Testing the Remane Diagram: Occurrences of Benthic Macroinvertebrates in Oligohaline to Hyperhaline Salinities
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description and Sampling
Estuary Characteristics | Sampling Regime | Water Physicochemical Parameters | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Area (km2) | Mean Catchment Rainfall (mm) | Median Annual Flow (ML) | Estuary Type | Region | Sites | Timing | n | Method | Salinity (ppt) | Temperature (°C) | DO (mgL−1) | |||||
Mean | Range | Mean | Range | Mean | Range | Reference | ||||||||||
Swan- Canning Estuary | 38.1 | 409 | 600,000 | PO | Upper | 5 | 11 months (2010/11) | 309 | Ekman grab (225 cm2) | 19.0 | 4.0–32.5 | 21.2 | 11.6–29.7 | 3.3 | 0.2–11.0 | [37] |
Lower | 4 | 4 seasons (2023/24) | 80 | Corer (96 cm2) | 34.5 | 19.1–39.5 | 22.4 | 14.3–30.9 | 8.3 | 6.4–10.5 | [38] | |||||
Lower | 6 | 1 season (2023) | 90 | Corer (96 cm2) | 35.2 | 34.8–35.6 | 25.1 | 23.5–27.6 | 8.0 | 6.1–10.6 | [39] | |||||
Peel-Harvey Estuary | 133.6 | 662 | 810,000 | PO | All | 60 | 2 seasons (2017/18) | 120 | Corer (28 cm2) | 26.7 | 2.1–56.2 | 21.3 | 13.9–28.9 | 5.8 | 0.1–10.6 | [40] |
Vasse- Wonnerup Estuary | 6.1 | 905 | 40,300 | AO | All | 30 | 15 seasons (2017–20) | 344 | Ekman grab (225 cm2) | 26.5 | 0.6–96.5 | 20.5 | 12.0–34.3 | 8.8 | 0.6–18.2 | [41,42] |
Broke Inlet | 45.6 | 1331 | 162,000 | AO | All | 40 | 5 seasons (2007–08) | 480 | Corer (96 cm2) | 22.9 | 2.1–45.1 | 18.1 | 12.6–28.3 | 6.0 | 2.5–20.4 | [43] |
Torbay Inlet | 0.9 | 943 | 75,000 | AO | All | 12 | 4 seasons (2020) | 48 | Corer (96 cm2) | 14.1 | 1.0–34.7 | 19.1 | 12.4–25.7 | 8.0 | 2.2–11.6 | [44] |
Oyster Harbour | 17.7 | 949 | 97,200 | PO | All | 12 | 4 seasons (2020) | 48 | Corer (96 cm2) | 34.1 | 17.4–37.6 | 17.6 | 12.3–22.3 | 8.3 | 1.5–12.2 | [44] |
Taylor Inlet | 0.5 | 800 | 1400 | AO | All | 12 | 4 seasons (2020) | 48 | Corer (96 cm2) | 20.0 | 16.1–24.2 | 17.5 | 12.5–22.5 | 9.6 | 6.1–16.3 | [44] |
Normans Inlet | 0.2 | 810 | 1800 | AO | All | 12 | 4 seasons (2020) | 48 | Corer (96 cm2) | 4.2 | 2.4–6.2 | 16.9 | 12.5–22.0 | 8.4 | 4.3–10.4 | [44] |
Waychinicup Estuary | 0.1 | 760 | 8000 | PO | All | 12 | 4 seasons (2020) | 48 | Corer (96 cm2) | 31.9 | 3.4–35.4 | 18.3 | 15.5–21.5 | 8.1 | 6.3–10.3 | [44] |
Cordinup River | 0.1 | 610 | 1700 | AO | All | 12 | 4 seasons (2020) | 48 | Corer (96 cm2) | 12.6 | 7.9–19.3 | 17.6 | 14.3–23.2 | 8.4 | 4.4–13.9 | [44] |
Cheyne Inlet | 0.2 | 610 | 1800 | AO | All | 12 | 4 seasons (2020) | 48 | Corer (96 cm2) | 42.5 | 33.0–54.3 | 18.0 | 13.4–25.7 | 7.6 | 3.7–10.7 | [44] |
Beaufort Inlet | 6.5 | 410 | 36,000 | NC | All | 12 | 11 times (2020–23) | 132 | Corer (96 cm2) | 56.3 | 3.2–121.8 | 17.7 | 8.6–25.5 | 7.4 | 3.6–16.2 | [45] |
2.2. Data Analysis
3. Results
3.1. Faunal Description
3.2. Relationship Between Richness and Salinity
3.3. Distribution of Annelids
3.4. Distribution of Molluscs
3.5. Distribution of Arthropods
4. Discussion
4.1. Comparisons to the Remane Diagram
4.2. Holohaline Taxa
4.3. Annelids
4.4. Molluscs
4.5. Arthropods
4.6. Limitations and Future Directions
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- McLusky, D.S.; Elliott, M. The Estuarine Ecosystem: Ecology, Threats and Management, 3rd ed.; Oxford University Press: Oxford, UK, 2004. [Google Scholar]
- Tweedley, J.R.; Warwick, R.M.; Potter, I.C. The contrasting ecology of temperate macrotidal and microtidal estuaries. Oceanogr. Mar. Biol. Annu. Rev. 2016, 54, 73–172. [Google Scholar] [CrossRef]
- Pritchard, D.W. What is an estuary: A physical viewpoint. Am. Assoc. Adv. Sci. 1967, 83, 3–5. [Google Scholar]
- Tagliapietra, D.; Sigovini, M.; Ghirardini, A.V. A review of terms and definitions to categorise estuaries, lagoons and associated environments. Mar. Freshw. Res. 2009, 60, 497–509. [Google Scholar] [CrossRef]
- Day, J.H. The nature, origin and classification of estuaries. In Estuarine Ecology: With Particular Reference to Southern Africa; Day, J.H., Ed.; A.A. Balkema: Cape Town, South Africa, 1981; pp. 1–6. [Google Scholar]
- Potter, I.C.; Chuwen, B.M.; Hoeksema, S.D.; Elliott, M. The concept of an estuary: A definition that incorporates systems which can become closed to the ocean and hypersaline. Estuar. Coast. Shelf Sci. 2010, 87, 497–500. [Google Scholar] [CrossRef]
- McSweeney, S.L.; Kennedy, D.M.; Rutherfurd, I.D.; Stout, J.C. Intermittently closed/open lakes and lagoons: Their global distribution and boundary conditions. Geomorphology 2017, 292, 142–152. [Google Scholar] [CrossRef]
- Largier, J.L. Recognizing low-inflow estuaries as a common estuary paradigm. Estuaries Coasts 2023, 46, 1949–1970. [Google Scholar] [CrossRef]
- Hoeksema, S.D.; Chuwen, B.M.; Tweedley, J.R.; Potter, I.C. Factors influencing marked variations in the frequency and timing of bar breaching and salinity and oxygen regimes among normally-closed estuaries. Estuar. Coast. Shelf Sci. 2018, 208, 205–218. [Google Scholar] [CrossRef]
- Tweedley, J.R.; Krispyn, K.N. Protracted bar closure temporarily transforms an estuary into a salt lake. Pac. Conserv. Biol. 2024, 30, PC24007. [Google Scholar] [CrossRef]
- Charmantier, G.U.Y. Ontogeny of osmoregulation in crustaceans: A review. Invertebr. Reprod. Dev. 1998, 33, 177–190. [Google Scholar] [CrossRef]
- González-Ortegón, E.; Pascual, E.; Cuesta, J.A.; Drake, P. Field distribution and osmoregulatory capacity of shrimps in a temperate European estuary (SW Spain). Estuar. Coast. Shelf Sci. 2006, 67, 293–302. [Google Scholar] [CrossRef]
- Whitfield, A.; Elliott, M. Ecosystem and biotic classifications of estuaries and coasts. In Treatise on Estuarine and Coastal Science; Wolanski, E., McLusky, D.S., Eds.; Academic Press: Waltham, MA, USA, 2011; pp. 99–124. [Google Scholar]
- Willmar, P.; Stone, G.; Johnston, I. Animal water balance, osmoregulation and excretion. In Environmental Physiology of Animals, 2nd ed.; Willmar, P., Stone, G., Johnston, I., Eds.; Blackwell: Oxford, UK, 2005; pp. 76–110. [Google Scholar]
- Tweedley, J.R.; Warwick, R.M.; Potter, I.C. Can biotic indicators distinguish between natural and anthropogenic environmental stress in estuaries? J. Sea Res. 2015, 102, 10–21. [Google Scholar] [CrossRef]
- Ysebaert, T.; Meire, P.; Maes, D.; Buijs, J. The benthic macrofauna along the estuarine gradient of the Schelde Estuary. Neth. J. Aquat. Ecol. 1993, 27, 327–341. [Google Scholar] [CrossRef]
- Edgar, G.J.; Shaw, C.; Watsona, G.F.; Hammond, L.S. Comparisons of species richness, size-structure and production of benthos in vegetated and unvegetated habitats in Western Port, Victoria. J. Exp. Mar. Biol. Ecol. 1994, 176, 201–226. [Google Scholar] [CrossRef]
- Teske, P.R.; Wooldridge, T.H. What limits the distribution of subtidal macrobenthos in permanently open and temporarily open/closed South African estuaries? Salinity vs. sediment partical size. Estuar. Coast. Shelf Sci. 2003, 57, 225–238. [Google Scholar] [CrossRef]
- Edgar, G.J.; Barrett, N.S. Benthic macrofauna in Tasmanian estuaries: Scales of distribution and relationships with environmental variables. J. Exp. Mar. Biol. Ecol. 2002, 270, 1–24. [Google Scholar] [CrossRef]
- Whitfield, A.K. Estuaries—How challenging are these constantly changing aquatic environments for associated fish species? Environ. Biol. Fishes 2021, 104, 517–528. [Google Scholar] [CrossRef]
- Thabet, R.; Ayadi, H.; Koken, M.; Leignel, V. Homeostatic responses of crustaceans to salinity changes. Hydrobiologia 2017, 799, 1–20. [Google Scholar] [CrossRef]
- Marshall, W.S. Osmoregulation in estuarine and intertidal fishes. In Fish Physiology; McCormick, S.D., Farrell, A.P., Brauner, C.J., Eds.; Academic Press: Cambridge, MA, USA, 2012; Volume 32, pp. 395–434. [Google Scholar]
- Cloern, J.E.; Jassby, A.D.; Schraga, T.S.; Nejad, E.; Martin, C. Ecosystem variability along the estuarine salinity gradient: Examples from long-term study of San Francisco Bay. Limnol. Oceanogr. 2017, 62, S272–S291. [Google Scholar] [CrossRef]
- Ysebaert, T.; Herman, P.M.J.; Meire, P.; Craeymeersch, J.; Verbeek, H.; Heip, C.H.R. Large-scale spatial patterns in estuaries: Estuarine macrobenthic communities in the Schelde estuary, NW Europe. Estuar. Coast. Shelf Sci. 2003, 57, 335–355. [Google Scholar] [CrossRef]
- Valesini, F.J.; Wildsmith, M.D.; Tweedley, J.R. Predicting estuarine faunal assemblages using enduring environmental surrogates, with applications in systematic conservation planning. Ocean. Coast. Manag. 2018, 165, 80–98. [Google Scholar] [CrossRef]
- Elliott, M.; Whitfield, A.K. Challenging paradigms in estuarine ecology and management. Estuar. Coast. Shelf Sci. 2011, 94, 306–314. [Google Scholar] [CrossRef]
- Remane, A. Die brackwasserfauna. Verhandlungen Der Dtsch. Zool. Ges. 1934, 36, 34–74. [Google Scholar]
- Whitfield, A.K.; Elliott, M.; Basset, A.; Blaber, S.J.M.; West, R.J. Paradigms in estuarine ecology—A review of the Remane diagram with a suggested revised model for estuaries. Estuar. Coast. Shelf Sci. 2012, 97, 78–90. [Google Scholar] [CrossRef]
- Hedgpeth, J.W. Ecological aspects of the Laguna Madre, a hypersaline estuary. In Estuaries; Lauff, G.H., Ed.; AAAS Publication 83, American Association for the Advancement of Science: Washington, DC, USA, 1967; pp. 408–419. [Google Scholar]
- Khlebovich, V.V. Aspects of animal evolution related to critical salinity and internal state. Mar. Biol. 1969, 2, 338–345. [Google Scholar] [CrossRef]
- Hallett, C.S.; Hobday, A.J.; Tweedley, J.R.; Thompson, P.A.; McMahon, K.; Valesini, F.J. Observed and predicted impacts of climate change on the estuaries of south-western Australia, a Mediterranean climate region. Reg. Environ. Change 2018, 18, 1357–1373. [Google Scholar] [CrossRef]
- Brearley, A. Ernest Hodgkin’s Swanland, 1st ed.; University of Western Australia Press: Crawley, UK, 2005; p. 550. [Google Scholar]
- Hodgkin, E.P.; Hesp, P. Estuaries to salt lakes: Holocene transformation of the estuarine ecosystems of south-western Australia. Mar. Freshw. Res. 1998, 49, 183–201. [Google Scholar] [CrossRef]
- Tweedley, J.R.; Dittmann, S.R.; Whitfield, A.K.; Withers, K.; Hoeksema, S.D.; Potter, I.C. Hypersalinity: Global distribution, causes, and present and future effects on the biota of estuaries and lagoons. In Coasts and Estuaries; Wolanski, E., Day, J.W., Elliott, M., Ramachandran, R., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 523–546. [Google Scholar]
- Lewis, E.L. The practical salinity scale 1978 and its antecedents. IEEE J. Ocean. Eng. 1980, 5, 3–8. [Google Scholar] [CrossRef]
- Krispyn, K.N. The Fish Faunas of Estuaries in the Albany Region of South-Western Australia; Murdoch University: Perth, Australia, 2021. [Google Scholar]
- Tweedley, J.R.; Hallett, C.S.; Warwick, R.M.; Clarke, K.R.; Potter, I.C. The hypoxia that developed in a microtidal estuary following an extreme storm produced dramatic changes in the benthos. Mar. Freshw. Res. 2016, 67, 327–341. [Google Scholar] [CrossRef]
- Lim, R. Multidecadal Changes in the Benthic Macroinvertebrates Assemblages of the Swan-Canning Estuary; Murdoch University: Perth, Australia, 2025. [Google Scholar]
- Stout, E. Benthic Macroinvertebrate Communities of the Swan Estuary Marine Park; Murdoch University: Perth, Australia, 2025. [Google Scholar]
- Cronin-O’Reilly, S. Benthic Community Structure, Health and Function of a Microtidal Estuary in South-Western Australia; Murdoch University: Perth, Australia, 2021. [Google Scholar]
- Tweedley, J.R.; Cronin-O’Reilly, S.; Cottingham, A.; Beatty, S.J. Vasse-Wonnerup Integrated Monitoring Review of 2017-20: Benthic Macroinvertebrate Component; Report for the Department of Water and Environmental Regulation; Murdoch University: Perth, Australia, 2021; p. 65. [Google Scholar]
- Cronin-O’Reilly, S.; Cottingham, A.; Kalnejais, L.H.; Lynch, K.; Tweedley, J.R. Tidal exclusion barriers fragment an invertebrate community into taxonomically and functionally distinct estuarine and wetland assemblages. J. Mar. Sci. Eng. 2025, 13, 635. [Google Scholar] [CrossRef]
- Tweedley, J.R. The Relationships Between Habitat Types and Faunal Community Structure in Broke Inlet, Western Australia. Ph.D. Thesis, Murdoch University, Perth, Australia, 2011. [Google Scholar]
- Fourie, S.A. Benthic Macroinvertebrate Faunas of Microtidal Estuaries in Albany, South-Western Australia; Murdoch University: Perth, Australia, 2024. [Google Scholar]
- Cronin-O’Reilly, S.; Krispyn, K.N.; Maus, C.; Standish, R.J.; Loneragan, N.R.; Tweedley, J.R. Empirical evidence of alternative stable states in an estuary. Sci. Total Environ. 2024, 954, 176356. [Google Scholar] [CrossRef]
- WoRMS Editorial Board. World Register of Marine Species. Available online: https://www.marinespecies.org (accessed on 27 March 2025).
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2024. [Google Scholar]
- Wickham, H. ggplot2: Elegant Graphics for Data Analysis; Springer: New York, NY, USA, 2016; p. 260. [Google Scholar]
- Wilke, C.O. ggridges: Ridgeline Plots in “ggplot2”; R Package Version 0.5.6. 2024. Available online: https://cran.r-project.org/web/packages/ggridges/index.html (accessed on 16 October 2024).
- Kay, M. ggdist: Visualizations of distributions and uncertainty in the grammar of graphics. IEEE Trans. Vis. Comput. Graph. 2024, 30, 414–424. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, D.L.; Brock, M.A.; Rees, G.N.; Baldwin, D.S. Effects of increasing salinity on freshwater ecosystems in Australia. Aust. J. Bot. 2003, 51, 655–665. [Google Scholar] [CrossRef]
- Davis, J.A.; Rosich, R.S.; Bradely, J.S.; Growns, J.E.; Schmidt, L.G.; Cheal, F. Wetland classification on the basis of water quality and invertebrate community data. In Wetlands of the Swan Coastal Plain; Water Authority of Western Australia and Environmental Protection Authority: Perth, Australia, 1993; Volume 6, p. 242. [Google Scholar]
- Unmack, P.J. Biogeography of Australian freshwater fishes. J. Biogeogr. 2001, 28, 1053–1089. [Google Scholar] [CrossRef]
- Barendregt, A. Tidal freshwater wetlands: The fresh dimension of the estuary. In The Wetland Book: II: Distribution, Description, and Conservation; Finlayson, C.M., Milton, G.R., Prentice, R.C., Davidson, N.C., Eds.; Springer: Dordrecht, The Netherlands, 2018; pp. 155–168. [Google Scholar]
- Little, S.; Wood, P.J.; Elliott, M. Quantifying salinity-induced changes on estuarine benthic fauna: The potential implications of climate change. Estuar. Coast. Shelf Sci. 2017, 198, 610–625. [Google Scholar] [CrossRef]
- Fujioka, T.; Chappell, J. History of Australian aridity: Chronology in the evolution of arid landscapes. In Geological Society, London, Special Publications; Bishop, P., Pillans, B., Eds.; Geological Society of London: London, UK, 2010; Volume 346, pp. 121–139. [Google Scholar]
- Lawrie, A.D.A.; Chaplin, J.; Rahman, M.; Islam, M.A.; Webzell, K. Insights into the recent evolutionary history of salt lake gastropods (Coxiella) in Australia. Hydrobiologia 2025, 852, 3309–3325. [Google Scholar] [CrossRef]
- Bate, G.C.; Whitfield, A.K.; Adams, J.B.; Huizinga, P.; Wooldridge, T.H. The importance of the river-estuary interface (REI) zone in estuaries. Water SA 2002, 28, 271–280. [Google Scholar] [CrossRef]
- Valle-Levinson, A. Classification of estuarine circulation. In Treatise on Estuarine and Coastal Science; Wolanski, E., McLusky, D., Eds.; Academic Press: Waltham, MA, USA, 2011; pp. 75–86. [Google Scholar]
- Warwick, R.M.; Tweedley, J.R.; Potter, I.C. Microtidal estuaries warrant special management measures that recognise their critical vulnerability to pollution and climate change. Mar. Pollut. Bull. 2018, 135, 41–46. [Google Scholar] [CrossRef]
- Dittmann, S.; Baring, R.; Baggalley, S.; Cantin, A.; Earl, J.; Gannon, R.; Keuning, J.; Mayo, A.; Navong, N.; Nelson, M.; et al. Drought and flood effects on macrobenthic communities in the estuary of Australia’s largest river system. Estuar. Coast. Shelf Sci. 2015, 165, 36–51. [Google Scholar] [CrossRef]
- Krispyn, K.N.; Loneragan, N.R.; Whitfield, A.K.; Tweedley, J.R. Salted mullet: Protracted occurrence of Mugil cephalus under extreme hypersaline conditions. Estuar. Coast. Shelf Sci. 2021, 261, 107533. [Google Scholar] [CrossRef]
- Wooldridge, T.H.; Adams, J.B.; Fernandes, M. Biotic responses to extreme hypersalinity in an arid zone estuary, South Africa. S. Afr. J. Bot. 2016, 107, 160–169. [Google Scholar] [CrossRef]
- Diehl, W.J. Osmoregulation in echinoderms. Comp. Biochem. Physiol. Part A Physiol. 1986, 84, 199–205. [Google Scholar] [CrossRef]
- Barrett, N.J.; Harper, E.M.; Peck, L.S. The impact of acute low salinity stress on Antarctic echinoderms. Proc. R. Soc. B Biol. Sci. 2024, 291, 20241038. [Google Scholar] [CrossRef] [PubMed]
- Barker, M.F.; Russell, M.P. The distribution and behaviour of Patiriella mortenseni and P. regularis in the extreme hyposaline conditions of the southern New Zealand fiords. J. Exp. Mar. Biol. Ecol. 2008, 355, 76–84. [Google Scholar] [CrossRef]
- Poh, B.; Tweedley, J.R.; Chaplin, J.A.; Trayler, K.M.; Crisp, J.A.; Loneragan, N.R. Influence of physico-chemical and biotic factors on the distribution of a penaeid in a temperate estuary. Estuar. Coast. Shelf Sci. 2019, 218, 70–85. [Google Scholar] [CrossRef]
- Wildsmith, M.D.; Rose, T.H.; Potter, I.C.; Warwick, R.M.; Clarke, K.R.; Valesini, F.J. Changes in the benthic macroinvertebrate fauna of a large microtidal estuary following extreme modifications aimed at reducing eutrophication. Mar. Pollut. Bull. 2009, 58, 1250–1262. [Google Scholar] [CrossRef]
- Fernández-Torquemada, Y.; González-Correa, J.M.; Sánchez-Lizaso, J.L. Echinoderms as indicators of brine discharge impacts. Desalin. Water Treat. 2013, 51, 567–573. [Google Scholar] [CrossRef]
- Seale, A.P.; Cao, K.; Chang, R.J.A.; Goodearly, T.R.; Malintha, G.H.T.; Merlo, R.S.; Peterson, T.L.; Reighard, J.R. Salinity tolerance of fishes: Experimental approaches and implications for aquaculture production. Rev. Aquac. 2024, 16, 1351–1373. [Google Scholar] [CrossRef]
- Anufriieva, E.V.; Shadrin, N.V. Diversity of fauna in Crimean hypersaline water bodies. J. Sib. Fed. Univ. Biol. 2018, 11, 294–305. [Google Scholar]
- Blake, J.A.; Woodwick, K.H. Reproduction and larval development of Pseudopolydora paucibranchiata (Okuda) and Pseudopolydora kempi (Southern) (Polychaeta: Spionidae). Biol. Bull. 1975, 149, 109–127. [Google Scholar] [CrossRef]
- Méndez, N.; Inez, L.-G.; Forbes, V.E. Variability in reproductive mode and larval development within the Capitella capitata species complex. Invertebr. Reprod. Dev. 2000, 38, 131–142. [Google Scholar] [CrossRef]
- Munari, C.; Bocchi, N.; Mistri, M. Grandidierella japonica (Amphipoda: Aoridae): A non-indigenous species in a Po delta lagoon of the northern Adriatic (Mediterranean Sea). Mar. Biodiv. Rec. 2016, 9, 12. [Google Scholar] [CrossRef]
- Wildsmith, M.D.; Potter, I.C.; Valesini, F.J.; Platell, M.E. Do the assemblages of the benthic macroinvertebrates in nearshore waters of Western Australia vary among habitat types, zones and seasons? J. Mar. Biol. Assoc. UK 2005, 85, 217–232. [Google Scholar] [CrossRef]
- Chessman, B.C. A new salinity index for the invertebrate fauna of Australian inland waters. Hydrobiologia 2023, 850, 3539–3550. [Google Scholar] [CrossRef]
- Anufriieva, E.V.; Shadrin, N.V. General patterns of salinity influence on the energy balance of aquatic animals in hypersaline environment. Biol. Bull. Rev. 2023, 13, 420–430. [Google Scholar] [CrossRef]
- Roots, B.J.; Lim, R.; Cronin-O’Reilly, S.; Fourie, S.A.; Rodgers, E.M.; Stout, E.J.; Tweedley, J.R. Hypersalinity leads to dramatic shifts in the invertebrate fauna of estuaries. Animals 2025. [Google Scholar]
- Pillay, D.; Perissinotto, R. The benthic macrofauna of the St. Lucia Estuary during the 2005 drought year. Estuar. Coast. Shelf Sci. 2008, 77, 35–46. [Google Scholar] [CrossRef]
- Deegan, B.M.; Lamontagne, S.; Aldridge, K.T.; Brookes, J.D. Trophodynamics of the Coorong: Spatial Variability in Food Web Structure Along a Hypersaline Coastal Lagoon; CSIRO: Water for a Healthy Country National Research Flagship: Canberra, Australia, 2010; p. 52. [Google Scholar]
- Jumars, P.A.; Dorgan, K.M.; Lindsay, S.M. Diet of worms emended: An update of polychaete feeding guilds. Annu. Rev. Mar. Sci. 2015, 7, 497–520. [Google Scholar] [CrossRef]
- Aikins, S.; Kikuchi, E. Grazing pressure by amphipods on microalgae in Gamo Lagoon, Japan. Mar. Ecol. Prog. Ser. 2002, 245, 171–179. [Google Scholar] [CrossRef]
- Ingvason, H.R.; Ólafsson, J.S.; Gardarsson, A. Food selection of Tanytarsus gracilentus larvae (Diptera: Chironomidae): An analysis of instars and cohorts. Aquat. Ecol. 2004, 38, 231–237. [Google Scholar] [CrossRef]
- Paterson, C.; Walker, K. Recent history of Tanytarsus barbitarsis Freeman (Diptera: Chironomidae) in the sediments of a shallow, saline lake. Mar. Freshw. Res. 1974, 25, 315–325. [Google Scholar] [CrossRef]
- Sylvestre, F.; Beck-Eichler, B.; Duleba, W.; Debenay, J.-P. Modern benthic diatom distribution in a hypersaline coastal lagoon: The Lagoa de Araruama (R.J.), Brazil. Hydrobiologia 2001, 443, 213–231. [Google Scholar] [CrossRef]
- Hribar, L.J. Mouthpart morphology and feeding behavior of biting midge larvae (Diptera: Ceratopogonidae). In Functional Morphology of Insect Feeding; Schaefer, C.W., Leschen, R.A.B., Eds.; Thomas Say Publications in Entomology: Proceedings of the Entomological Society of America: Lanham, Maryland; Entomological Society of America: Annapolis, MD, USA, 1993; pp. 43–58. [Google Scholar]
- Rodriguez, G.; Fikáček, M.; Minoshima, Y.N.; Archangelsky, M.; Torres, P.L.M. Going underwater: Multiple origins and functional morphology of piercing-sucking feeding and tracheal system adaptations in water scavenger beetle larvae (Coleoptera: Hydrophiloidea). Zool. J. Linn. Soc. 2020, 193, 1–30. [Google Scholar] [CrossRef]
- Yee, D.A.; Kehl, S. Order Coleoptera. In Thorp and Covich’s Freshwater Invertebrates, 4th ed.; Thorp, J.H., Rogers, D.C., Eds.; Academic Press: Boston, MA, USA, 2015; pp. 1003–1042. [Google Scholar]
- Preston, R.L. Osmoregulation in annelids: Cells and animals. In Osmotic and Ionic Regulation; Evans, D.H., Ed.; CRC Press: Boca Raton, FL, USA, 2008; pp. 135–165. [Google Scholar]
- Castellano, G.C.; Lana, P.d.C.; Freire, C.A. Euryhalinity of subtropical marine and estuarine polychaetes evaluated through carbonic anhydrase activity and cell volume regulation. J. Exp. Zool. Part A Ecol. Integr. Physiol. 2020, 333, 316–324. [Google Scholar] [CrossRef] [PubMed]
- Oglesby, L.C. Salinity-stress and desiccation in intertidal worms. Am. Zool. 2015, 9, 319–331. [Google Scholar] [CrossRef]
- Murina, G.-V.V. Ecology of Sipuncula. Mar. Ecol. Prog. Ser. 1984, 17, 1–7. [Google Scholar] [CrossRef]
- Glasby, C.J.; Erséus, C.; Martin, P. Annelids in extreme aquatic environments: Diversity, adaptations and evolution. Diversity 2021, 13, 98. [Google Scholar] [CrossRef]
- Hutchings, P.A.; Murray, A. Taxonomy of polychaetes from the Hawkesbury River and the southern estuaries of New South Wales, Australia. Rec. Aust. Mus. Suppl. 1984, 3, 1–118. [Google Scholar] [CrossRef]
- Mucciolo, S.; Desiderato, A.; Leal, S.M.; Mastrodonato, M.; Lana, P.; Freire, C.A. Variability in the degree of euryhalinity of neotropical estuarine annelids. J. Exp. Mar. Biol. Ecol. 2021, 544, 151617. [Google Scholar] [CrossRef]
- Rolston, A.; Gannon, R.; Dittmann, S. Macrobenthic Invertebrates of the Coorong, Lower Lakes and Murray Mouth Ramsar Site: A Literature Review of Responses to Changing Environmental Conditions; Report to the Department for Environment and Heritage; Flinders University: Adelaide, Australia, 2010; p. 36. [Google Scholar]
- Dávila-Jiménez, Y.; Papiol, V.; Hernández-Alcántara, P.; Enriquez, C.; Sauma-Castillo, L.; Chiappa-Carrara, X. Polychaete assemblages in a tropical hypersaline coastal lagoon of the southeastern Gulf of Mexico during the rainy season. Rev. Biol. Trop. 2019, 67, 136–156. [Google Scholar] [CrossRef]
- Silva, C.F.; Seixas, V.C.; Barroso, R.; Di Domenico, M.; Amaral, A.C.Z.; Paiva, P.C. Demystifying the Capitella capitata complex (Annelida, Capitellidae) diversity by morphological and molecular data along the Brazilian coast. PLoS ONE 2017, 12, e0177760. [Google Scholar] [CrossRef]
- Chalmer, P.N.; Hodgkin, E.P.; Kendrick, G.W. Benthic faunal changes in a seasonal estuary of south-western Australia. Rec. West. Aust. Mus. 1976, 4, 383–410. [Google Scholar]
- Wells, F.E.; Threlfall, T.J. Molluscs of the Peel-Harvey Estuary with a comparision with other south-western Australian estuaries. J. Malacol. Soc. Aust. 1981, 5, 101–111. [Google Scholar]
- Wildsmith, M.D.; Valesini, F.J.; Robinson, S.F. The value of enduring environmental surrogates as predictors of estuarine benthic macroinvertebrate assemblages. Estuar. Coast. Shelf Sci. 2017, 197, 159–172. [Google Scholar] [CrossRef]
- Cottingham, A.; Bossie, A.; Valesini, F.; Maus, C.; Tweedley, J.R. Habitat compression of an estuarine mytilid following half a century of streamflow decline. Estuar. Coast. Shelf Sci. 2023, 282, 108253. [Google Scholar] [CrossRef]
- Medeiros, I.P.M.; Faria, S.C.; Souza, M.M. Osmoionic homeostasis in bivalve mollusks from different osmotic niches: Physiological patterns and evolutionary perspectives. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 2020, 240, 110582. [Google Scholar] [CrossRef]
- Thomsen, M.S.; Wernberg, T.; Tuya, F.; Silliman, B.R. Ecological performance and possible origin of a ubiquitous but under-studied gastropod. Estuar. Coast. Shelf Sci. 2010, 87, 501–509. [Google Scholar] [CrossRef]
- Wells, F.E.; Threlfall, T.J.; Wilson, B.R. The Peel–Harvey Estuarine System Study 1976–1980, Technical Report, Biology of Molluscs; Department of Conservation and Environment: Perth, WA, Australia, 1980; p. 121.
- Sarà, G.; Romano, C.; Widdows, J.; Staff, F.J. Effect of salinity and temperature on feeding physiology and scope for growth of an invasive species (Brachidontes pharaonis—MOLLUSCA: BIVALVIA) within the Mediterranean Sea. J. Exp. Mar. Biol. Ecol. 2008, 363, 130–136. [Google Scholar] [CrossRef]
- Verdelhos, T.; Marques, J.C.; Anastácio, P. The impact of estuarine salinity changes on the bivalves Scrobicularia plana and Cerastoderma edule, illustrated by behavioral and mortality responses on a laboratory assay. Ecol. Indic. 2015, 52, 96–104. [Google Scholar] [CrossRef]
- Lawrie, A.D.A.; Chaplin, J.; Pinder, A. Biology and conservation of the unique and diverse halophilic macroinvertebrates of Australian salt lakes. Mar. Freshw. Res. 2021, 72, 1553–1576. [Google Scholar] [CrossRef]
- Todd, M.E. Osmotic balance in Hydrobia ulvae and Potamopyrgus jenkinsi (Gastropoda: Hydrobiidae). J. Exp. Biol. 1964, 41, 665–677. [Google Scholar] [CrossRef]
- Pascual, E.; Drake, P. Physiological and behavioral responses of the mud snails Hydrobia glyca and Hydrobia ulvae to extreme water temperatures and salinities: Implications for their spatial distribution within a system of temperate lagoons. Physiol. Biochem. Zool. Ecol. Evol. Approaches 2008, 81, 594–604. [Google Scholar] [CrossRef] [PubMed]
- Wells, F.E.; Threlfall, T.J. Reproductive strategies of Hydrococcus brazeri (Tenison Woods, 1876) and Arthritica semen (Menke, 1843) in Peel Inlet Western Australia. J. Malacol. Soc. Aust. 1982, 5, 157–166. [Google Scholar]
- Pinder, A.M.; Halse, S.A.; McRae, J.M.; Shiel, R.J. Occurrence of aquatic invertebrates of the wheatbelt region of Western Australia in relation to salinity. Hydrobiologia 2005, 543, 1–24. [Google Scholar] [CrossRef]
- Tweedley, J.R.; Warwick, R.M.; Clarke, K.R.; Potter, I.C. Family-level AMBI is valid for use in the north-eastern Atlantic but not for assessing the health of microtidal Australian estuaries. Estuar. Coast. Shelf Sci. 2014, 141, 85–96. [Google Scholar] [CrossRef]
- Dobrzycka, A.; Szaniawska, A. The effect of salinity on osmoregulation in Corophium volutator (Pallas) and Saduria entomon (Linnaeus) from the Gulf of Gdańsk. Oceanologia 1995, 37, 111–122. [Google Scholar]
- Masikane, N.F.; Newman, B.K.; Scharler, U.M. Salinity tolerance of the South African endemic amphipod Grandidierella lignorum (Amphipoda: Aoridae). Afr. J. Aquat. Sci. 2014, 39, 151–156. [Google Scholar] [CrossRef]
- Shahin, S.; Okomoda, V.T.; Ishak, S.D.; Waiho, K.; Fazhan, H.; Azra, M.N.; Azman, A.R.; Wongkamhaeng, K.; Abualreesh, M.H.; Rasdi, N.W.; et al. Lagoon amphipods as a new feed resource for aquaculture: A life history assessment of Grandidierella halophila. J. Sea Res. 2023, 192, 102360. [Google Scholar] [CrossRef]
- Moore, P.G. A new species in the genus Grandidierella Coutière (Crustacea: Amphipoda) from an Australian solar salt-works. J. Nat. Hist. 1986, 20, 1393–1399. [Google Scholar] [CrossRef]
- Kikuchi, S.; Matsumasa, M. The osmoregulatory tissue around the afferent blood vessels of the coxal gills in the estuarine amphipods, Grandidierella japonica and Melita setiflagella. Tissue Cell 1993, 25, 627–638. [Google Scholar] [CrossRef]
- Rahman, M.; Chaplin, J.; Pinder, A. The biology of giant ostracods (Crustacea, Cyprididae), a review focusing on the Mytilocypridinae from Australian inland waters. Mar. Freshw. Res. 2023, 74, 1–19. [Google Scholar] [CrossRef]
- Tweedley, J.R.; Krispyn, K.N. Fishes and salinities of low-inflow estuaries in the Fitzgerald Biosphere. FiSHMED Fishes Mediterr. Environ. 2025, 001, 1–14. [Google Scholar]
- Terry, C.E.; Liebzeit, J.A.; Purvis, E.M.; Dowd, W.W. Interactive effects of temperature and salinity on metabolism and activity of the copepod Tigriopus californicus. J. Exp. Biol. 2024, 227, jeb248040. [Google Scholar] [CrossRef] [PubMed]
- Britton, R.H.; Johnson, A.R. An ecological account of a Mediterranean salina: The Salin de Giraud, Camargue (S. France). Biol. Conserv. 1987, 42, 185–230. [Google Scholar] [CrossRef]
- Shadrin, N.V.; Anufriieva, E.V.; Belyakov, V.P.; Bazhora, A.I. Chironomidae larvae in hypersaline waters of the Crimea: Diversity, distribution, abundance and production. Eur. Zool. J. 2017, 84, 61–72. [Google Scholar] [CrossRef]
- Kokkinn, M. Osmoregulation, salinity tolerance and the site of ion excretion in the halobiont chironomid, Tanytarsus barbitarsis Freeman. Mar. Freshw. Res. 1986, 37, 243–250. [Google Scholar] [CrossRef]
- Cowley, P.D.; Tweedley, J.R.; Whitfield, A.K. Conservation of estuarine fishes. In Fish and Fisheries in Estuaries; Wiley: Hoboken, NJ, USA, 2022; pp. 617–683. [Google Scholar]
- Kefford, B.J.; Fields, E.J.; Clay, C.; Nugegoda, D. Salinity tolerance of riverine microinvertebrates from the southern Murray Darling Basin. Mar. Freshw. Res. 2007, 58, 1019–1031. [Google Scholar] [CrossRef]
- Kefford, B.J.; Papas, P.J.; Metzeling, L.; Nugegoda, D. Do laboratory salinity tolerances of freshwater animals correspond with their field salinity? Environ. Pollut. 2004, 129, 355–362. [Google Scholar] [CrossRef]
- Hutchings, P.; Kupriyanova, E. Cosmopolitan polychaetes—Fact or fiction? Personal and historical perspectives. Invertebr. Syst. 2018, 32, 1–9. [Google Scholar] [CrossRef]
Phylum and Order/Class | # taxa | %C | N | %F |
---|---|---|---|---|
Cnidaria | 2 | 0.05 | 12 | 0.63 |
Hexacorallia | 1 | 0.05 | 11 | 0.58 |
Scyphozoa | 1 | >0.01 | 1 | 0.05 |
Echinodermata | 5 | 0.01 | 7 | 0.37 |
Ophiuroidea | 2 | 0.01 | 4 | 0.21 |
Echinoidea | 2 | >0.01 | 2 | 0.11 |
Asteroidea | 1 | >0.01 | 1 | 0.05 |
Chordata | 1 | >0.01 | 1 | 0.05 |
Thaliacea | 1 | >0.01 | 1 | 0.05 |
Nematoda | 1 | 1.86 | 108 | 5.71 |
Arthropoda | 118 | 22.80 | 1403 | 74.19 |
Malacostraca | 58 | 16.88 | 1091 | 57.69 |
Hexapoda | 47 | 5.00 | 610 | 32.26 |
Ostracoda | 7 | 0.84 | 130 | 6.87 |
Copepoda | 4 | 0.08 | 23 | 1.22 |
Branchiopoda | 2 | 0.01 | 8 | 0.42 |
Platyhelminthes | 3 | 0.03 | 24 | 1.27 |
Mollusca | 42 | 21.43 | 1096 | 57.96 |
Bivalvia | 16 | 18.51 | 911 | 48.18 |
Gastropoda | 23 | 2.92 | 397 | 20.99 |
Polyplacophora | 2 | >0.01 | 2 | 0.11 |
Scaphopoda | 1 | >0.01 | 2 | 0.11 |
Annelida | 82 | 53.67 | 1633 | 86.36 |
Polychaeta | 77 | 51.33 | 1610 | 85.14 |
Oligochaeta | 3 | 2.31 | 256 | 13.54 |
Sipuncula | 1 | 0.02 | 12 | 0.63 |
Hirudinea | 1 | 0.01 | 5 | 0.26 |
Nemertea | 1 | 0.15 | 83 | 4.39 |
Phoronida | 1 | >0.01 | 1 | 0.05 |
Foraminifera | 1 | >0.01 | 1 | 0.05 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lim, R.; Fourie, S.A.; Stout, E.J.; Roots, B.J.; Cronin-O’Reilly, S.; Rodgers, E.M.; Tweedley, J.R. Testing the Remane Diagram: Occurrences of Benthic Macroinvertebrates in Oligohaline to Hyperhaline Salinities. Water 2025, 17, 1642. https://doi.org/10.3390/w17111642
Lim R, Fourie SA, Stout EJ, Roots BJ, Cronin-O’Reilly S, Rodgers EM, Tweedley JR. Testing the Remane Diagram: Occurrences of Benthic Macroinvertebrates in Oligohaline to Hyperhaline Salinities. Water. 2025; 17(11):1642. https://doi.org/10.3390/w17111642
Chicago/Turabian StyleLim, Ruth, Stephanie A. Fourie, Emily J. Stout, Ben J. Roots, Sorcha Cronin-O’Reilly, Essie M. Rodgers, and James R. Tweedley. 2025. "Testing the Remane Diagram: Occurrences of Benthic Macroinvertebrates in Oligohaline to Hyperhaline Salinities" Water 17, no. 11: 1642. https://doi.org/10.3390/w17111642
APA StyleLim, R., Fourie, S. A., Stout, E. J., Roots, B. J., Cronin-O’Reilly, S., Rodgers, E. M., & Tweedley, J. R. (2025). Testing the Remane Diagram: Occurrences of Benthic Macroinvertebrates in Oligohaline to Hyperhaline Salinities. Water, 17(11), 1642. https://doi.org/10.3390/w17111642