The Role of External Factors in the Variability of the Structure of the Zooplankton Community of Small Lakes (South-East Kazakhstan)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of Study Area
2.2. Field Sampling
2.3. Laboratory Processing
2.4. Statistical Analysis
3. Results
3.1. Chemical Characteristics of Lakes
3.2. Phytoplankton
3.3. Zooplankton
3.4. Redundancy Analysis, RDA
4. Discussion
4.1. Chemical Variables
4.2. Phytoplankton
4.2.1. Species Composition and Quantitative Variables
4.2.2. Structural Variables
4.3. Zooplankton
4.3.1. Species Composition and Quantitative Variables
4.3.2. Structural Variables
4.3.3. The Influence of External Factors on the Quantitative Variables and Structure of Zooplankton Communities
4.3.4. Indicator Role of Zooplankton in Assessing the Water Quality of Water Bodies with Organic Pollution
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Meerhoff, M.; Jeppesen, E. Shallow lakes and ponds. In Encyclopedia of Inland Waters Edition; Pergamon Press: Oxford, UK, 2009; pp. 645–655. [Google Scholar]
- Biggs, J.; Fumetti, S.; Kelly-Quinn, M. The Importance of Small Water Bodies: Insights from Research. Hydrobiologia 2017, 793, 1–2. [Google Scholar]
- Scheffer, M. Alternative Attractors of Shallow Lakes. Sci. World. 2001, 1, 254–263. [Google Scholar] [CrossRef] [Green Version]
- Tranvik, L.J.; Downing, J.B.; Cotner, S.A.; Loiselle, R.G.; Striegl, T.J.; Ballatore, P.J.; Dillon, K.; Finlay, K.; FortinO, L.B.; Knoll, P.; et al. Lakes and impoundments as regulators of carbon cycling and climate. Limnol. Oceanogr. 2009, 54, 2298–2314. [Google Scholar] [CrossRef] [Green Version]
- Spoljar, M.; Drazina, T.; Sargac, J.; Kralj Borojevic, K.; Zutinic, P. Submerged macrophytes as a habitat for zooplankton development in two reservoirs of a flow–through system (Papuk Nature Park, Croatia). Intern. J. Limnol. 2012, 48, 161–175. [Google Scholar] [CrossRef] [Green Version]
- Choi, J.Y.; Jeong, K.S.; La, G.H.; Joo, G.J. Effect of removal of free–floating macrophytes on zooplankton habitat in shallow wetland. Knowl. Manag. Aquat. Ecosyst. 2014, 414, 11–22. [Google Scholar] [CrossRef] [Green Version]
- Feeley, H.B.; Kelly-Quinn, M. An evaluation of local and regional diversity of benthic macroinvertebrate communities in two small regions of Ireland and their potentialas localised refugia for certain taxonomic groups. Biol. Environ. Proc. R. Ir. Acad. 2012, 112, 43–54. [Google Scholar] [CrossRef]
- Diéguez, M.C.; Gilbert, J.J. Daphnia–rotifer interactions in Patagonian communities. Hydrobiologia 2010, 662, 189–195. [Google Scholar] [CrossRef]
- Clarke, A.; Mac Nally, R.; Bond, N.; Lake, P.S. Macroinvertebrate diversity in headwater streams: A review. Freshw. Biol. 2008, 53, 1707–1721. [Google Scholar] [CrossRef]
- Brysiewicz, A.; Sługocki, Ł.; Wesołowski, P.; Czerniawski, R. Zooplankton community structure in small ponds in relation to fish community and environmental factors. Appl. Ecol. Environ. Res. 2017, 15, 929–941. [Google Scholar] [CrossRef]
- Callanan, M.; Baars, J.R.; Kelly-Quinn, M. Macroinvertebrate communities of Irish headwater streams: Contribution to catchment biodiversity. Biol. Environ. Proc. R. Ir. Acad. 2014, 114, 143–162. [Google Scholar] [CrossRef]
- Williams, P.; Whitfield, M.; Biggs, J.; Bray, S.; Fox, G.; Nicolet, P.; Sear, D. Comparative biodiversity of rivers, streams, ditches, shallow lakes and ponds in an agricultural landscape in Southern England. Biol. Conserv. 2004, 115, 329–341. [Google Scholar] [CrossRef]
- Krupa, E.G.; Dobrokhotova, O.V.; Stuge, T.S. Fauna Calanoida (Crustacea, Copepoda) of Kazakhstan and Adjacent Territories; EtalonPrint: Almaty, Kazakhstan, 2016; p. 208. ISBN 978-601-80265-8-4. (In Russian) [Google Scholar]
- Silva, W.M.; Matsumura-tundisi, T. Taxonomy, ecology, and geographical distribution of the species of the genus Thermocyclops Kiefer, 1927 (Copepoda, Cyclopoida) IN SÃo Paulo state, Brazil, with description of a new species. Braz. J. Biol. 2005, 65, 521–531. [Google Scholar] [CrossRef] [PubMed]
- De Bie, T.; Declerck, S.; Martens, K.; DeMeester, L.L. A comparative analysis of cladoceran communities from different water body types: Patterns in community composition and diversity. Hydrobiologia 2008, 597, 19–27. [Google Scholar] [CrossRef]
- Taizhanov, E.B.; Kuzmetov, A.R.; Krupa, E.G.; Stuge, T.S.; Mirabdullayev, I.M. Fauna of Cyclops of Kazakhstan (Crustacea, Copepoda, Cyclopidae). In Proceedings of the Materials of the International Scientific Practical Conference (Urgent Problems of Ecology and Nature Use in Kazakhstan and Adjacent Territories 2007), Almaty, Kazakhstan, 12–15 November 2007; pp. 400–402. (In Russian). [Google Scholar]
- Stepanova, L.A. Arctodiaptomus (Arctodiaptomus) naurzumensis n. sp. (Copepoda, Calanoida) from Kazakhstan. Hydrobiologia 1994, 288, 129–134. [Google Scholar] [CrossRef]
- Krupa, E.G.; Stuge, T.S. New species of the genus Gigantodiaptomus (Copepoda, Calanoida) from Northeastern Kazakhstan. News NAS RK Ser. Biol. Med. 2007, 1, 18–22. (In Russian) [Google Scholar]
- Bolpagni, R.; Bartoli, M.; Viaroli, P. Species and functional plant diversity in a heavily impacted riverscape: Implications for threatened hydro–hygrophilous flora conservation. Limnologica 2013, 43, 230–238. [Google Scholar] [CrossRef]
- Hunter, M.L.; Acuña, V.; Bauer, D.M.; Bell, K.P.; Calhoun, A.J.K.; Felipe-Lucia, M.R.; Fitzsimons, J.A.; González, E.; Kinnison, M.; Lindenmayer, D.; et al. Conserving small natural features with large ecological roles: A synthetic overview. Biol. Conserv. 2017, 211, 88–95. [Google Scholar] [CrossRef]
- Maynou, X.; Martín, R.; Aranda, D. The role of small secondary biotopes in a highly fragmented landscape as habitat and connectivity providers for dragonflies (Insecta: Odonata). J. Insect Conserv. 2017, 21, 517–530. [Google Scholar] [CrossRef]
- Kaufman, Z.S. The Origin of Freshwater Biota; The Karelian Science Center of RAS: Petrozavodsk, Russia, 2005; pp. 150–220. [Google Scholar]
- Krupa, E.G. Assessment of Changes in the Structure of Zooplankton Communities to Infer Water Quality of the Caspian Sea. Diversity 2019, 11, 122. [Google Scholar] [CrossRef] [Green Version]
- Scheffer, M.; Geest, G.J.; Zimmer, K.; Jeppesen, E.; Sondergaard, M.; Butler, M.G.; Hanson, M.A.; Declerck, S.; DeMeester, L. Small habitat size and isolation can promote species richness: Second–order effects on biodiversity in shallow lakes and ponds. Oikos 2006, 112, 227–231. [Google Scholar] [CrossRef]
- Andronikova, I.N. Structural and Functional Organization of Zooplankton of Lake Ecosystems of Various Trophic Types; Nauka: St. Petersburg, Russia, 1996; p. 189. (In Russian) [Google Scholar]
- Krupa, E.; Barinova, S.; Romanova, S.; Aubakirova, M.; Ainabaeva, N. Planktonic Invertebrates in the Assessment of Long-Term Change in Water Quality of the Sorbulak Wastewater Disposal System (Kazakhstan). Water 2020, 12, 3409. [Google Scholar] [CrossRef]
- Ismail, A.H.; Adnan, A.A. Zooplankton Composition and Abundance as Indicators of Eutrophication in Two Small Man-made Lakes. Trop. Life Sci. Res. 2016, 27, 31–38. [Google Scholar] [CrossRef] [PubMed]
- Søndergaard, M.; Jeppesen, E.; Jensen, J.P. Pond or lake: Does it make any difference? Arch. Hydrobiol. 2005, 162, 143–165. [Google Scholar] [CrossRef]
- Mirabdullayev, I.M.; Sharapova, L.I.; Stuge, T.S.; Kuzmetov, A.R. New records of Microcyclops afghanicus Lindberg, 1948 from Kazakhstan, Central Asia (Copepoda, Cyclopoida). Crustaceana 1997, 70, 849–854. [Google Scholar]
- Krupa, E.G.; Barinova, S.S.; Assylbekova, S.Z.; Isbekov, K.B. Structural Indicators of Zooplankton of The Shardara Reservoir (Kazakhstan) And the Main Influencing Factors. Turk. J. Fish. Aquat. Sci. 2018, 18, 659–669. [Google Scholar] [CrossRef]
- Barinova, S.; Krupa, E.; Tsoy, V.; Ponamareva, L. The Application of phytoplankton in ecological assessment of the Balkhash Lake (Kazakhstan). Appl. Ecol. Environ. Res. 2018, 16, 2089–2111. [Google Scholar] [CrossRef]
- Krupa, E.G.; Barinova, S.S.; Romanova, S.M. Ecological Mapping in Assessing the Impact of Environmental Factors on the Aquatic Ecosystem of the Arys River Basin, South Kazakhstan. Diversity 2019, 11, 239. [Google Scholar] [CrossRef] [Green Version]
- Krupa, E.G.; Barinova, S.S.; Romanova, S.M. Zooplankton size structure in the Kolsay mountain lakes and Its Relationships with Environmental Factors. Water Resour. 2019, 46, 403–404. [Google Scholar] [CrossRef]
- Krupa, E.G.; Grishaeva, O. Impact of water salinity on long–term dynamics and spatial distribution of benthic invertebrates in the Small Aral Sea. Int. J. Oceanogr. Hydrobiol. 2019, 48, 355–367. [Google Scholar] [CrossRef]
- Krupa, E.G. Species composition and seasonal dynamics of the abundance and biomass of lower crustaceans in the pond of the Central Park of Culture and Rest of Almaty. News NAS RK Ser. Biol. Med. 1998, 3, 72–75. (In Russian) [Google Scholar]
- Troshina, T.T. Biodiversity and structural characteristics of summer zooplankton in Almaty region (July and August 2010, 2012). News NAS RK Ser. Biol. Med. 2013, 3, 13–19. (In Russian) [Google Scholar]
- Aubakirova, M.O. About zooplankton of small water bodies of Almaty city and Almaty region. In Proceedings of the Materials of the International Conference of Students and Young Scientists (Farabi alemi 2019), Almaty, Kazakhstan, 9–10 April 2019; pp. 8–9. (In Russian). [Google Scholar]
- Uteshev, A.S. (Ed.) The Climate of Kazakhstan; Hydrometeorological Publishing House Leningrad: Leningrad, Russia, 1959; p. 360. (In Russian) [Google Scholar]
- Cherednichenko, A.; Cherednichenko, V. Tropopause and Maximum Wind Over the Territory of Kazakhstan; AlFarabi Kazakh National University Litagent: Almaty, Kazakhstan, 2017; p. 515. (In Russian) [Google Scholar]
- Abakumov, V.A. (Ed.) Guide on Methods for Hydrobiological Analysis of Surface Waters and Bottom Sediments; Gidrometeoizdat: Leningrad, Russia, 1983; p. 239. (In Russian) [Google Scholar]
- Semenov, A.D. (Ed.) Guideline for Chemical Analysis of Surface Water; Gidrometeoizdat: Leningrad, Russia, 1977; p. 541. (In Russian) [Google Scholar]
- Fomin, G.S. Water. Control of Chemical, Bacterial and Radiation Safety According to International Standards; NGO “Alternative”: Moscow, Russia, 2000; p. 618. (In Russian) [Google Scholar]
- Kiselev, I.A. Research methods of plankton. In Life of the Fresh Water of the USSR; Pavlovsky, E.N., Zhadin, V.I., Eds.; Academy of Sciences: Moscow, Russia; Leningrad, Russia, 1956; pp. 188–253. (In Russian) [Google Scholar]
- Hollerbach, M.M.; Kosinskaya, E.K.; Polyansky, V.I. Determinant for Freshwater Algae of the USSR. The Blue–Green Algae; Soviet Science: Moscow, Russia, 1953; p. 654. (In Russian) [Google Scholar]
- Matvienko, A.M. Determinant for Freshwater Algae of the USSR. Golden Algae; Soviet Science: Moscow, Russia, 1954; p. 189. (In Russian) [Google Scholar]
- Moshkova, N.A.; Hollerbah, M.M. Determinant for Freshwater Algae of the USSR. Green Algae. Class Ulotrichous. Order Ulotrichous; Soviet Science: Moscow, Russia, 1986; p. 361. (In Russian) [Google Scholar]
- Palamar-Mordvintseva, G.M. Determinant to Freshwater Algae of the USSR. Green Algae. Class Conjugates. Order Desmid; Soviet Science: Moscow, Russia, 1982; p. 621. (In Russian) [Google Scholar]
- Popova, T.G. Determinant to Freshwater algae of the USSR. Euglena algae; Soviet Science: Moscow, Russia, 1955; p. 213. (In Russian) [Google Scholar]
- Zabelina, M.M.; Kiselev, I.A.; ProshkinaLavrenko, A.I.; Sheshukova, V.S. Determinant for Freshwater Algae USSR. Diatoms; Soviet Science: Moscow, Russia, 1951; p. 622. (In Russian) [Google Scholar]
- Kutikova, L.A. Rotifers of the Fauna of the USSR.; Science: Leningrad, Russia, 1964; p. 744. (In Russian) [Google Scholar]
- Orlova-Bienkowskaja, M.Y. Cladocera: Anomopoda. Daphniidae: Genus Simocephalus; Backhuys Publishers: Leiden, The Netherlands, 2001; p. 130. [Google Scholar]
- Manuilova, E.F. Cladocerans of the Fauna of the USSR; Nauka: Moscow, Russia, 1964; p. 328. (In Russian) [Google Scholar]
- Rylov, V.M. Fauna of the USSR. Crustaceans. Freshwater Cyclopoida; Nauka: Moscow, Russia, 1948; p. 312. (In Russian) [Google Scholar]
- Magurran, E. Ecological Diversity and Its Measurement; Mir: Moscow, Russia, 1998; p. 184. ISBN 5-03-002404-2. (In Russian) [Google Scholar]
- Shitikov, V.K.; Rosenberg, G.S.; Zinchenko, T.D. Quantitative Hydroecology: Methods of Systemic Identification; Institute of Ecology of the Volga Basin of the Russian Academy of Sciences: Togliatti, Russia, 2003; p. 463. ISBN 5-93424-109-5. (In Russian) [Google Scholar]
- Clarke, K.R.; Gorley, R.N. PRIMER v5: User Manual/Tutorial; PRIMER-E Ltd. Press: Plymouth, UK, 2001. [Google Scholar]
- McAleece, N.; Lambshead, J.; Patterson, G.; Gage, J. BioDiversity Pro, Version 2; The Natural History Museum, London and The Scottish Association of Marine Science: Oban, UK, 1997. [Google Scholar]
- Love, J.; Selker, R.; Marsman, M.; Jamil, T.; Dropmann, D.; Verhagen, A.J.; Ly, A.; Gronau, Q.F.; Smira, M.; Epskamp, S.; et al. JASP: Graphical statistical software for common statistical designs. J. Stat. Softw. 2019, 88, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Šmilauer, P.; Lepš, J. Multivariate Analysis of Ecological Data Using Canoco 5; Cambridge University Press: Cambridge, UK, 2014; p. 527. [Google Scholar]
- Guseva, T.V. Hydrochemical Variables of the State of the Environment; Social and Environmental Union: Moscow, Russia, 2002; p. 148. (In Russian) [Google Scholar]
- Catalan, J.; Camarero, L.; Felip, M.; Pla, S.; Ventura, M.; Buchaca, T.; De Quijano, D.D. High mountain lakes: Extreme habitats and witnesses of environmental changes. Limnetica 2006, 25, 551–584. [Google Scholar]
- Moiseenko, T.I.; Skjelkvåle, A.D.; Gashkina, B.L.; Shalabodov, N.A.; Khoroshavin, V.Y. Water chemistry in small lakes along a transect from boreal to arid ecoregions in European Russia: Effects of air pollution and climate change. Appl. Geochem. 2013, 28, 69–79. [Google Scholar] [CrossRef]
- Toleuzhanova, A.T. Phytoplankton of Tavolzhan Lake (North Kazakhstan). Mong. Acad. Sci. 2013, 10, 220–223. (In Russian) [Google Scholar]
- Ongun Sevindik, T.; Tunca, H.; Gönülol, A.; Yildirim Gürsoy, N.; Küçükkaya, Ş.; Durgut Kinali, Z. Phytoplankton dynamics and structure, and ecological status estimation by the Q assemblage index: A comparative analysis in two shallow Mediterranean lakes. Turk. J. Bot. 2017, 41, 25–36. [Google Scholar] [CrossRef]
- Pasztaleniec, A.; Poniewozik, M. Phytoplankton based assessment of the ecological status of four shallow lakes (Eastern Poland) according to Water Framework Directive—A comparison of approaches. Limnologica 2010, 40, 251–259. [Google Scholar] [CrossRef] [Green Version]
- Silvoso, J.; Izaguirrea, I.; Allende, L. Picoplankton structure in clear and turbid eutrophic shallow lakes: A seasonal study. Limnologica 2011, 41, 181–190. [Google Scholar] [CrossRef] [Green Version]
- Barinova, S.; Krupa, E.; Romanova, S. The role of planktonic algae in the ecological assessment of storage-reservoirs of the Ile-Balkhash basin (Kazakhstan). Transylv. Rev. Syst. Ecol. Res. Wetl. Divers. 2018, 20, 1–14. [Google Scholar]
- Borics, G.; Nagy, L.; Miron, S.; Grigorszky, I.; László-Nagy, Z.; Lukács, B.; G-Tóth, L.; Várbíro, G. Which factors affect phytoplankton biomass in shallow eutrophic lakes? Hydrobiologia 2013, 714, 93–104. [Google Scholar] [CrossRef] [Green Version]
- Van Ginkel, C.E.; Hohls, B.C.; Vermaak, E.A. Ceratium hirundinella (O.F. Muller) bloom in Hartbeespoort Dam, South Africa. Water SA 2001, 27, 269–276. [Google Scholar] [CrossRef] [Green Version]
- Tomec, M.; Ternjej, I.; Kerovec, M.; Teskeredzic, E.; Meštrov, M. Plankton in the oligotrophic Lake Vrana (Croatia). Biol. Sect. Bot. 2002, 57, 579–588. [Google Scholar]
- Grigorszky, I.; Padisák, J.; Borics, G.; Schitchen, C.; Borbély, G. Deep chlorophyll maximum by Ceratium hirundinella (O.F. Muller) Bergh in a shallow oxbow in Hungary. Hydrobiologia 2003, 506–509, 209–212. [Google Scholar] [CrossRef]
- Jeppesen, E.; Jensen, J.P.; Sondergaard, M.; Lauridsen, T.; Landkildehus, F. Trophic structure, species richness and biodiversity in Danish lakes. Changes along a phosphorus gradient. Freshwater Biol. 2000, 45, 201–218. [Google Scholar] [CrossRef]
- Stefanidis, K.; Parastergiadou, E. Influence of hydrophyte abundance on the spatial distribution of zooplankton in selected lakes in Greece. Hydrobiology 2010, 656, 55–65. [Google Scholar] [CrossRef]
- Czerniawski, R.; Domagała, J. Reduction of zooplankton communities in small lake outlets in relation to abiotic and biotic factors. Ocean Hydro. 2013, 42, 123–131. [Google Scholar] [CrossRef]
- Ferrara, O.; Vagaggini, B.; Margaritora, F. Zooplankton abundance and diversity in Lake Bracciano, Latium, Italy. J. Limnol. 2002, 61, 169–175. [Google Scholar] [CrossRef]
- Degefu, F.; Schagerl, M. Zooplankton abundance, species composition and ecology of tropical high–mountain crater Lake Wonchi, Ethiopia. J. Limnol. 2015, 74, 324–334. [Google Scholar] [CrossRef]
- John, B.R.; Arp, C.D.; Claudia, E.T.; Benjamin, M.J.; Matthew, S.W.; Thomas, R.R.; Erin, E.S.; David, M.O.; Kyle, C.S. Potential shifts in zooplankton community structure in response to changing ice regimes and hydrologic connectivity. Arct. Antarct. Alp. Res. 2019, 51, 327–345. [Google Scholar]
- Adamczuk, M.; Kornijów, R. Crustacean communities as food resources for fish in shallow Polesie lakes with contrasting development of submerged macrophytes. Ocean Hydrol. 2011, 40, 11–18. [Google Scholar] [CrossRef]
- Jeppesen, E.; Jensen, J.P.; Søndergaard, M.; Lauridsen, T.; Pedersen, L.J.; Jensen, L. Top–down control in freshwater lakes: The role of fish, submerged macrophytes and water depth. Hydrobiologia 1997, 343, 151–164. [Google Scholar] [CrossRef]
- Williams, A.E.; Moss, B. Effect of different fish species and biomass on plankton interactions in a shallow lake. Hydrobiologia 2003, 491, 331–346. [Google Scholar] [CrossRef]
- Alain, P.D.; Brenda, J.H. Warm spring and summer water temperatures in small eutrophic lakes of the Canadian prairies: Potential implications for phytoplankton and zooplankton. J. Plankton Res. 2009, 31, 489–502. [Google Scholar]
- Hu, B.; Hu, X.; Nie, X.; Zhang, X.; Wu, N.; Hong, Y.; Qin, H. Seasonal and inter-annual community structure characteristics of zooplankton driven by water environment factors in a sub–lake of Lake Poyang, China. PeerJ 2019, 7, e7590. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuczynska-Kippen, N.; Joniak, T. Zooplankton diversity and macrophyte biometry in shallow water bodies of various trophic state. Hydrobiologia 2016, 774, 39–51. [Google Scholar] [CrossRef] [Green Version]
- Ferrão-Filho, A.S.; Domingos, P.; Sandra, M.F.O.; Azevedo, O.; Domingo, P. Influences of a Microcystis aeruginosa Kotznig bloom on zooplankton populations in Jacarepaguli Lagoon (Rio de Janeiro, Brazil). Limnologica 2002, 32, 295–309. [Google Scholar] [CrossRef] [Green Version]
- Rosińska, J.; Romanowicz-Brzozowska, W.; Kozak, A. Zooplankton changes during bottom–up and top–down control due to sustainable restoration in a shallow urban lake. Env. Sci. Pollut Res. 2019, 26, 19575–19587. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bockwoldt, K.A.; Nodine, E.R.; Mihuc, T.B.; Shambaugh, A.D.; Stockwell, J.D. Reduced Phytoplankton and Zooplankton Diversity Associated with Increased Cyanobacteria in Lake Champlain, USA. J. Contemp. Water Res. Educ. 2017, 160, 100–118. [Google Scholar] [CrossRef] [Green Version]
- Horn, W. Investigations into the Food Selectivity of the Planktic Crustaceans Daphnia hyalina, Eudiaptomus gracilis and Cyclops vicinus. Hydrobiology 1985, 70, 603–612. [Google Scholar]
- Zhang, M.; Smyth, R.A.; Zhu, W. Spatial distribution and filtering efficiency of Daphnia in a deep subtropical reservoir. J. Ocean. Limnol. 2019, 37, 1277–1288. [Google Scholar] [CrossRef]
- Hopp, U.; Maier, G. Survival and development of five species of cyclopoid copepods in relation to food supply: Experiments with algal food in a flow-through system. Freshw. Biol. 2005, 50, 1454–1463. [Google Scholar]
- Fileto, C.; Arcifa, M.S.; Henry, R.; Ferreira, A.R. Effects of temperature, sestonic algae features, and seston mineral content on cladocerans of a tropical lake. J. Limnol. 2010, 46, 135–147. [Google Scholar] [CrossRef] [Green Version]
- Masclaux, H.; Bec, A.; Kainz, M.J.; Desvilettes, C.; Jouve, L.; Bourdier, G. Combined effects of food quality and temperature on somatic growth and reproduction of two freshwater cladocerans. Limnol. Oceanogr. 2009, 54, 1323–1332. [Google Scholar] [CrossRef]
- Ernst, A.; Deicher, M.; Peter, M.; Herman, U. Nitrate and Phosphate Affect Cultivability of Cyanobacteria from Environments with Low Nutrient Levels. Wollenzien Appl. Environ. Microbiol. 2005, 71, 3379–3383. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ger, K.A.; Urrutia-Cordero, P.; Frost, P.C.; Hansson, L.A.; Sarnelle, O.; Wilson, A.E.; Lurling, M.; Hansson, L. The interaction between cyanobacteria and zooplankton in a more eutrophic world. Harm. Algae 2006, 54, 128–144. [Google Scholar] [CrossRef] [PubMed]
- Landa, G.G.; Barbosa, F.A.; Rietzler, A.C.; Maia-Barbosa, P.M. Thermocyclops decipiens (Kiefer, 1929) (Copepoda, Cyclopoida) as Indicator of Water Quality in the State of Minas Gerais, Brazil. Braz. Arch. Biol. Technol. 2007, 50, 695–705. [Google Scholar] [CrossRef] [Green Version]
- Rietzler, A.C.; Espíndola, E.L. Microcystis as a food source for copepods in a subtropical eutrophic reservoir. Verh. Intern. Ver. Limnol. 1998, 26, 2001–2005. [Google Scholar] [CrossRef]
- DeMott, W.R.; Gulati, R.D.; Donk, E.V. Daphnia food limitation in three hyperhypereutrophic Dutch lakes: Evidence for exclusion of large–bodied species by interfering filaments of cyanobacteria. Limnol. Oceanogr. 2001, 46, 2054–2060. [Google Scholar] [CrossRef]
- Jang, M.H.; Ha, G.J.; Joo, N.T. Toxin production of cyanobacteria is increased by exposure to zooplankton. Freshwat. Biol. 2008, 48, 1540–1550. [Google Scholar] [CrossRef]
- Frey, D.G. The penetration of cladocerans into saline waters. Hydrobiologia 1993, 267, 233–248. [Google Scholar] [CrossRef]
- Bielańska-Grajner, I.; Cudak, A. Effects of Salinity on Species Diversity of Rotifers in Anthropogenic Water Bodies. Pol. J. Environ. Stud. 2014, 23, 27–34. [Google Scholar]
- Ignoffo, T.R.; Bollens, S.M.; Bochdansky, A.B. The effects of thin layers on the vertical distribution of the rotifer, Brachionus plicatilis. J. Exp. Mar. Biol. Ecol. 2005, 316, 167–181. [Google Scholar] [CrossRef]
- Alimov, A.F. Changes in the structure of animal communities accompanying eutrophication and pollution of aquatic ecosystems, Dokl. Biol. Sci. 2010, 433, 249–251. [Google Scholar]
- Whittington, J.; Sherman, B.; Green, D. Growth of Ceratium hirundinella in a subtropical Australian reservoir: The role of vertical migration. J. Plankton Res. 2000, 22, 1025–1045. [Google Scholar] [CrossRef] [Green Version]
- Sládecěk, V. Rotifers as indicators of water quality. Hydrobiologia 1983, 100, 169–201. [Google Scholar] [CrossRef]
- Park, G.S.; Marshall, H.G. Estuarine relationships between zooplankton community structure and trophic gradients. J. Plankton Res. 2000, 22, 121–135. [Google Scholar] [CrossRef]
- Turton, C.L.; McAndrews, J.H. Rotifers in second millennium sediment of Crawford Lake, Ontario, Canada. Rev. Palaeobot. Palynol. 2006, 141, 1–6. [Google Scholar] [CrossRef]
- Zakaria, H.Y.; Hussien, A.M.; Flower, R. Environmental assessment of spatial distribution of zooplankton community in Lake Manzalah, Egypt. Acta Adriatica 2007, 48, 161–172. [Google Scholar]
- Arndt, H. Dynamics and production of a natural population of Brachionus plicatilis (Rotatoria, Monogononta) in a eutrophicated inner coastal water of the Baltic. Kiel. Meeresforsch. Sonderh. 1988, 6, 147–153. [Google Scholar]
- Xie, Z.; Xiao, H.; Tang, X.; Lu, K.; Cai, H. Interactions between red tide microalgae and herbivorous zooplankton: Effects of two bloom–forming species on the rotifer Brachionus plicatilis (O.F. Muller). Hydrobiologia 2008, 600, 237–245. [Google Scholar] [CrossRef]
- Zou, Y.; Yamasaki, Y.; Matsuyama, Y.; Yamaguchi, K.; Honjo, T.; Oda, T. Possible involvement of hemolytic activity in the contact–dependent lethal effects of the dinoflagellate Karenia mikimotoi on the rotifer Brachionus plicatilis. Harm. Algae 2010, 9, 367–373. [Google Scholar] [CrossRef] [Green Version]
- Krupa, E.; Romanova, S.; Berkinbaev, G.; Yakovleva, N.; Sadvakasov, E. Zooplankton as Indicator of the Ecological State of Protected Aquatic Ecosystems (Lake Borovoe, Burabay National Nature Park, Northern Kazakhstan). Water 2020, 12, 2580. [Google Scholar] [CrossRef]
- Kimambo, O.N.; Gumbo, J.R.; Chikoore, H. The occurrence of cyanobacteria blooms in freshwater ecosystems and their link with hydro-meteorological and environmental variations in Tanzania. Heliyon 2019, 5, 1–23. [Google Scholar] [CrossRef] [Green Version]
- Sikora, A.; Dawidowicz, P. Breakage of cyanobacterial filaments by small- and large-sized Daphnia: Are there any temperature-dependent differences? Hydrobiologia 2017, 798, 119–126. [Google Scholar] [CrossRef]
Lake Name | Altitude above Sea Level, m | Length, km | Maximum Width, km | Water Area, km2 | Maximum Depth, m | Tempe-rature, °C | Secchi, m | Macro-phyte Cover, % |
---|---|---|---|---|---|---|---|---|
Ali | 557.0 | 0.2 | 0.2 | 0.2 | 4.0 | 24.0 | 2.0 | 50.0 |
Pervomaika | 672.0 | 3.0 | 0.2 | 0.2 | 6.0 | 24.0 | 2.0 | 50.0 |
Derevyannoe | 522.0 | 1.2 | 0.8 | 0.8 | 10.0 | 23.0 | 2.0 | 30.0 |
Altynkol | 639.0 | 0.9 | 0.4 | 0.4 | 4.0 | 24.0 | 2.0 | 30.0 |
Kosagash | 623.0 | 1.0 | 0.3 | 0.3 | 4.0 | 24.0 | 1.0 | 30.0 |
Malaya Podkova | 528.0 | 2.8 | 0.2 | 0.2 | 3.5 | 27.0 | 2.0 | 30.0 |
Bolshaya Podkova | 529.0 | 3.7 | 0.4 | 0.4 | 2.5 | 24.0 | 1.0 | 35.0 |
Lower Kolsay | 2257.0 | 1.6 | 0.4 | 0.4 | 36.0 | 16.0 | 5.0 | 0.0 |
Middle Kolsay | 2331.0 | 1.1 | 0.7 | 0.7 | 51.0 | 13.0 | 4.0 | 0.0 |
Lake | Mo-nth * | TDS mg/dm3 | pH | PI mg O/dm3 | Concentration, mg/dm3 | |||
---|---|---|---|---|---|---|---|---|
NO2-N | NO3-N | NH4-N | PO4 | |||||
Ali | 1 | 419.4 ± 15.0 | 7.3 ± 0.1 | 10.2 ± 0.1 | 0.001 ± 0.001 | 0.7 ± 0.1 | 0.07 ± 0.01 | 0.07 ± 0.01 |
2 | 395.8 ± 12.0 | 7.8 ± 0.1 | 8.4 ± 0.01 | 0.001 ± 0.001 | 0.3 ± 0.1 | 0.01 ± 0.00 | 0.09 ± 0.01 | |
Pervomaika | 1 | 434.0 ± 15.5 | 7.5 ± 0.1 | 10.1 ± 0.1 | 0.030 ± 0.001 | 0.6 ± 0.4 | 0.06 ± 0.01 | 0.07 ± 0.01 |
2 | 511.6 ± 16.8 | 7.7 ± 0.1 | 10.1 ± 0.1 | 0.030 ± 0.001 | 0.7 ± 0.2 | 0.01 ± 0.00 | 0.10 ± 0.02 | |
Derevyannoe | 1 | 576.4 ± 16.2 | 7.3 ± 0.1 | 9.2 ± 0.2 | 0.006 ± 0.001 | 0.4 ± 0.2 | 0.01 ± 0.00 | 0.04 ± 0.01 |
2 | 571.3 ± 16.7 | 8.0 ± 0.1 | 7.5 ± 0.1 | 0.007 ± 0.001 | 0.6 ± 0.4 | 0.01 ± 0.00 | 0.03 ± 0.01 | |
Altynkol | 1 | 292.9 ± 10.7 | 7.6 ± 0.1 | 9.4 ± 0.2 | 0.270 ± 0.020 | 0.3 ± 0.1 | 0.001 ± 0.000 | 0.10 ± 0.01 |
2 | 260.3 ± 10.7 | 7.9 ± 0.1 | 9.6 ± 0.2 | 0.015 ± 0.001 | 0.6 ± 0.4 | 0.005 ± 0.003 | 0.13 ± 0.02 | |
Kosagash | 1 | 331.9 ± 11.3 | 7.0 ± 0.1 | 9.6 ± 0.2 | 0.010 ± 0.001 | 0.4 ± 0.2 | 0.005 ± 0.003 | 0.18 ± 0.02 |
2 | 346.8 ± 10.9 | 8.0 ± 0.1 | 8.5 ± 0.1 | 0.130 ± 0.010 | 0.8 ± 0.6 | 0.011 ± 0.002 | 0.08 ± 0.01 | |
Malaya Podkova | 1 | 302.8 ± 10.4 | 7.8 ± 0.1 | 9.1 ± 0.2 | 0.015 ± 0.001 | 0.3 ± 0.1 | 0.041 ± 0.004 | 0.15 ± 0.02 |
2 | 403.0 ± 14.2 | 7.9 ± 0.1 | 10.2 ± 0.1 | 0.007 ± 0.001 | 0.3 ± 0.1 | 0.001 ± 0.001 | 0.13 ± 0.02 | |
Bolshaya Podkova | 1 | 319.2 ± 11.3 | 7.0 ± 0.1 | 8.9 ± 0.1 | 0.007 ± 0.001 | 0.3 ± 0.1 | 0.005 ± 0.003 | 0.30 ± 0.20 |
2 | 429.8 ± 15.2 | 7.0 ± 0.1 | 10.2 ± 0.1 | 0.010 ± 0.002 | 0.4 ± 0.2 | 0.001 ± 0.001 | 0.09 ± 0.02 | |
Lower Kolsay | 1 | 188.8 ± 2.0 | 7.9 ± 0.2 | 0.9 ± 0.1 | 0.008 ± 0.001 | 1.3 ± 0.4 | 0.014 ± 0.003 | 0.02 ± 0.01 |
2 | 188.6 ± 2.0 | 8.3 ± 0.1 | No data | 0.002 ± 0.001 | 0.1 ± 0.0 | 0.010 ± 0.003 | 0.08 ± 0.01 | |
Middle Kolsay | 1 | 70.0 ± 0.4 | 7.3 ± 0.1 | 0.8 ± 0.1 | 0.031 ± 0.002 | 1.1 ± 0.3 | 0.38 ± 0.02 | 0.019 ± 0.001 |
2 | 184.6 ± 1.9 | 8.0 ± 0.1 | No data | 0.001 ± 0.001 | 0.1 ± 0.0 | 0.009 ± 0.007 | 0.030 ± 0.002 |
Taxon Name | * Lakes | ||||||||
---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | |
Bacillariophyta | |||||||||
Encyonema leibleinii (C.Agardh) W.J.Silva, R.Jahn, T.A.V.Ludwig, & M.Menezes | + | + | − | − | − | − | − | − | − |
Cyclotella ocellata Pantocsek | − | − | − | − | − | − | − | + | + |
Cymbella lanceolata (C. Agardh) Kirchner | + | + | + | + | + | + | + | + | + |
Navicula minima Grunow | + | − | − | − | + | − | − | − | − |
Navicula radiosa Kützing | + | − | − | − | − | − | − | − | − |
Aneumastus tusculus (Ehrenberg) D.G.Mann & A.J.Stickle | + | − | − | − | − | − | − | − | − |
Ulnaria acus (Kützing) Aboal in Aboal | + | + | + | + | + | + | + | − | − |
Odontidiumhyemale (Roth) Kützing | − | − | − | − | − | − | − | + | + |
Diatoma vulgaris Bory | + | + | − | + | + | − | + | − | − |
Amphora ovalis (Kützing) Kützing | − | − | + | + | + | + | − | − | + |
Achnanthidiumminutissimum (Kützing) Czarnecki | − | − | − | − | − | − | − | − | + |
Cyclotella meneghiniana Kützing | − | − | + | − | − | + | − | + | + |
Cyclotella kuetzingiana Thwaites | − | − | − | − | − | − | − | + | + |
Cyclotella planctonica Brunnthaler | − | − | − | − | − | − | − | − | + |
Cyclotella sp. | − | − | − | − | − | − | − | − | + |
Gomphonema acuminatum var. longiceps (Ehrenberg) N.Abarca & R.Jahn | − | − | − | − | − | − | − | + | − |
Cocconeis placentula Ehrenberg | − | − | − | − | − | − | − | − | + |
Fragilaria capucina var. vaucheriae (Kützing) Lange-Bertalot | − | − | − | − | − | − | − | − | + |
Cymbella ventricosa (C.Agardh) C.Agardh | − | − | − | − | − | − | − | − | + |
Lindavia kurdica (Håkansson) T.Nakov | − | − | + | − | − | + | + | + | + |
Aulacoseira granulata (Ehrenberg) Simonsen | − | − | + | − | − | − | − | − | − |
Epithemia gibba (Ehrenberg) Kützing | − | + | + | + | + | − | − | − | − |
Mastogloia elliptica (C.Agardh) (C.Agardh) Cleve | − | − | − | + | − | − | − | − | − |
Navicula rhynchocephala Kützing | − | − | − | + | − | + | − | − | − |
Synedra capitata var. gracilis Poretzky ex Proschkina-Lavrenko | − | − | − | + | − | − | − | − | − |
Synedra ulna var. ulna (Nitzsch) Ehrenberg | − | − | − | − | + | − | + | + | − |
Gomphonema constrictum Ehrenberg | − | − | − | − | + | − | − | − | − |
Eunotia lunaris (Ehrenberg) Grunow | − | − | − | − | + | − | − | − | − |
Urosolenia longiseta (O.Zacharias) Edlund & Stoermer | − | − | − | − | + | − | − | − | − |
Craticula ambigua (Ehrenberg) D.G.Mann | − | − | − | + | − | + | − | − | − |
Navicula oblonga (Kützing) Kützing | − | − | − | − | − | + | − | − | − |
Navicula exigua W.Gregory | − | − | − | − | − | − | − | − | + |
Nitzschiapalea (Kützing) W.Smith | − | − | − | − | − | + | − | − | − |
Gomphonema sphaerophorum Ehrenberg | − | − | − | − | − | − | − | − | + |
Meridioncirculare (Greville) C.Agardh | − | − | − | − | − | − | − | − | + |
Achnanthes sp. | − | − | − | − | + | − | − | − | − |
Asterionella formosa Hassall | − | − | − | − | − | − | − | − | + |
Chlorophyta | |||||||||
Nephrocytium lunatum West | + | + | − | − | + | − | − | − | − |
Kirchneriella lunaris (Kirchner) Möbius | + | − | − | + | − | − | − | − | − |
Monoraphidium contortum (Thuret) Komárková-Legnerová | + | − | + | + | + | + | − | − | − |
Scenedesmus bijugatus var. bijugatus Kützing | + | + | + | + | + | + | + | − | − |
Tetraëdron minimum (A.Braun) Hansgirg | + | + | − | + | + | − | + | − | − |
S. quadricauda var. quadricauda (Turpin) Brébisson | − | + | + | + | + | + | − | − | − |
Scenedesmus arcuatus (Lemmermann) Lemmermann | + | − | − | − | − | − | − | − | − |
Staurastrum tetracerum Ralfs ex Ralfs | + | + | + | − | + | + | − | − | − |
Monoraphidium minutum (Nägeli) Komárková-Legnerová | + | − | − | + | + | − | − | − | − |
Tetraëdron minutissimum Korshikov | − | + | − | + | + | + | − | − | − |
Closteriopsis longissima (Lemmermann) Lemmermann | − | + | − | + | + | − | − | + | − |
Ankistrodesmus densus Korshikov | − | − | − | − | − | − | + | − | − |
Sphaerocystis planctonica (Korshikov) Bourrelly | − | − | − | − | − | − | − | + | − |
Coelastrum microporum Nägeli | − | + | − | + | − | − | − | − | − |
Monactinus simplex (Meyen) Corda | − | − | + | − | − | − | − | − | − |
Coelastrum microporum Nägeli | − | − | − | + | − | − | − | − | − |
Pediastrum duplex Meyen | − | − | − | + | − | − | − | − | − |
Charophyta | |||||||||
Cosmarium sp. | + | − | − | − | − | − | − | − | − |
Cyanobacteria | |||||||||
Snowella rosea (J.W.Snow) Elenkin | − | + | − | − | − | − | − | − | − |
Merismopedia tranquilla (Ehrenberg) Trevisan | − | − | + | + | + | + | + | − | − |
Microcystis flosaquae (Wittrock) Kirchner | − | − | + | − | − | − | − | − | − |
Gomphosphaeria aponina Kützing | − | − | − | + | − | + | − | − | − |
Snowella lacustris (Chodat) Komárek & Hindák | − | − | + | + | − | + | − | − | − |
Anathece clathrata (West & G.S.West) Komárek, Kastovsky & Jezberová | − | − | − | − | − | − | − | + | − |
Oscillatoria sp. | + | − | − | − | − | − | − | − | − |
Microcystis pulverea f. raceformis (Nygaard) Hollerbach | − | − | − | + | + | + | − | − | − |
Anabaena flosaquae Brébisson ex Bornet & Flauhault 66 | − | − | − | − | + | − | − | − | − |
Miozoa | |||||||||
Peridiniopsis quadridens (F.Stein) Bourrelly | + | + | + | + | + | + | + | − | − |
Peridinium cinctum (O.F.Müller) Ehrenberg | − | + | − | + | − | − | + | − | − |
Ceratium hirundinella (O.F.Müller) Dujardin | + | − | − | + | + | + | + | − | − |
Kolkwitziella acuta (Apstein) Elbrächter | − | + | + | + | − | − | + | − | − |
Euglenozoa | |||||||||
Lepocinclis fusiformis (H.J.Carter) Lemmermann | − | − | − | + | − | − | − | − | − |
Lepocinclis acus (O.F.Müller) B.Marin & Melkonian | − | − | + | − | + | − | − | − | − |
Monomorphinapyrum (Ehrenberg) Mereschkowsky | − | − | − | − | + | − | − | − | − |
Phacus curvicauda Svirenko | − | + | − | − | + | − | − | − | − |
Phacus caudatus Hübne | − | − | + | − | − | − | − | − | − |
Euglenaviridis (O.F.Müller) Ehrenberg | − | − | − | − | + | − | − | − | − |
Lake | Month | Abundance, Million Cells/m3 | Dominant Division | Biomass, g/m3 | Dominant Division |
---|---|---|---|---|---|
Ali | 1 | 85.00 | Chlorophyta | 0.52 | Miozoa |
2 | 253.31 | Chlorophyta | 1.72 | Chlorophyta | |
Pervomaika | 1 | 195.01 | Miozoa | 15.81 | Miozoa |
2 | 293.31 | Miozoa | 10.50 | Miozoa | |
Derevyannoe | 1 | 223.35 | Cyanobacteria | 3.21 | Miozoa |
2 | 991.72 | Chlorophyta | 2.60 | Miozoa | |
Altynkol | 1 | 210.01 | Chlorophyta | 0.40 | Miozoa |
2 | 580.01 | Cyanobacteria | 0.51 | Bacillariophyta | |
Kosagash | 1 | 1050.01 | Chlorophyta | 2.21 | Miozoa |
2 | 2716.71 | Cyanobacteria | 1.61 | Chlorophyta | |
Malaya Podkova | 1 | 581.70 | Cyanobacteria | 2.01 | Bacillariophyta |
2 | 2716.71 | Bacillariophyta | 1.60 | Bacillariophyta | |
Bolshaya Podkova | 1 | 230.01 | Cyanobacteria | 0.51 | Bacillariophyta |
2 | 521.71 | Bacillariophyta | 0.90 | Bacillariophyta | |
Lower Kolsay | 1 | 1100.01 | Cyanobacteria | 4.20 | Bacillariophyta |
2 | 2123.30 | Bacillariophyta | 9.81 | Bacillariophyta | |
Middle Kolsay | 1 | 198.31 | Bacillariophyta | 2.40 | Bacillariophyta |
2 | 730.01 | Bacillariophyta | 6.30 | Bacillariophyta |
Lake | Month | Species Number | Shannon Ab | Shannon Bi | Average Weight of the Cell, ×10−6, mg |
---|---|---|---|---|---|
Ali | June | 11 | 2.81 | 1.91 | 0.6802 |
August | 18 | 3.69 | 2.80 | 0.7577 | |
Pervomaika | June | 10 | 2.70 | 2.76 | 1.0246 |
August | 19 | 2.23 | 3.35 | 1.5076 | |
Derevyannoe | June | 15 | 2.98 | 3.10 | 1.0403 |
August | 21 | 2.98 | 2.74 | 0.9210 | |
Altynkol | June | 21 | 3.31 | 1.75 | 0.5297 |
August | 26 | 3.21 | 2.55 | 0.7955 | |
Kosagash | June | 19 | 2.05 | 2.96 | 1.4439 |
August | 29 | 3.30 | 3.04 | 0.9220 | |
Malaya Podkova | June | 23 | 3.23 | 2.82 | 0.8721 |
August | 12 | 0.76 | 0.39 | 0.5149 | |
Bolshaya Podkova | June | 9 | 2.21 | 0.46 | 0.2079 |
August | 14 | 3.10 | 1.34 | 0.4333 | |
Lower Kolsay | June | 11 | 1.73 | 1.92 | 1.1062 |
August | 7 | 1.71 | 2.22 | 1.2963 | |
Middle Kolsay | June | 15 | 2.39 | 1.60 | 0.6682 |
August | 5 | 1.33 | 1.60 | 1.1994 |
Taxon Name | * Lakes | ||||||||
---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | |
Rotifera | |||||||||
Bdelloida gen.sp. | − | − | − | − | − | + | − | + | − |
Asplanchnabrightwelli (Gosse) | − | − | − | − | − | − | − | + | + |
Asplanchna priodonta (Gosse) | + | + | + | + | + | + | + | + | + |
Bipalpus hudsoni (Imhof) | + | − | − | + | − | + | + | − | − |
Brachionus angularis (Gosse) | − | − | − | − | + | − | − | − | − |
Brachionus plicatilis (Muller) | + | − | − | − | − | + | − | − | − |
B. quadridentatus (Hermann) | + | + | − | − | − | + | + | − | − |
B.quadridentatus brevispinus (Ehrenberg) | − | − | − | + | − | − | − | − | − |
Brachionus calyciflorus anureiformis Brehm | − | + | − | − | − | − | − | − | − |
B. calyciflorus dorcas Gosse | − | + | − | − | − | − | − | − | − |
Brachionus diversicornis (Daday) | − | − | − | + | − | − | − | − | − |
Filinia longiseta Ehren. | − | − | − | − | − | − | − | + | − |
Filinia terminalis (Plate) | − | − | − | − | − | − | − | + | − |
Conochilus dossuarius (Hudson) | − | − | − | − | − | + | − | − | − |
Keratella cochlearis (Gosse) | + | − | − | − | − | − | + | + | + |
Keratella quadrata (Muller) | − | − | − | + | − | + | − | + | + |
Platyias quadricornis (Ehrenberg) | + | − | − | − | − | − | + | − | − |
Polyarthra dolichoptera (Idelson) | + | + | − | − | − | + | + | + | − |
Polyarthra euryptera (Wierzejski) | − | − | + | − | − | − | − | − | − |
Synchaeta stylata (Wierzejski) | + | − | + | − | + | − | + | + | − |
Synchaeta tremula (Muller) | − | − | − | − | − | − | + | − | − |
Synchaeta sp. | − | − | − | − | − | + | − | + | − |
Trichocerca (Diurella) heterodactyla (Tschugunoff) | − | + | − | − | − | + | − | − | − |
Trichocerca elongata (Gosse) | − | − | − | − | − | + | − | − | − |
Trichocerca similis (Wierzejski) | − | − | + | − | − | − | − | − | − |
Trichotria pocillum (Muller) | − | − | − | − | − | − | + | − | − |
Testudinella patina (Hermann) | − | + | − | − | − | − | − | − | − |
Testudinella sp. | + | + | + | + | + | + | + | + | − |
Hexarthra oxyuris (Zernov) | − | − | − | + | − | − | − | − | − |
Lecane ungulata (Gosse) | − | − | − | + | − | − | − | − | − |
Lecane luna (Muller) | − | − | − | − | − | + | + | − | − |
Lepadella ovalis (Muller) | − | − | − | − | − | + | − | − | − |
Cladocera | |||||||||
Alona affinis Leydig | − | − | − | − | − | − | − | + | − |
Alona rectangula (Sars) | + | + | − | + | − | − | + | + | − |
Alona sp. | − | − | − | − | − | + | − | − | − |
Bosmina (Bosmina) longirostris (O.F. Muller) | + | + | + | + | + | + | + | + | − |
Camptocercus sp. | + | − | − | − | − | − | − | − | − |
Diaphanosoma brachyurum (Lievin) | − | − | + | − | − | + | − | − | − |
D. macrophtalma (Korovch. Et Mirabd.) | − | + | − | − | − | − | − | − | − |
Simocephalus vetulus (O.F.Muller) | − | − | + | − | − | − | − | − | − |
Moina micrura (Kurz) | − | + | + | + | + | − | − | − | − |
Daphnia (Daphnia) galeata (G.O. Sars) | + | − | + | − | − | − | − | + | + |
Daphnia (Daphnia) hyalina (Leydig) | − | − | + | − | − | − | − | − | − |
Daphnia (Daphnia) longispina O.F. Muller) | − | − | − | − | − | − | − | + | + |
Daphnia (Daphnia) longiremis O.F. Muller) | − | − | − | − | − | − | − | + | − |
Ceriodaphnia sp. | + | − | + | − | − | − | − | − | − |
Chydorus sphaericus (O.F. Muller) | − | − | − | − | − | − | + | + | + |
Copepoda | |||||||||
Eucyclops (s.str.) macruroides (Lilljeborg) | − | − | − | − | − | + | − | − | − |
Eucyclops serrulatus (Lilljeborg) | − | − | − | − | − | − | − | + | + |
Cyclopoida gen.sp. | + | + | + | + | + | + | + | + | + |
Cyclops vicinus (Uljanin) | − | − | − | − | − | − | − | + | + |
Macrocyclops albidus (Jurine) | − | − | − | − | − | − | − | + | |
Thermocyclops taihokuensis (Harada) | + | + | − | − | − | + | − | − | − |
Thermocyclops crassus (Fischer) | − | + | + | − | + | − | − | − | − |
Acanthodiaptomus denticornis (Wierzejski) | − | − | − | + | − | − | − | − | + |
Arctodiaptomus bacillifer (Koelbel) | − | − | − | − | + | − | − | − | − |
Diaptomidae gen.sp. | − | − | + | + | − | − | − | − | + |
Harpacticoida gen.sp. | − | − | − | − | + | − | − | − | − |
Lake | Month | Rotifera | Cladocera | Copepoda | Total |
---|---|---|---|---|---|
Abundance, Thousand ind./m3 | |||||
Ali | June | 0.60 ± 0.20 | 3.31 ± 0.25 | 0.05 ± 0.03 | 4.01 ± 0.01 |
August | 0.80 ± 0.61 | 4.60 ± 2.62 | 1.70 ± 0.21 | 7.30 ± 2.61 | |
Pervomaika | June | 0.36 ± 0.16 | 2.28 ± 0.52 | 0.24 ± 0.22 | 2.93 ± 0.66 |
August | 0.87 ± 0.65 | 13.75 ± 7.48 | 2.29 ± 1.51 | 16.22 ± 8.12 | |
Derevyannoe | June | 1.65 ± 1.14 | 5.71 ± 2.21 | 0.91 ± 0.52 | 7.77 ± 2.68 |
August | 4.69 ± 2.36 | 1.64 ± 1.56 | 6.49 ± 5.03 | 12.82 ± 2.27 | |
Altynkol | June | 0.56 ± 0.43 | 3.76 ± 0.82 | 3.09 ± 1.87 | 7.42 ± 3.15 |
August | 5.58 ± 0.61 | 5.86 ± 1.66 | 11.91 ± 4.01 | 23.37 ± 1.73 | |
Kosagash | June | 0.04 ± 0.03 | 0.33 ± 0.32 | 6.91 ± 4.81 | 7.30 ± 4.52 |
August | 0.05 ± 0.03 | 0.02 ± 0.01 | 0.18 ± 0.05 | 0.26 ± 0.08 | |
Malaya Podkova | June | 0.81 ± 0.35 | 2.88 ± 0.81 | 0.01 ± 0.01 | 3.72 ± 1.11 |
August | 0.01 ± 0.01 | 0.24 ± 1.78 | 0.01 ± 0.01 | 0.25 ± 0.17 | |
Bolshaya Podkova | June | 2.13 ± 0.13 | 3.97 ± 3.56 | 162.92 ± 15.92 | 169.0 ± 15.61 |
August | 0.0 | 0.01 ± 0.01 | 0.03 ± 0.01 | 0.05 ± 0.03 | |
Lower Kolsay | June | 0.30 ± 0.10 | 0.70 ± 0.50 | 1.11 ± 0.10 | 2.10 ± 0.41 |
August | 0.61 ± 0.31 | 1.30 ± 0.61 | 1.24 ± 0.80 | 3.12 ± 1.11 | |
Middle Kolsay | June | 2.40 ± 1.10 | 0.31 ± 0.11 | 1.10 ± 0.10 | 3.80 ± 1.61 |
August | 0.05 ± 0.03 | 1.60 ± 0.80 | 0.10 ± 0.01 | 1.81 ± 1.01 |
Lake | Month | Rotifera | Cladocera | Copepoda | Total |
---|---|---|---|---|---|
Biomass, mg/m3 | |||||
Ali | June | 1.08 ± 0.69 | 15.03 ± 2.51 | 0.40 ± 0.36 | 16.52 ± 2.18 |
August | 0.78 ± 0.38 | 12.58 ± 3.16 | 12.53 ± 5.51 | 26.04 ± 1.83 | |
Pervomaika | June | 0.36 ± 1.67 | 2.28 ± 0.52 | 0.24 ± 0.22 | 2.90 ± 0.66 |
August | 0.10 ± 0.07 | 99.30 ± 2.40 | 37.81 ± 27.20 | 137.30 ± 0.50 | |
Derevyannoe | June | 10.40 ± 0.01 | 26.70 ± 0.01 | 3.80 ± 2.50 | 40.90 ± 0.10 |
August | 56.70 ± 28.60 | 10.01 ± 9.80 | 14.09 ± 9.10 | 81.07 ± 25.30 | |
Altynkol | June | 3.50 ± 2.80 | 65.09 ± 1.20 | 38.81 ± 19.20 | 108.30 ± 1.20 |
August | 5.51 ± 0.60 | 5.80 ± 1.07 | 11.09 ± 4.01 | 23.3 ± 1.70 | |
Kosagash | June | 0.30 ± 0.20 | 1.50 ± 1.03 | 74.33 ± 1.30 | 76,01 ± 1,94 |
August | 0.19 ± 0.20 | 0.10 ± 0.03 | 0.21 ± 0.07 | 0.51 ± 0.20 | |
Malaya Podkova | June | 2.80 ± 1.20 | 7.31 ± 1.10 | 0.21 ± 0.16 | 10.40 ± 4.41 |
August | 0.11 ± 0.05 | 1.10 ± 0.80 | 0.11 ± 0.01 | 1.30 ± 0.81 | |
Bolshaya Podkova | June | 9.40 ± 1.33 | 8.80 ± 1.80 | 330.70 ± 1.50 | 349.01 ± 0.81 |
August | 0.0 | 0.03 ± 0.01 | 0.41 ± 0.20 | 0.51 ± 0.21 | |
Lower Kolsay | June | 2.50 ± 1.10 | 24.10 ± 0.81 | 31.67 ± 1.70 | 58.41 ± 1.01 |
August | 6.71 ± 2.10 | 61.71 ± 1.07 | 20.10 ± 1.60 | 88.56 ± 1.09 | |
Middle Kolsay | June | 49.01 ± 1.10 | 7.04 ± 1.01 | 32.01 ± 0.16 | 88.51 ± 1.91 |
August | 4.40 ± 1.20 | 51.10 ± 6.05 | 8.01 ± 1.90 | 63.50 ± 5.31 |
Lake | Month | Group | Species | Abundance, % | Biomass, % |
---|---|---|---|---|---|
Ali | June | Cladocera | B.(B) longirostris | 82.70 | 79.07 |
August | Cladocera | B.(B) longirostris | 57.21 | 42.37 | |
Copepoda | Cyclopoida gen.sp. | 24.50 | 48.85 | ||
Pervomaika | June | Cladocera | B.(B) longirostris | 74.65 | 71.65 |
August | Cladocera | B.(B) longirostris | 78.91 | 37.67 | |
Copepoda | Th. taihokuensis | 13.10 | 26.82 | ||
Derevyannoe | June | Cladocera | B.(B) longirostris | 73.01 | 65.07 |
Rotifera | A. priodonta | 10.20 | 23.47 | ||
August | Copepoda | Cyclopoida gen.sp. | 50.41 | 17.52 | |
Rotifera | A. priodonta | 36.45 | 69.32 | ||
Altynkol | June | Copepoda | Th. crassus | 25.55 | 27.17 |
Cladocera | S. vetulus | 16.04 | 9.12 | ||
Copepoda | Cyclopoida gen.sp. | 16.24 | 8,70 | ||
Cladocera | Diaphanosoma sp. | 7.74 | 22.02 | ||
August | Copepoda | Cyclopoida gen.sp. | 48.74 | 49.41 | |
Cladocera | B.(B) longirostris | 20.14 | 16.11 | ||
Kosagash | June | Copepoda | Cyclopoida gen.sp. | 67.14 | 32.10 |
Copepoda | Th. taihokuensis | 25.14 | 42.04 | ||
August | Copepoda | Cyclopoida gen.sp. | 95.12 | 95.14 | |
Malaya Podkova | June | Cladocera | B.(B) longirostris | 76.24 | 70.14 |
Rotifera | B. plicatilis | 13.17 | 24.34 | ||
August | Cladocera | B.(B) longirostris | 92.27 | 88.41 | |
Bolshaya Podkova | June | Copepoda | Cyclopoida gen.sp. | 96.27 | 94.34 |
August | Copepoda | Cyclopoida gen.sp. | 96.27 | 94.31 | |
Lower Kolsay | June | Copepoda | Cyclopoida gen.sp. | 44.57 | 23.94 |
Cladocera | D. (Daphnia) galeata | 28.44 | 38.32 | ||
August | Cladocera | D. (Daphnia) galeata | 38.84 | 67.87 | |
Copepoda | Cyclopoida gen.sp. | 34.62 | 16.27 | ||
Middle Kolsay | June | Rotifera | A. priodonta | 50.64 | 55.01 |
Copepoda | A. denticornis | 18.37 | 21.03 | ||
August | Cladocera | D. (Daphnia) galeata | 85.07 | 80.42 | |
Copepoda | A. denticornis | 4.22 | 10.47 |
Lake | Month | Species Number | Shannon Ab | Shannon Bi | Average Individual Mass of an Organism, mg |
---|---|---|---|---|---|
Ali | June | 7 | 2.06 ± 0.38 | 2.32 ± 0.01 | 0.004 ± 0.001 |
August | 12 | 2.07 ± 0.02 | 1.92 ± 0.10 | 0.004 ± 0.001 | |
Pervomaika | June | 22 | 1.30 ± 0.45 | 1.26 ± 0.50 | 0.003 ± 0.001 |
August | 13 | 1.24 ± 0.40 | 1.20 ± 0.01 | 0.007 ± 0.002 | |
Derevyannoe | June | 13 | 0.92 ± 0.20 | 0.84 ± 0.32 | 0.004 ± 0.001 |
August | 10 | 0.84 ± 0.50 | 0.72 ± 0.38 | 0.007 ± 0.002 | |
Altynkol | June | 10 | 2.07 ± 0.39 | 2.32 ± 0.04 | 0.015 ± 0.001 |
August | 15 | 2.07 ± 0.02 | 1.92 ± 0.10 | 0.005 ± 0.001 | |
Kosagash | June | 9 | 1.14 ± 0.42 | 1.12 ± 0.04 | 0.013 ± 0.005 |
August | 10 | 1.52 ± 0.16 | 1.60 ± 0.01 | 0.003 ± 0.001 | |
Malaya Podkova | June | 15 | 1.16 ± 0.12 | 1.21 ± 0.01 | 0.002 ± 0.001 |
August | 4 | 0.68 ± 0.37 | 0.83 ± 0.56 | 0.005 ± 0.001 | |
Bolshaya Podkova | June | 10 | 1.16 ± 0.12 | 0.67 ± 0.34 | 0.002 ± 0.001 |
August | 2 | 0.42 ± 0.16 | 0.49 ± 0.00 | 0.003 ± 0.001 | |
Lower Kolsay | June | 23 | 1.77 ± 0.14 | 1.59 ± 0.14 | 0.021 ± 0.005 |
August | 16 | 1.39 ± 0.45 | 1.08 ± 0.03 | 0.027 ± 0.005 | |
Middle Kolsay | June | 15 | 1.60 ± 0.13 | 1.58 ± 0.14 | 0.025 ± 0.005 |
August | 12 | 0.66 ± 0.35 | 0.66 ± 0.35 | 0.032 ± 0.005 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aubakirova, M.; Krupa, E.; Mazhibayeva, Z.; Isbekov, K.; Assylbekova, S. The Role of External Factors in the Variability of the Structure of the Zooplankton Community of Small Lakes (South-East Kazakhstan). Water 2021, 13, 962. https://doi.org/10.3390/w13070962
Aubakirova M, Krupa E, Mazhibayeva Z, Isbekov K, Assylbekova S. The Role of External Factors in the Variability of the Structure of the Zooplankton Community of Small Lakes (South-East Kazakhstan). Water. 2021; 13(7):962. https://doi.org/10.3390/w13070962
Chicago/Turabian StyleAubakirova, Moldir, Elena Krupa, Zhanara Mazhibayeva, Kuanysh Isbekov, and Saule Assylbekova. 2021. "The Role of External Factors in the Variability of the Structure of the Zooplankton Community of Small Lakes (South-East Kazakhstan)" Water 13, no. 7: 962. https://doi.org/10.3390/w13070962
APA StyleAubakirova, M., Krupa, E., Mazhibayeva, Z., Isbekov, K., & Assylbekova, S. (2021). The Role of External Factors in the Variability of the Structure of the Zooplankton Community of Small Lakes (South-East Kazakhstan). Water, 13(7), 962. https://doi.org/10.3390/w13070962