Optimization of the Biomonitoring Technique with the Aquatic Moss Fontinalis antipyretica Hedw.: Selection of Shoot Segment Length for Determining Trace Element Concentrations
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling Sites
2.2. Collection and Preparation of Samples
2.3. Chemical Analysis
2.4. Statistical Analysis
3. Results
3.1. Trends in Dry/Fresh Weight Ratios
3.2. Trends in Element Concentration along the Shoots
3.3. Covariation of Elements
4. Discussion
4.1. Trends of Elements along the Shoots
4.2. Shoot Length Selection
- (1)
- The change in dry weight beyond this length of segment is small, which indicates the stabilisation of the morphological characteristics and moss development from that point. In this way, the youngest part of the moss is used in the analysis
- (2)
- Using segments shorter than 3 cm increases the workload and the quantity of material to collect in the river. Reducing the impact of research on target populations is important, especially if conducting periodic and long-term sampling. In extensive studies, many samples are usually collected in a short time, and reducing the per sample work effort is a necessity.
- (3)
- Most previous studies have used shoot segments between 2 and 3 cm-long [17], and the use of 3 cm-long segments would therefore enable valid comparisons with these studies, which is an important advantage. Also, the last 3 cm apical segment has been frequently used for moss biomonitoring in terrestrial environments [35,36].
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Benson-Evans, K.; Williams, P.F. Transplanting aquatic bryophytes to assess river pollution. J. Bryol. 1976, 9, 81–91. [Google Scholar] [CrossRef]
- Glime, J.M. Effects of pollutants on aquatic species. In Bryophytes and Lichens in a Changing Environment; Bates, W., Farmer, A.M., Eds.; University Press: Oxford, UK, 1992; pp. 333–361. [Google Scholar]
- Cenci, R.M. The use of aquatic moss (Fontinalis antipyretica) as monitor of contamination in standing and running waters: Limits and advantages. J. Limnol. 2000, 60 (Suppl. 1), 53–61. [Google Scholar] [CrossRef]
- Zechmeister, H.G.; Grodzinska, K.; Szarek-Lukaszewska, G. Bryophytes. In Bioindicators and Biomonitors; Markert, B.A., Breure, A.M., Zechmeister, H.G., Eds.; Elsevier Science Ltd.: Amsterdam, The Netherlands, 2003; pp. 329–375. [Google Scholar]
- Ceschin, S.; Aleffi, M.; Bisceglie, S.; Savo, V.; Zuccarello, V. Aquatic bryophytes as ecological indicators of the water quality status in the Tiber River basin (Italy). Ecol. Indic. 2012, 14, 74–81. [Google Scholar] [CrossRef]
- Say, P.J.; Whitton, B.A. Accumulation of heavy metals by aquatic mosses. 1: Fontinalis antipyretica Hedw. Hydrobiologia 1983, 100, 245–260. [Google Scholar] [CrossRef]
- Siebert, A.; Bruns, I.; Krauss, G.J.; Miersch, J.; Markert, B. The use of the aquatic moss Fontinalis antipyretica L. ex Hedw. as a bioindicator for heavy metals. Sci. Total Environ. 1996, 177, 137–144. [Google Scholar] [CrossRef]
- Mersch, J.; Claveri, B. Les Bryophytes Aquatiques Comme Outil de Surveillance de la Contamination des Eaux Courantes par les Micropolluants Métalliques: Modalités D’interprétation des Données; [Aquatic bryophytes as a tool for surveillance of flowing water pollution with metallic micropollutants: Types of data interpretation] Etude Inter-Agences No. 55; Agences de l’Eau, Ministère de l’Environnement, Université de Metz: Metz, France, 1998; p. 145. [Google Scholar]
- Burton, M.A.S.; Peterson, P.J. Metal accumulation by aquatic bryophytes from polluted mine streams. Environ. Pollut. 1979, 19, 37–46. [Google Scholar] [CrossRef]
- Whitton, B.A.; Say, P.J.; Jupp, B.P. Accumulation of zinc, cadmium and lead by the aquatic liverwort Scapania. Environ. Pollut. (Ser. B) 1982, 3, 299–316. [Google Scholar] [CrossRef]
- Mouvet, C.; Morhain, E.; Sutter, C.; Couturieux, N. Aquatic mosses for the detection and follow-up of accidental discharges in surface waters. Water Air Soil Pollut. 1993, 66, 333–348. [Google Scholar] [CrossRef]
- Vázquez, M.D.; Wappelhorst, O.; Markert, B. Determination of 28 elements in aquatic moss Fontinalis antipyretica Hedw and water from the upper reaches of the river Nysa (CZ, D) by ICP-MS and AAS. Water Air Soil Pollut. 2004, 152, 153–172. [Google Scholar] [CrossRef]
- Tipping, E.; Vincent, C.D.; Lawlor, A.J.; Lofts, S. Metal accumulation by stream bryophytes, related to chemical speciation. Environ. Pollut. 2008, 156, 936–943. [Google Scholar] [CrossRef]
- Cesa, M.; Bizzotto, A.; Ferraro, C.; Fumagalli, F.; Nimis, P.L. Palladio, an index of trace element alteration for the river Bacchioglione based on Rhynchostegium riparioides moss bags. Water Air Soil Pollut. 2010, 208, 59–77. [Google Scholar] [CrossRef]
- Wehr, J.D.; Empain, A.; Mouvet, C.; Say, P.J.; Whitton, B.A. Methods for processing aquatic mosses used as monitors of heavy metals. Water Res. 1983, 17, 985–992. [Google Scholar] [CrossRef]
- Brown, D.H.; Brown, R.M. Reproducibility of sampling for element analysis using bryophytes. In Element Concentration Cadaster in Ecoystems: Methods of Assessment and Evaluation; Lieth, H., Markert, B.A., Eds.; VCH Publishers: Weinheim, Germany, 1990. [Google Scholar]
- Debén, S.; Aboal, J.R.; Carballeira, A.; Cesa, M.; Real, C.; Fernández, J.A. Inland water quality monitoring with native bryophytes: A methodological review. Ecol. Indic. 2015, 53, 115–124. [Google Scholar] [CrossRef]
- Gecheva, G.; Yurukova, L.; Ganeva, A. Assessment of pollution with aquatic bryophytes in Maritsa River (Bulgaria). Bull. Environ. Contam. Toxicol. 2011, 87, 480–485. [Google Scholar] [CrossRef] [PubMed]
- Kosior, G.; Samecka-Cymerman, A.; Kolon, K.; Brudzińska-Kosior, A.; Bena, W.; Kempers, A.J. Trace elements in the Fontinalis antipyretica from rivers receiving sewage of lignite and glass sand mining industry. Environ. Sci. Pollut. Res. 2015, 22, 9829–9838. [Google Scholar] [CrossRef] [Green Version]
- Pokorny, P.; Pokorny, J.; Dobicki, W.; Senze, M.; Kowalska-Góralska, M. Bioaccumulations of heavy metals in submerged macrophytes in the mountain river Biała Lądecka (Poland, Sudety Mts.). Arch. Environ. Prot. 2015, 41, 81–90. [Google Scholar] [CrossRef] [Green Version]
- Favas, P.J.C.; Pratas, J.; Rodrigues, N.; D’Souza, R.; Varun, M.S.; Paul, M. Metal(loid) accumulation in aquatic plants of a mining area: Potential for water quality biomonitoring and biogeochemical prospecting. Chemosphere 2018, 194, 158–170. [Google Scholar] [CrossRef]
- Vásquez, C.; Calva, J.; Morocho, R.; Donoso, D.A.; Benítez, A. Bryophyte communities along a tropical urban river respond to heavy metal and arsenic pollution. Water 2019, 11, 813. [Google Scholar] [CrossRef] [Green Version]
- Wehr, J.D.; Whitton, B.A. Accumulation of heavy metals by aquatic mosses. 2: Rhynchostegium riparioides. Hydrobiologia 1983, 100, 261–284. [Google Scholar] [CrossRef]
- Martínez-Abaigar, J.; García-Álvaro, M.A. Combined seasonal and longitudinal variations of element concentrations in two aquatic mosses (Fontinalis antipyretica and F. squamosa). Nova Hedwig. 2002, 74, 349–364. [Google Scholar] [CrossRef]
- Brown, D.H. Uptake of mineral elements and their use in pollution monitoring. In The Experimental Biology of Bryophytes; Dyer, F.A., Duckett, J.G., Eds.; Academic Press: London, UK, 1984; pp. 229–255. [Google Scholar]
- Steinnes, E.; Rühling, Å.; Lippo, H.; Mäkinen, A. Reference materials for large-scale metal deposition surveys. Accredit. Qual. Assur. 1997, 2, 243–249. [Google Scholar] [CrossRef]
- Kendall, M.G.; Gibbons, J.D. Rank Correlation Methods, 5th ed.; Edward Arnold: London, UK, 1990. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2018. [Google Scholar]
- Welch, W.H. A Monograph of the Fontinalaceae; Martinus Ninjhoff: The Hague, The Netherlands, 1960; p. 357. [Google Scholar]
- Flora Briofítica Ibérica; Guerra, J.M.; Brugués, M.; Cros, R.M. (Eds.) Universidad de Murcia; Sociedad Española de Briología: Murcia, Spain, 2014; Volume V, p. 261. [Google Scholar]
- Vincent, C.D.; Lawlor, A.J.; Tipping, E. Accumulation of Al, Mn, Fe, Cu, Zn, Cd and Pb by the bryophyte Scapania undulata in three upland waters of different pH. Environ. Pollut. 2001, 114, 93–100. [Google Scholar] [CrossRef]
- Sérgio, C.; Figueira, R.; Viegas Crespo, A.M. Observations of heavy metal accumulation in the cell walls of Fontinalis antipyretica, in a Portuguese stream affected by mine effluent. J. Bryol. 2000, 22, 251–255. [Google Scholar] [CrossRef]
- Nieboer, E.; Richardson, D.H.S. Lichens as monitors of atmospheric deposition. In Atmospheric Pollutants and Natural Waters; Eisenreich, S.J., Ed.; Ann Arbor Science: Ann Arbor, MI, USA, 1981; pp. 339–388. [Google Scholar]
- Vázquez, M.D.; López, J.; Carballeira, A. Uptake of heavy metals to the extracellular and intracellular compartments in three species of aquatic bryophyte. Ecotoxicol. Environ. Saf. 1999, 44, 12–24. [Google Scholar] [CrossRef] [PubMed]
- Carballeira, C.B.; Aboal, J.R.; Fernández, J.A.; Carballeira, A. Comparison of the accumulation of elements in two terrestrial moss species. Atmos. Environ. 2008, 42, 4904–4917. [Google Scholar] [CrossRef]
- Carvajal, B.; Aboal, J.R.; Fernández, J.A.; Real, C.; Carballeira, A. Influence of roads and inhabited areas on metal concentrations in terrestrial mosses. Atmos. Environ. 2010, 44, 3432–3441. [Google Scholar] [CrossRef]
Element | Measured (n = 4) | Certified | |||
---|---|---|---|---|---|
Mean | SD | % Recov. | Mean | SD | |
Al | 201.3 | 41.4 | 119 | 169 * | 10 * |
Cr | 0.24 | 0.03 | 35 | 0.67 | 0.19 |
Mn | 593 | 51 | 111 | 535 * | 30 * |
Fe | 152 | 17 | 110 | 138 | 12 |
Ni | 0.69 | 0.06 | 73 | 0.95 | 0.08 |
Cu | 2.78 | 0.23 | 74 | 3.76 | 0.23 |
Zn | 23.3 | 1.5 | 92 | 25.4 | 1.1 |
As | 0.112 | 0.025 | 107 | 0.105 | 0.007 |
Cd | 0.086 | 0.004 | 81 | 0.106 | 0.005 |
Ba | 12.4 | 0.6 | 90 | 13.7 | 0.6 |
Hg | 0.044 | 0.005 | 126 | 0.035 | 0.004 |
Pb | 2.63 | 0.17 | 79 | 3.33 | 0.25 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vázquez, M.D.; Real, C.; Villares, R. Optimization of the Biomonitoring Technique with the Aquatic Moss Fontinalis antipyretica Hedw.: Selection of Shoot Segment Length for Determining Trace Element Concentrations. Water 2020, 12, 2389. https://doi.org/10.3390/w12092389
Vázquez MD, Real C, Villares R. Optimization of the Biomonitoring Technique with the Aquatic Moss Fontinalis antipyretica Hedw.: Selection of Shoot Segment Length for Determining Trace Element Concentrations. Water. 2020; 12(9):2389. https://doi.org/10.3390/w12092389
Chicago/Turabian StyleVázquez, María Dolores, Carlos Real, and Rubén Villares. 2020. "Optimization of the Biomonitoring Technique with the Aquatic Moss Fontinalis antipyretica Hedw.: Selection of Shoot Segment Length for Determining Trace Element Concentrations" Water 12, no. 9: 2389. https://doi.org/10.3390/w12092389
APA StyleVázquez, M. D., Real, C., & Villares, R. (2020). Optimization of the Biomonitoring Technique with the Aquatic Moss Fontinalis antipyretica Hedw.: Selection of Shoot Segment Length for Determining Trace Element Concentrations. Water, 12(9), 2389. https://doi.org/10.3390/w12092389