, D.F. SISVAR: A computer analysis system to fixed effects split plot type designs. Rev. Bras. Biom. 2019, 37, 529–535. [Google Scholar] [CrossRef]
- Martins, J.B.; Santos Júnior, J.A.; Bartusch, V.P.; Gheyi, H.R.; Bezerra Neto, E.; Silva, M.M. Water relations in parsley plants cultivated in brackish nutrient solutions of different cationic natures. Rev. Bras. Eng. Agríc. Ambient. 2019, 23, 662–668. [Google Scholar] [CrossRef]
- Oliveira, T.F.d.; Santos Júnior, J.A.; Silva, M.G.d.; Gheyi, H.R.; Almeida, J.C.d.; Guiselini, C. Cultivation of chicory under nutrient solutions prepared in brackish waters and applied at different temperatures. Rev. Bras. Eng. Agric. Ambient. 2023, 27, 719–728. [Google Scholar] [CrossRef]
- Butcher, K.; Wick, A.F.; DeSutter, T.; Chatterjee, A.; Harmon, J. Soil salinity: A threat to global food security. Agron. J. 2016, 108, 2189–2200. [Google Scholar] [CrossRef]
- Ferreira, J.F.S. (US Salinity Laboratory (USDA-ARS), Riverside, CA, USA). Personal communication, 2024. [Google Scholar]
- Campos Júnior, J.E.; Santos Júnior, J.A.; Martins, J.B.; Silva, Ê.F.d.F.e; Almeida, C.D.G.C.d. Rocket production in a low cost hydroponic system using brackish water. Rev. Caatinga 2018, 31, 1008–1016. [Google Scholar] [CrossRef]
- Jensen, M.H. Hydroponics. HortScience 1997, 32, 1018–1021. [Google Scholar] [CrossRef]
- He, F.; Thiele, B.; Watt, M.; Kraska, T.; Ulbrich, A.; Kuhn, A.J. Effects of root cooling on plant growth and fruit quality of cocktail tomato during two consecutive seasons. J. Food Qual. 2019, 2019, 3598172. [Google Scholar] [CrossRef]
- Navarro, F.E.C.; Silva, I.A.C.E.; Santos Júnior, J.A.; Oliveira, T.F.d.; Silva, G.F.d.; Silva, Ê.F.d.F.e. Hydroponic coriander grown under nutritional solutions prepared with brackish water of different cation prevalence. Rev. Bras. Eng. Agric. Ambient. 2023, 27, 736–745. [Google Scholar] [CrossRef]
- Dias, A.S.; Lima, G.S.d.; Pinheiro, F.W.A.; Gheyi, H.R.; Soares, L.A.d.A. Gas exchanges, quantum yield and photosynthetic pigments of west indian cherry under salt stress and potassium fertilization. Rev. Caatinga 2019, 32, 429–439. [Google Scholar] [CrossRef]
- Hniličková, H.; Kraus, K.; Vachova, P.; Hnilicka, F. Salinity stress affects photosynthesis, malondialdehyde formation, and proline content in Portulaca oleracea L. Plants 2021, 10, 845. [Google Scholar] [CrossRef]
- Guimarães, R.F.B.; Maia Júnior, S.d.O.; Nascimento, R.D.; Melo, D.F.D.; Ramos, J.G.; Andrade, J.R.D. Trocas gasosas em cultivares de alface crespa em cultivo hidropônico com água salina. Rev. Bras. Agric. Irrig. 2019, 13, 3599–3609. [Google Scholar] [CrossRef]
- Lima, G.S.d.; Dias, A.S.; Gheyi, H.R.; Soares, L.A.d.A.; Nobre, R.G.; Pinheiro, F.W.A.; Silva, A.A.R.d. Gas exchanges and production of colored cotton under salt sress and nitrogen fertilization. Biosci. J. 2017, 33, 1495–1505. [Google Scholar] [CrossRef]
- Ferreira, J.F.S.; da Silva Filho, J.B.; Liu, X.; Sandhu, D. Spinach Plants Favor the Absorption of K+ over Na+ Regardless of Salinity, and May Benefit from Na+ when K+ is Deficient in the Soil. Plants 2020, 9, 507. [Google Scholar] [CrossRef]
- Gago, J.; Daloso, D.M.; Carriquí, M.; Nada, L.M.; Morales, M.; Araujo, W.L.; Nunes-Nesi, A.; Perera-Castro, A.; Clemente-Moreno, M.J.; Flexas, J. The photosynthesis game is in the ‘inter-play’: Mechanisms underlying CO2 diffusion in leaves. Environ. Exp. Bot. 2020, 178, 104174. [Google Scholar] [CrossRef]
- Dantas, M.V.; Sá, V.K.N.O.d.; Lima, G.S.d.; Soares, L.A.d.A.; Gheyi, H.R.; Silva, L.d.A.; Nobre, R.G.; Sousa, A.A.d.; Azevedo, C.A.V.d. Morphophysiology of cucumber under saline nutrient solutions and salicylic acid application in hydroponic system. Braz. J. Agric. Environ. Eng. 2025, 29, e287640. [Google Scholar] [CrossRef]
- Maia, F.M.A.; Costa, A.C.; Castro, J.N.; Megguer, C.A.; Soares, F.A.L. Photosynthesis and water relations of sunflower cultivars under salinity conditions. Afr. J. Agric. Res. 2016, 11, 2817–2824. [Google Scholar] [CrossRef]
- Hniličková, H.; Hnilička, F.; Martinkova, J.; Kraus, K. Effects of salt stress on water status, photosynthesis and chlorophyll fluorescence of rocket. Plant Soil Environ. 2017, 63, 362–367. [Google Scholar] [CrossRef]
- Dalastra, C.; Teixeira Filho, M.C.M.; Silva, M.R.d.; Nogueira, T.A.R.; Fernandes, G.C. Head lettuce production and nutrition in relation to nutrient solution flow. Hortic. Bras. 2020, 38, 21–26. [Google Scholar] [CrossRef]
- Marenco, R.A.; Antezana-Vera, S.A.; Gouvêa, P.R.d.S.; Camargo, M.A.B.; Oliveira, M.F.d.; Santos, J.K.d.S. Fisiologia de espécies florestais da Amazônia: Fotossíntese, respiração e relações hídricas. Rev. Ceres 2014, 61, 786–799. [Google Scholar] [CrossRef]
- Dantas, M.V.; Lima, G.S.d.; Gheyi, H.R.; Pinheiro, F.W.A.; Silva, P.C.C.; Soares, L.A.d.A. Gas exchange and hydroponic production of zucchini under salt stress and H2O2 application. Rev. Caatinga 2022, 35, 436–449. [Google Scholar] [CrossRef]
- Silva, F.G.d.; Dutra, W.F.; Dutra, A.F.; Oliveira, I.M.d.; Filgueiras, L.M.B.; Melo, A.S.d. Trocas gasosas e fluorescência da clorofila em plantas de berinjela sob lâminas de irrigação. Rev. Bras. Eng. Agric. Ambient. 2015, 19, 946–952. [Google Scholar] [CrossRef]
- Taiz, L.; Zeiger, E.; Møller, I.M.; Murphy, A. Fisiologia e Desenvolvimento Vegetal, 6th ed.; Artmed: Porto Alegre, Brazil, 2017; p. 888. [Google Scholar]
- Silva, A.R.A.d.; Bezerra, F.M.L.; Lacerda, C.F.d.; Sousa, C.H.C.d.; Chagas, K.L. Pigmentos fotossintéticos e potencial hídrico foliar em plantas jovens de coqueiro sob estresses hídrico e salino. Rev. Agroamb. Line 2016, 10, 317–325. [Google Scholar] [CrossRef]
- Christen, D.; Schönmann, S.; Jermini, M.; Strasser, R.J.; Défago, G. Characterization and early detection of grapevine (Vitis vinifera) stress responses to esca disease by in situ chlorophyll fluorescence and comparison with drought stress. Environ. Exp. Bot. 2007, 60, 504–514. [Google Scholar] [CrossRef]
- Ali, Y.; Aslam, Z.; Ashraf, M.Y.; Tahir, G.R. Effect of salinity on chlorophyll concentration, leaf area, yield and yield components of rice genotypes grown under saline environment. Int. J. Environ. Sci. Technol. 2004, 1, 221–225. [Google Scholar] [CrossRef]
- Freire, J.L.d.O.; Cavalcante, L.F.; Nascimento, R.d.; Rebequi, A.M. Teores de clorofila e composição mineral foliar do maracujazeiro irrigado com águas salinas e biofertilizante. Rev. Ciênc. Agrár. 2013, 36, 57–70. [Google Scholar] [CrossRef]
- Houimli, S.I.M.; Denden, M.; Mouhandes, B.D. Effects of 24-epibrassinolide on growth, chlorophyll, electrolyte leakage and proline by pepper plants under NaCl-stress. EurAsian J. Biosci. 2010, 4, 96–104. [Google Scholar] [CrossRef]
- Hashimoto, H.; Uragami, C.; Cogdell, R.J. Carotenoids and Photosynthesis. Subcell. Biochem. 2016, 79, 111–139. [Google Scholar] [CrossRef]
- Hosseini, S.J.; Tahmasebi-Sarvestani, Z.; Pirdashti, H.; Modarres-Sanavy, S.A.M.; Mokhtassi-Bidgoli, A.; Hazrati, S.; Nicola, S. Investigation of yield, phytochemical composition, and photosynthetic pigments in different mint ecotypes under salinity stress. Food Sci. Nutr. 2021, 9, 2620–2643. [Google Scholar] [CrossRef]
- Falk, J.; Munné-Bosch, S. Tocochromanol functions in plants: Antioxidation and beyond. J. Exp. Bot. 2010, 61, 1549–1566. [Google Scholar] [CrossRef]
- Santos, C.M.d.; Gonçalves, E.R.; Endres, L.; Gomes, T.C.d.A.; Jadoski, C.J.; Nascimento, L.A.d.; Santos, E.D.d. Photosynthetic measurements in lettuce submitted to different agroindustrial residue composting. Pesq. Aplic. Agrotec. 2010, 3, 103–112. [Google Scholar]
- Sá, F.V.d.S.; Gheyi, H.R.; Lima, G.S.d.; Paiva, E.P.d.; Moreira, R.C.L.; Silva, L.d.A. Water salinity, nitrogen and phosphorus on photochemical efficiency and growth of west indian cherry. Rev. Bras. Eng. Agric. Ambient. 2018, 22, 158–163. [Google Scholar] [CrossRef]
- Baker, N.R.; Rosenqvist, E. Applications of chlorophyll fluorescence can improve crop production strategies: An examination of future possibilities. J. Exp. Bot. 2004, 55, 1607–1621. [Google Scholar] [CrossRef]
- Tatagiba, S.D.; Moraes, G.A.B.K.; Nascimento, K.J.T.; Peloso, A.F. Limitações fotossintéticas em folhas de plantas de tomateiro submetidas a crescente concentrações salinas. Rev. Eng. Agric. 2014, 22, 138–149. [Google Scholar] [CrossRef]
- Nabati, J.; Kafi, M.; Masoumi, A.; Mehrjerdi, M.Z. Effect of salinity and silicon application on photosynthetic characteristics of sorghum (Sorghum bicolor L.). Int. J. Agric. Sci. 2013, 3, 483–492. [Google Scholar]
- Zanandrea, I.; Nassi, F.d.L.; Turchetto, A.C.; Braga, E.J.B.; Peters, J.A.; Bacarin, M.A. Efeito da salinidade sob parametros de fluorescencia em Phaseolus vulgaris. Rev. Bras. Agrocienc. 2006, 12, 157–161. [Google Scholar]
- Baker, N.R. Chlorophyll fluorescence: A probe of photosynthesis in vivo. Ann. Rev. Plant Biol. 2008, 59, 89–113. [Google Scholar] [CrossRef]
- Kitajima, M.; Butler, W.L. Quenching of chlorophyll fluorescence and primary photochemistry in chloroplasts by dibromothymoquinone. Biochim. Biophys. Acta Bioenerg. 1975, 376, 105–115. [Google Scholar] [CrossRef]
- Ozfidan, C.; Turkan, I.; Sekmen, A.H.; Seckin, B. Time course analysis of ABA and non-ionic osmotic stress-induced changes in water status, chlorophyll fluorescence and osmotic adjustment in Arabidopsis thaliana wild-type (Columbia) and ABA-deficient mutant (aba2). Environ. Exp. Bot. 2013, 86, 44–51. [Google Scholar] [CrossRef]
- Azevedo Neto, A.D.d.; Pereira, P.P.A.; Costa, D.P.; Santos, A.C.C.d. Fluorescência da clorofila como ferramenta possível para a seleção de tolerância à salinidade em girassol. Rev. Cienc. Agron. 2011, 42, 893–897. [Google Scholar] [CrossRef]
- Sayyad-Amin, P.; Jahansooz, M.-R.; Borzouei, A.; Ajili, F. Changes in photosynthetic pigments and chlorophyll-a fluorescence attributes of sweet-forage and grain sorghum cultivars under salt stress. J. Biol. Phys. 2016, 42, 601–620. [Google Scholar] [CrossRef]
- Jafarinia, M.; Shariati, M. Effects of salt stress on photosystem II of canola plant (Barassica napus L.) probing by chlorophyll a fluorescence measurement. Iran. J. Sci. 2012, 36, 73–76. [Google Scholar] [CrossRef]
Treatment (Initial Ecns 1) | 1.7 dS m−1 | 3.0 dS m−1 | 4.5 dS m−1 | 6.0 dS m−1 |
---|---|---|---|---|
Ions | Macronutrients (mEq L−1) | |||
NO3− | 2.66 | 2.66 | 2.66 | 2.66 |
NH4+ | 0.746 | 0.746 | 0.746 | 0.746 |
H2PO4− | 0.7427 | 0.7427 | 0.7427 | 0.7427 |
K+ | 4.67 | 4.67 | 4.67 | 4.67 |
Ca2+ (Exp. 1) | 6.00 | 6.00 | 6.00 | 6.00 |
Ca2+ (Exp. 2) | 6.00 | 12.5 | 18.00 | 27.6 |
Mg2+ | 2.96 | 2.96 | 2.96 | 2.96 |
SO42− | 0.46 | 0.46 | 0.46 | 0.46 |
Micronutrients (ppm) | ||||
B | 1.95 | 1.95 | 1.95 | 1.95 |
Cu | 1.91 | 1.91 | 1.91 | 1.91 |
Fe | 10.05 | 10.05 | 10.05 | 10.05 |
Mn | 7.69 | 7.69 | 7.69 | 7.69 |
Mo | 0.77 | 0.77 | 0.77 | 0.77 |
Zn | 5.88 | 5.88 | 5.88 | 5.88 |
Salts (mEq L−1) | ||||
Na+ (Exp. 1) | 0 | 6.5 | 14.03 | 21.6 |
Na+ (Exp. 2) | 0 | 0 | 0 | 0 |
Cl− (Exp. 1) | 0 | 6.5 | 14.03 | 21.6 |
Cl− (Exp. 2) | 0 | 13.07 | 28.2 | 43.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pessoa, U.C.M.; Silva, Ê.F.d.F.e.; Oliveira, T.F.d.; Ferreira, J.F.S.; Souza, E.R.d.; Rolim, M.M.; Silva, A.O.d.; Santos Júnior, J.A. Cilantro Photosynthetic Parameters in Response to Different Flows of Nutrient Solutions Prepared with Brackish Waters Dominant in Na+, Cl−, or Ca2+. Water 2025, 17, 1640. https://doi.org/10.3390/w17111640
Pessoa UCM, Silva ÊFdFe, Oliveira TFd, Ferreira JFS, Souza ERd, Rolim MM, Silva AOd, Santos Júnior JA. Cilantro Photosynthetic Parameters in Response to Different Flows of Nutrient Solutions Prepared with Brackish Waters Dominant in Na+, Cl−, or Ca2+. Water. 2025; 17(11):1640. https://doi.org/10.3390/w17111640
Chicago/Turabian StylePessoa, Uriel Calisto Moura, Ênio Farias de França e Silva, Tarcísio Ferreira de Oliveira, Jorge F. S. Ferreira, Edivan Rodrigues de Souza, Mário Monteiro Rolim, Alexsandro Oliveira da Silva, and José Amilton Santos Júnior. 2025. "Cilantro Photosynthetic Parameters in Response to Different Flows of Nutrient Solutions Prepared with Brackish Waters Dominant in Na+, Cl−, or Ca2+" Water 17, no. 11: 1640. https://doi.org/10.3390/w17111640
APA StylePessoa, U. C. M., Silva, Ê. F. d. F. e., Oliveira, T. F. d., Ferreira, J. F. S., Souza, E. R. d., Rolim, M. M., Silva, A. O. d., & Santos Júnior, J. A. (2025). Cilantro Photosynthetic Parameters in Response to Different Flows of Nutrient Solutions Prepared with Brackish Waters Dominant in Na+, Cl−, or Ca2+. Water, 17(11), 1640. https://doi.org/10.3390/w17111640