Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (88)

Search Parameters:
Keywords = Coriandrum sativum L.

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 4519 KiB  
Article
Effects of Low Green Light Combined with Different Red and Far-Red Light Ratios on the Growth and Secondary Metabolites of Cilantro (Coriandrum sativum L.)
by Manuel Mayam Miranda Sotelo, Yuan-Kai Tu, Pearl Pei-Chun Chang, Wei Fang and Hsing-Ying Chung
Agronomy 2025, 15(6), 1363; https://doi.org/10.3390/agronomy15061363 - 31 May 2025
Cited by 1 | Viewed by 679
Abstract
Plant factories offer a promising opportunity for fresh food production due to their minimal land requirements. Among the adjustable factors in the production system of plant factories, light serves as a critical element, significantly influencing both crop yield and quality. Cilantro, a prevalent [...] Read more.
Plant factories offer a promising opportunity for fresh food production due to their minimal land requirements. Among the adjustable factors in the production system of plant factories, light serves as a critical element, significantly influencing both crop yield and quality. Cilantro, a prevalent culinary herb and a traditional flavoring agent, plays a crucial role in Taiwanese gastronomy. This research investigated cilantro plants grown under nine different light treatments with varying red to far-red ratios and green light percentages over a 49-day period. Results demonstrate that maximum fresh and dry biomass accumulation in both shoot and root tissues occurred under treatments with red to far-red ratios of approximately of 1.8 combined with medium green light intensity. Conversely, medium far-red ratios negatively affected lutein and carotenoid concentrations in foliar tissues. Carotenoid biosynthesis exhibited an inverse relationship with green light intensity, with lower green light percentages corresponding to significantly higher carotenoid concentrations. In terms of energy efficiency, a red to far-red ratio of approximately 1.8 yielded the highest energy yield (g kWh−1) and photon yield (g mol−1), indicating optimal energy conversion efficiency under this spectral composition. In conclusion, this study demonstrates that cilantro cultivation under R53G05B13FR29 spectral composition (53% red, 5% green, 13% blue, 29% far-red) with a 49-day production cycle maximizes biomass while optimizing energy utilization efficiency. Full article
Show Figures

Figure 1

20 pages, 2144 KiB  
Article
Cilantro Photosynthetic Parameters in Response to Different Flows of Nutrient Solutions Prepared with Brackish Waters Dominant in Na+, Cl, or Ca2+
by Uriel Calisto Moura Pessoa, Ênio Farias de França e Silva, Tarcísio Ferreira de Oliveira, Jorge F. S. Ferreira, Edivan Rodrigues de Souza, Mário Monteiro Rolim, Alexsandro Oliveira da Silva and José Amilton Santos Júnior
Water 2025, 17(11), 1640; https://doi.org/10.3390/w17111640 - 28 May 2025
Viewed by 578
Abstract
Although the NFT (nutrient film technique) solution application rate for cilantro is known for fresh water, the application rate is still debatable when using brackish water. The application rate alone influences flow velocity dynamics, which, when associated with nutrient solution salinity, can impact [...] Read more.
Although the NFT (nutrient film technique) solution application rate for cilantro is known for fresh water, the application rate is still debatable when using brackish water. The application rate alone influences flow velocity dynamics, which, when associated with nutrient solution salinity, can impact plant development when saline water is used. Knowledge of how to best combine solution salinity and application rates will help decide if brackish water can be used to produce cilantro under hydroponic conditions. Thus, two trials were conducted in sequence from November 2019 to February 2020 under a protected environment. Cilantro cv. Verdão was submitted to four levels of electrical conductivity of nutrient solutions (ECns of 1.7, 3.0, 4.5, and 6.0 dS m−1) combined with four flow rates (1.0, 2.0, 3.0, and 4.0 L min−1). Because Na+ and Ca2+ are predominant ions in brackish waters in the crystalline and sedimentary regions in the Brazilian Semiarid region, the first study used brackish waters dominated by NaCl and the second study used waters dominated by CaCl2. We measured gas exchange and other photosynthetic parameters in plants cultivated with nutrient solutions high in Cl and prevalent in Na+ or Ca2+, each combined with different application rates. We concluded that the increment in salinity decreased the gas exchange of cilantro plants, especially when the brackish waters were dominant in Ca2+ and Cl. Up to an ECns of 4.5 dS m−1, plants maintained their leaf chlorophyll concentrations, although with reduced gas exchange. Salt stress compromised chlorophyll a fluorescence, affecting important parameters such as initial, maximum, and variable fluorescence. Besides the effects of salinity on chlorophyll a and b concentrations, the quantum and maximum yields of photosystem II remained stable, indicating that photosystem II may have adapted to the saline conditions applied in this study. The variation in application rates was unable to attenuate the deleterious effects of salinity, regardless of the ionic prevalence. We conclude that cilantro plants can be cultivated under hydroponic conditions, using currently accepted flow rates, with nutrient solutions of up to 3.0 dS m−1 without severe damage to plant photosynthetic parameters. Full article
(This article belongs to the Section Water, Agriculture and Aquaculture)
Show Figures

Graphical abstract

17 pages, 3258 KiB  
Article
A Novel Method to Investigate Environmental Risk in Wastewater Toxicity
by Isha Shakoor, Amina Sultan, Kamran Shaukat, Talha Mahboob Alam and Aisha Nazir
Agronomy 2025, 15(4), 841; https://doi.org/10.3390/agronomy15040841 - 28 Mar 2025
Viewed by 2404
Abstract
This is a pioneering study on the main drainage system in Gujranwala District, where untreated mixed wastewater is discharged and subsequently used for vegetable irrigation, leading to potential health and environmental risks. This study seeks to develop the spatial pattern of toxic metal [...] Read more.
This is a pioneering study on the main drainage system in Gujranwala District, where untreated mixed wastewater is discharged and subsequently used for vegetable irrigation, leading to potential health and environmental risks. This study seeks to develop the spatial pattern of toxic metal accumulation in soil across an 11 km stretch of land used for vegetable cultivation. By using 90 samples of mixed wastewater and sludge, as well as 10 quadruplicate samples of rhizospheric soils and crops from ten vegetable fields, it was observed that the concentrations of Cr, Cu, Cd, Zn, Fe, Pb, Mg, and Ni in cauliflower (Brassica oleracea var. botrytis L.), coriander (Coriandrum sativum L.), radish (Raphanus sativus L.), mustard (Brassica juncea L.), spinach (Spinacia oleracea L.), meadow clover (Trifolium sp. L.), sorghum (Sorghum bicolour L.), garlic (Allium sativum L.), brinjal (Solanum melongena L.), and mint (Mentha L.) were beyond the permissible limits set by the FAO/WHO, 2001. The declining trend of the toxic metal concentrations in the effluent was Mg > Cr > Ni > Zn > Pb > Cd > Cu > Fe, and in sludge, soil, and plants, it varied in the order of Mg > Fe > Cr > Ni > Zn > Pb > Cd > Cu. Radish, mint, and brinjal had the highest quantities of toxic metals. The spatial pattern of toxic metals was determined by using proximity interpolation, Inverse Distance Weighted (IDW), the fine tuning of the interpolation characteristics, and the kriging of selected sample variograms. Toxic metals were found in the following order: plants > soil > sludge > effluents. The most prevalent cause of metal pollution was soil irrigation with polluted water. This study provides crucial information about the extent of contamination, which could help in the identification of public health risk, the assessment of environmental impacts, and also sustainable water management. Full article
(This article belongs to the Section Soil and Plant Nutrition)
Show Figures

Figure 1

18 pages, 3629 KiB  
Article
Isolation, In Vitro Antioxidant Capacity, Hypoglycemic Activity and Immunoactivity Evaluation of Polysaccharides from Coriandrum sativum L.
by Weiwei Jin, Huan Zhou, Haijun Zhao, Yue Pei, Fengxian Su, Yan Li and Tao Luo
Antioxidants 2025, 14(2), 149; https://doi.org/10.3390/antiox14020149 - 27 Jan 2025
Cited by 1 | Viewed by 1192
Abstract
Coriander (Coriandrum sativum) is a classical medicinal and edible herb as well as a spice, but the physicochemical and biological properties of its polysaccharides have not been fully studied. In this study, the polysaccharides were extracted using an ultrasonic-assisted method and [...] Read more.
Coriander (Coriandrum sativum) is a classical medicinal and edible herb as well as a spice, but the physicochemical and biological properties of its polysaccharides have not been fully studied. In this study, the polysaccharides were extracted using an ultrasonic-assisted method and purified from fresh coriander, and then the coriander polysaccharide (CSP) fraction was separated using an agarose gel Q-Sepharose Fast Flow column. The total sugar content, protein content and monosaccharides composition of CSPs were determined using a phenol–sulfuric acid method, Coomassie Brilliant Blue method and HPLC. The structural characterization was detected using ultraviolet spectrophotometry and FT-IR spectroscopy. DPPH and ABTS free radicals were used to explore their antioxidant activities, while the inhibitory abilities of α-amylase and α-glucosidase were used to evaluate their hypoglycemic activity. After that, the immunomodulatory and antitumor activities were investigated using macrophage RAW264.7 and HepG2 cells as the targets. The results showed that the total sugar and protein contents of CSPs were 66.90 ± 1.44% and 1.06 ± 0.32%, respectively. CSPs were mainly composed of fucose, rhamnose, arabinose, galactose, glucose, galacturonic acid and glucuronic acid, with a molar ratio of 1.13:15.11:9.60:25.98:1.55:44.33:2.29, and may be an acidic heteropolysaccharide containing pyran rings, α- and β-glycosidic bonds and glucuronic acid. Results from in vitro experiments of biological activities showed that the IC50 of CSPs for scavenging DPPH and ABTS free radicals were 0.759 mg/mL and 1.758 mg/mL, respectively; the IC50 values for inhibiting the activities of α-amylase and α-glucosidase were 0.634 mg/mL and 2.178 mg/mL, respectively; the CSPs with a concentration of 25~200 μg/mL showed no obvious toxicity to macrophage RAW264.7, and when treated with 100 μg/mL of CSPs, the relative cell phagocytosis capacity and secreted nitric oxide amount of RAW264.7 were 153.75 ± 12.01% and 133.56 ± 5.37%, respectively; CSPs showed a concentration-dependent ability to inhibit the growth of HepG2 cells within the test concentration of 0.25–2.0 mg/mL. Summarizing the results, due to their excellent antioxidant, immunomodulatory and anti-tumor activities, the coriander acid polysaccharides were expected to show good potential in comprehensive development of food and medicine. Full article
(This article belongs to the Special Issue Plant Materials and Their Antioxidant Potential, 2nd Edition)
Show Figures

Figure 1

19 pages, 3696 KiB  
Article
Coriandrum sativum L. Leaf Extract Ameliorates Metabolic Dysfunction-Associated Steatotic Liver Disease by Modulating the AMPK Pathway in High Fat-Fed C57BL/6 Mice
by Min Ji Gu, Yejin Ahn, Yu Ra Lee, Guijae Yoo, Yoonsook Kim, Inwook Choi, Sang Keun Ha and Donghwan Kim
Nutrients 2024, 16(23), 4165; https://doi.org/10.3390/nu16234165 - 30 Nov 2024
Cited by 1 | Viewed by 1256
Abstract
Background: Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disease. In recent times, the term NAFLD has been modified to metabolic dysfunction-associated steatotic liver disease (MASLD), reflecting its comprehensive scope encompassing a range of metabolic abnormalities. Coriandrum sativum L. (CS) [...] Read more.
Background: Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disease. In recent times, the term NAFLD has been modified to metabolic dysfunction-associated steatotic liver disease (MASLD), reflecting its comprehensive scope encompassing a range of metabolic abnormalities. Coriandrum sativum L. (CS) is a traditional medicine, although the preventive mechanism of CS extracts remains unclear. Objective: This study evaluated the preventive effects of CS in high-fat diet (HFD)-induced MASLD mice by oral administration of 100 or 200 mg/kg/day of CS extracts for 12 weeks. Results: The major CS extract compounds were chlorogenic acid, caffeic acid, rutin, and isoquercetin. The administration of CS extract suppressed HFD-induced weight gain, liver weight, and the liver/body weight ratio. It improved the mice’s serum biological profiles and suppressed HFD-induced lipid droplet and lipid accumulation by inhibiting lipid accumulation-related gene expression in the liver. It modulated HFD-induced Ampk-Srebp1c pathways and suppressed HFD-induced NF-κB pathway activation in the liver. It regulated inflammation and the AMPK alpha signaling pathway in HFD-fed mice by reducing the accumulation of specific amino acids, leading to the amelioration of fatty liver. Conclusions: The CS extract prevents HFD-induced MASLD and may help prevent or treat MASLD. Full article
(This article belongs to the Special Issue Natural Products and Human Health)
Show Figures

Figure 1

31 pages, 2441 KiB  
Review
Effect of Pre-Treatment, Treatment, and Extraction Technologies on the Bioactive Substances of Coriander
by Khokha Mouhoubi, Fatiha Brahmi, Lila Boulekbache-Makhlouf, Siham Ayouaz, Amina Abbou, Khodir Madani, Inmaculada Mateos-Aparicio and Alejandra Garcia-Alonso
Appl. Sci. 2024, 14(19), 8989; https://doi.org/10.3390/app14198989 - 5 Oct 2024
Viewed by 2555
Abstract
Herbs and spices, with their wealth of bioactive compounds, are widely used in food, medicine, and cosmetics. Among them, coriander (Coriandrum sativum L.) is particularly valued for its medicinal and culinary properties. Growing consumer and industrial interest in natural products has led [...] Read more.
Herbs and spices, with their wealth of bioactive compounds, are widely used in food, medicine, and cosmetics. Among them, coriander (Coriandrum sativum L.) is particularly valued for its medicinal and culinary properties. Growing consumer and industrial interest in natural products has led to the development of modern, environmentally friendly extraction techniques designed to improve the yield and quality of extracts while reducing time, energy, and solvent consumption. These processes make it possible to obtain optimal quantities of active compounds, thereby meeting the growing demand for plant-based products. After showing evidence of coriander’s health benefits, this review summarizes research findings on the impact of some treatments and pretreatments on its phytochemical composition. After that, it summarizes different aspects of the use of conventional and non-conventional extraction techniques for coriander’s bioactive constituents, mainly polyphenols and crude and essential oils (EO). Among these methods, microwave-assisted extraction (MAE/MAHD) emerges as one of the most efficient methods, offering higher yields, better-quality extracts, and a significant reduction in energy costs. Full article
(This article belongs to the Special Issue Feature Review Papers in Section ‘Food Science and Technology')
Show Figures

Figure 1

28 pages, 14997 KiB  
Article
Burn Wound Healing Activity of Hydroxyethylcellulose Gels with Different Water Extracts Obtained from Various Medicinal Plants in Pseudomonas aeruginosa-Infected Rabbits
by Grigory Demyashkin, Tatiana Sataieva, Ludmila Shevkoplyas, Tatyana Kuevda, Maria Ahrameeva, Mikhail Parshenkov, Alexander Mimuni, Georgy Pimkin, Dmitrii Atiakshin, Vladimir Shchekin, Petr Shegay and Andrei Kaprin
Int. J. Mol. Sci. 2024, 25(16), 8990; https://doi.org/10.3390/ijms25168990 - 18 Aug 2024
Cited by 4 | Viewed by 2749
Abstract
Burn injuries represent a significant problem in clinical practice due to the high risk of infection and the prolonged healing process. Recently, more attention has been given to natural remedies such as water extracts of various medicinal plants, which possess anti-inflammatory and wound [...] Read more.
Burn injuries represent a significant problem in clinical practice due to the high risk of infection and the prolonged healing process. Recently, more attention has been given to natural remedies such as water extracts of various medicinal plants, which possess anti-inflammatory and wound healing properties. The aim of this study is to evaluate the efficacy and safety of Satureja montana L. and other water extracts in a burn wound model. The study involved male Californian rabbits (n = 52) divided into eight groups. Burn wounds were modeled on the animals and subsequently treated with gels based on Satureja montana L. and other water extracts. The reparative potential of the epidermis (assessed by Ki-67 expression), the state of local immunity (measured by the number of CD-45 cells), and the anti-inflammatory role of mast cells (measured by tryptase levels) were evaluated. Bacteriological and morphological studies were conducted. The most pronounced bactericidal, reparative, and immunostimulatory effects were observed after the treatment using a gel mixture of water extracts from Satureja montana L., Salvia sclarea, Coriandrum sativum L., and Lavandula angustifolia in equal proportions (1:1:1:1). The other gels also demonstrated high efficacy in treating burn wounds, especially when using a strain of Pseudomonas aeruginosa resistant to several antibiotics. Immunohistochemical studies showed a significant increase in the number of Ki-67-positive cells in the basal layer of the epidermis and a decrease in the number of CD-45-positive cells, indicating improved proliferative activity and reduced inflammation. This study confirms the hypothesis that the use of water extract mixtures significantly enhances the reparative potential, improves the immune response in the treatment of burns, and promotes wound healing. These findings pave the way for further research and the application of complex phytotherapeutic agents, specifically water extracts of medicinal plants containing phenols and antioxidants in burn wound therapy. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

10 pages, 2624 KiB  
Article
Fusarium Wilt of Coriander: Root Cause Analysis and Varietal Tolerance Development
by David Chaimovitsh, Tali Kahane-Achinoam, Ohad Nuriel, Yael Meller Harel, David Silverman, Nadav Nitzan, Omer Frenkel and Itay Gonda
Plants 2024, 13(15), 2135; https://doi.org/10.3390/plants13152135 - 1 Aug 2024
Cited by 1 | Viewed by 1669
Abstract
Since 2012, growers of coriander, Coriandrum sativum L., in Israel have been suffering from summer wilting that can result in entire fields collapsing. The current study aimed to determine the cause of the phenomenon and find a genetic solution to the problem. The [...] Read more.
Since 2012, growers of coriander, Coriandrum sativum L., in Israel have been suffering from summer wilting that can result in entire fields collapsing. The current study aimed to determine the cause of the phenomenon and find a genetic solution to the problem. The disease was reproduced in a growth chamber using naturally-infested soil from a commercial field. Wilt became apparent within two weeks, and after ten weeks, all plants died compared to plants in sterilized soil from the same source. Fusarium oxysporum was isolated from infected plants, and Koch’s postulates were completed. Sequence analysis of the Elongation Factor (EF1α) encoding gene of the pathogen had a 99.54% match to F. oxysporum f. sp. coriandrii. Several coriander varieties were screened for resistance or tolerance to the disease. In four independent experiments, only the cultivar ‘Smadi’ showed high tolerance, while other genotypes were susceptible. In a trial in a naturally infested field, the cultivar ‘Smadi’ outperformed the commercial cultivar ‘Blair’. ‘Smadi’ provides a cropping solution to many Israeli farmers, yet this winter cultivar bolts early in the summer. There is a further need to characterize the tolerance mechanism and inheritance for informed breeding of late-bolting Fusarium-resistant coriander. Full article
(This article belongs to the Section Plant Protection and Biotic Interactions)
Show Figures

Figure 1

23 pages, 377 KiB  
Article
Detailed Phytochemical Composition, Cyto-/Hepatotoxicity, and Antioxidant/Anti-Inflammatory Profile of Moroccan Spices: A Study on Coriander, Caraway, and Mystical Cumin
by Hiba Bouzaid, Liliana Espírito Santo, Diana M. Ferreira, Susana Machado, Anabela S. G. Costa, Maria Inês Dias, Ricardo C. Calhelha, Lillian Barros, Oumaima Chater, Youssef Kandri Rodi, Faouzi Errachidi, Fouad Ouazzani Chahdi, Maria Beatriz P. P. Oliveira and Rita C. Alves
Molecules 2024, 29(15), 3485; https://doi.org/10.3390/molecules29153485 - 25 Jul 2024
Cited by 4 | Viewed by 2172
Abstract
Coriander, caraway, and mystical cumin are famous for their aromatic properties and widely used in Moroccan cuisine. The nutritional/phytochemical composition of their seeds (used for food flavoring and preservation) were compared. Their antioxidant, anti-inflammatory, cytotoxic and hepatotoxic effects were also explored. The fat [...] Read more.
Coriander, caraway, and mystical cumin are famous for their aromatic properties and widely used in Moroccan cuisine. The nutritional/phytochemical composition of their seeds (used for food flavoring and preservation) were compared. Their antioxidant, anti-inflammatory, cytotoxic and hepatotoxic effects were also explored. The fat content was similar among the samples (13%), with monounsaturated fatty acids being predominant. The coriander and mystical cumin seeds were extremely rich in C18:1n9c (81 and 85%, respectively) while, in the caraway, C18:1n12 (25%) was found together with C18:1n9c (32%). The caraway seeds also presented a higher proportion of C18:2n6c (34%) than the other seeds (13 and 8%, correspondingly). γ-Tocotrienol was the major vitamin E form in all the samples. The caraway seeds contained double the amount of protein (~18%) compared to the other seeds (~8%) but, qualitatively, the amino acid profiles among all seeds were similar. The seeds were also rich in dietary fiber (40–53%); however, differences were found in their fiber profiles. Caraway showed the highest antioxidant profile and anti-inflammatory activity and an LC-DAD-ESI/MSn analysis revealed great differences in the phenolic profiles of the samples. Cytotoxicity (NCI-H460, AGS, MCF-7, and CaCo2) and hepatotoxicity (RAW 264.7) were not observed. In sum, besides their flavoring/preservation properties, these seeds are also relevant source of bioactive compounds with health-promoting activities. Full article
6 pages, 213 KiB  
Proceeding Paper
Organic Amendments for Growth, Yield and Quality of Green Coriander (Coriandrum sativum L.)
by Mausum Kumar Nath
Biol. Life Sci. Forum 2024, 30(1), 26; https://doi.org/10.3390/IOCAG2023-17342 - 18 Apr 2024
Viewed by 1021
Abstract
Fresh and green leafy vegetables are an inevitable part of human nutrition. Leafy coriander is one of the most important condiments in the world and requires adequate fertilizer input for higher production. Expanding population constraints have compelled many countries to use pesticides and [...] Read more.
Fresh and green leafy vegetables are an inevitable part of human nutrition. Leafy coriander is one of the most important condiments in the world and requires adequate fertilizer input for higher production. Expanding population constraints have compelled many countries to use pesticides and fertilizers in order to boost farm production and fulfil their ever-increasing food demands. To stimulate the rapid and sumptuous growth of leafy vegetables like coriander, farmers apply a lot of nitrogenous fertilizers, resulting in poor quality and shelf lives. The application of organic amendments can solve this issue by improving the quality of coriander, as well as prolonging its shelf life. Moreover, various research work has been carried out in India and abroad on coriander as a seed spice, but limited research has been conducted on coriander as a condiment. Hence, this investigation was taken up. The experiment was prepared with seven treatments in a randomized block design and was replicated three times in the organic block of the Experimental Farm at Assam Agricultural University, India. The data from the respective field experiment were subjected to appropriate statistical analysis, as per the procedure proposed by Panse and Sukhatme. The result of the present investigation revealed that T7 (enriched compost @ 5 t ha−1) could produce the maximum yield with the highest benefit–cost ratio of 3.18, along with the best performance in terms of the quality of produce. Therefore, T7 can be inferred as farmer-friendly for sustainable production due to its efficiency, higher net return in comparison to other treatments, and minimal impact on the environment (and thus its adoption can be taken into consideration under field conditions). Full article
(This article belongs to the Proceedings of The 2nd International Online Conference on Agriculture)
27 pages, 368 KiB  
Review
White Mustard, Sweet Alyssum, and Coriander as Insectary Plants in Agricultural Systems: Impacts on Ecosystem Services and Yield of Crops
by Gedyon Tamiru Mena and Janina Gospodarek
Agriculture 2024, 14(4), 550; https://doi.org/10.3390/agriculture14040550 - 30 Mar 2024
Cited by 4 | Viewed by 2989 | Correction
Abstract
The main reason for adding plants to accompany the main crop is to protect it from pests and diseases. We reviewed the effectiveness of white mustard (Sinapis alba L.), sweet alyssum (Lobularia maritima L.), and coriander (Coriandrum sativum L.) in [...] Read more.
The main reason for adding plants to accompany the main crop is to protect it from pests and diseases. We reviewed the effectiveness of white mustard (Sinapis alba L.), sweet alyssum (Lobularia maritima L.), and coriander (Coriandrum sativum L.) in this regard. White mustard proximity had a strong positive influence on the occurrence of Syrphidae, parasitoids, Coccinellidae, and Carabidae, as well as on the fertility of Syrphidae and the longevity of parasitoids—all of which are essential for biological pest control. It also reduced many pests and diseases. The influence of S. alba on yield depends on the spacing used and the species of protected plant. Sweet alyssum positively affected the occurrence of Syrphidae, Coccinellidae, Anthocoridae, epigeal, and soil fauna, as well as the longevity of parasitoids and Anthocoridae. Its effect on the crop yield is variable, depending on the references consulted. The sensitivity of L. maritima to Phyllotreta spp. excludes it as a companion plant for hosts of these pests. Coriander positively affected the occurrence of Chrysopidae, Coccinellidae, Staphylinidae, and Aranea, as well as the longevity of parasitoids and the egg-laying of Syrphidae. It also reduced some crop pests. Introduction of the reviewed plants can improve the biodiversity of beneficial entomofauna that can help control pests and reduce diseases, with benefits to crop and yield. The use of synthetic insecticides can thus be greatly reduced, though it is not always possible to avoid them completely. Full article
23 pages, 4823 KiB  
Article
Coriander (Coriandrum sativum L.) from Alentejo (South Portugal)—Ethnobotany and Potential Industrial Use
by Orlanda Póvoa, Noémia Farinha, Violeta Lopes, Alexandra M. Machado and Ana Cristina Figueiredo
Foods 2024, 13(6), 929; https://doi.org/10.3390/foods13060929 - 19 Mar 2024
Cited by 5 | Viewed by 2622
Abstract
Coriander is a medicinal and aromatic plant (MAP) traditionally cultivated and used in Alentejo, Portugal. However, few publications are available about its ethnobotanical applications. Four independent ethnobotanical surveys were carried out: throughout the region (2002–2003), in three villages (2013), and in city markets [...] Read more.
Coriander is a medicinal and aromatic plant (MAP) traditionally cultivated and used in Alentejo, Portugal. However, few publications are available about its ethnobotanical applications. Four independent ethnobotanical surveys were carried out: throughout the region (2002–2003), in three villages (2013), and in city markets (2007 and 2022). Coriander was the most common fresh cultivated MAP (75% of the total area) and also the most representative MAP fresh herb in city markets. The leaves, mostly, were used fresh or frozen or transformed in piso. Some of the recipes have agro-industrial potential, such as piso and aromatized olive oil. Coriander essential oils (EOs) were isolated by hydrodistillation from aerial parts with inflorescence emergence (APIs) and from fruits, and fatty acids (FA) by solvent extraction from the fruits. Gas chromatography and gas chromatography-mass spectrometry analysis showed EOs dominated by n-decanal (21–24%), 2-trans-decenal (12–18%) and n-nonane (10–17%) in APIs, and linalool dominance (73–78%) in the fruits. Petroselinic acid (32–55%) was the dominant fatty acid. A literature survey on conventional and nonconventional extraction techniques showed a constancy in the dominant compounds isolated, highlighted piso as a home-made green-extraction procedure, but also reflected the relevance of coriander as a MAP with diverse industrial potential uses. Full article
Show Figures

Graphical abstract

18 pages, 2088 KiB  
Article
Effects of Light Intensity and Photoperiod on Morphological Development and Photosynthetic Characteristics of Coriander
by Fang Wang, Qi Gao, Guangsi Ji, Jingxuan Wang, Yifeng Ding and Sen Wang
Horticulturae 2024, 10(3), 215; https://doi.org/10.3390/horticulturae10030215 - 24 Feb 2024
Cited by 6 | Viewed by 3379
Abstract
Coriander (Coriandrum sativum L.) is prized for its aroma and medicinal properties and is extensively employed in various cuisines. Light intensity and photoperiod greatly impact its phenological development. The application of light-emitting diodes (LEDs) in facility cultivation systems enables precise control of [...] Read more.
Coriander (Coriandrum sativum L.) is prized for its aroma and medicinal properties and is extensively employed in various cuisines. Light intensity and photoperiod greatly impact its phenological development. The application of light-emitting diodes (LEDs) in facility cultivation systems enables precise control of lighting conditions, leading to enhanced energy efficiency in coriander cultivation. This study investigated three levels of light intensity (133, 200, and 400 μmol·m−2·s−1) and three photoperiods (8L/16D, 16L/8D, and 24L) to comprehensively assess their effects on coriander’s morphological development, photosynthetic characteristics, and energy utilization efficiency. The objective was to identify a combination conducive to efficient and energy-saving coriander cultivation in PFALs. Results indicated that high light intensity (400 μmol·m−2·s−1) with continuous lighting (24L) reduces coriander’s photosynthetic capacity, while 24-h of continuous lighting can boost yield at the expense of energy efficiency. An 8-h photoperiod significantly decreases the yield compared to 16 h. Low light intensity inhibits plant development, indicating that 133 μmol·m−2·s−1 is suboptimal. For optimal efficiency and yield, a light intensity of 200 μmol·m−2·s−1 and a 16-h photoperiod are recommended in coriander PFAL cultivation. These findings advocate for the adoption of these specific conditions for the indoor cultivation of coriander within PFAL systems. Full article
(This article belongs to the Special Issue Horticultural Production in Controlled Environment)
Show Figures

Figure 1

19 pages, 2224 KiB  
Article
Green Manuring and Irrigation Strategies Positively Influence the Soil Characteristics and Yield of Coriander (Coriandrum sativum L.) Crop under Salinity Stress
by Antonio Sánchez-Navarro, Aldara Girona-Ruíz and María José Delgado-Iniesta
Land 2024, 13(3), 265; https://doi.org/10.3390/land13030265 - 20 Feb 2024
Cited by 1 | Viewed by 1485
Abstract
This study shows the influence of soil salinity and irrigation dose on biomass production and its impact on some edaphic indicators and functions. For this purpose, an experiment was carried out in two representative soils from Murcia (SE Spain), one slightly saline (LS) [...] Read more.
This study shows the influence of soil salinity and irrigation dose on biomass production and its impact on some edaphic indicators and functions. For this purpose, an experiment was carried out in two representative soils from Murcia (SE Spain), one slightly saline (LS) and the other saline (S), where an oat–vetch green manure was intercalated between a spinach cycle and a coriander cycle; the latter being subjected to three different irrigation doses (deficient, optimum and surplus). Rapid response indicators (ECext, cations and anions in the soil solution, etc.) were monitored, as well as the material balances, in particular C and salts. Green manure and crop residues increased soil OC by 12.5% and reduced Na+ and NO3 concentrations. Total biomass production was also affected by salinity, both in oat–vetch, 35.9 and 31. 9 tm ha−1 in LS and S, respectively, and in the coriander crop, where the irrigation dose was decisive, obtaining around 29 tm ha−1 with the optimum and surplus doses and significantly lower amounts with the deficit dose: 20.4 tm ha−1 in LSD and 14. 0 in SD. Therefore, it is necessary to adjust the irrigation doses, since deficit irrigation significantly reduces production and the surplus does not lead to an increase with respect to the optimum, while also causing ions to leach to depth horizons, as is the case for NO3, Cl and Na+, with the consequent risk of contaminating the water table. Full article
Show Figures

Figure 1

15 pages, 1402 KiB  
Article
NADES-Assisted Extraction of Polyphenols from Coriander Seeds: A Systematic Optimization Study
by Federica Ianni, Samir Scandar, Luciano Mangiapelo, Francesca Blasi, Maria Carla Marcotullio and Lina Cossignani
Antioxidants 2023, 12(12), 2048; https://doi.org/10.3390/antiox12122048 - 27 Nov 2023
Cited by 10 | Viewed by 2472
Abstract
Coriandrum sativum L. seeds are widely recognized for their traditional use in medicine. Among the most investigated components, the terpenoid linalool and monounsaturated petroselinic acid have attracted interest for their nutritional value. Instead, minor attention was paid to the polyphenolic fraction, resulting still [...] Read more.
Coriandrum sativum L. seeds are widely recognized for their traditional use in medicine. Among the most investigated components, the terpenoid linalool and monounsaturated petroselinic acid have attracted interest for their nutritional value. Instead, minor attention was paid to the polyphenolic fraction, resulting still being incomplete today. This study aimed to develop a systematic approach in which green natural deep eutectic solvents (NADES) were combined with conventional (maceration, MAC) or non-conventional (ultrasound-assisted extraction, UAE) techniques in a one-step methodology to recover polyphenols from coriander seeds. The NADES system choline chloride–citric acid (ChCl:CA, 1:1) was firstly evaluated, coupled with MAC or UAE, and then compared with ChCl–Urea (ChCl:Ur, 1:1) and ChCl–Glucose (ChCl:Glu, 1:1) under optimal conditions (20 min extraction time). The system ChCl:Ur UAE significantly improved the extraction of chlorogenic acid and its isomer (453.90 ± 4.77 and 537.42 ± 1.27 µg/g, respectively), while the system ChCl:Glu UAE improved the extraction of protocatechuic, caffeic and p-coumaric acids (131.13 ± 6.16, 269.03 ± 4.15 and 57.36 ± 0.06 µg/g, respectively). The highest levels of rutin were obtained with ChCl:CA-based NADES when the MAC technique was applied (820.31 ± 28.59 µg/g). These findings indicate that the NADES composition could be appropriately modulated to tailor extraction towards higher levels of a desirable bioactive for further applications. Full article
Show Figures

Graphical abstract

Back to TopTop