Evaluation of the Spatiotemporal Variation of Sustainable Utilization of Water Resources: Case Study from Henan Province (China)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Research Area
2.2. Data Source
2.3. Methods
2.3.1. DPSIR Model
2.3.2. Combination Weights
- 1.
- Standardize the original data.
- 2.
- Calculate the entropy of the indicator .
- 3.
- Calculate the weight of evaluation index .
2.3.3. TOPSIS Model
- 1.
- Raw data preprocessing.
- 2.
- Calculate the normalized matrix Z.
- 3.
- Construct a weighted normalized matrix X.
- 4.
- Determine positive ideal solution and negative ideal solution.
- 5.
- Calculate the distance from the evaluation object to the ideal solution and the negative solution.
- 6.
- Calculate the degree of closeness between the evaluation object and the ideal solution.
3. Results
3.1. The Construction of the Index System
3.2. The Construction of Combination Weights
3.3. Sustainable Utilization of Water Resources Analysis Based on Weighted TOPSIS Model
4. Discussion
4.1. Comprehensive Analysis of the Sustainable Utilization of Water Resources in Henan Province
4.2. Analysis of Subsystems of the Sustainable Utilization of Water Resources in Henan Province
5. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
Appendix A
City | 2006 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | Mean |
---|---|---|---|---|---|---|---|---|---|---|---|
Zhengzhou | 0.2322 | 0.2609 | 0.2689 | 0.3111 | 0.3755 | 0.4280 | 0.4960 | 0.5573 | 0.6940 | 0.7921 | 0.4416 |
Kaifeng | 0.2433 | 0.2926 | 0.2744 | 0.3611 | 0.4711 | 0.5348 | 0.6123 | 0.6504 | 0.7115 | 0.7326 | 0.4884 |
Luoyang | 0.2538 | 0.2615 | 0.2985 | 0.3127 | 0.3974 | 0.4203 | 0.4607 | 0.4903 | 0.5971 | 0.7408 | 0.4233 |
Pingdingshan | 0.2903 | 0.3196 | 0.3008 | 0.3803 | 0.4567 | 0.5040 | 0.4413 | 0.5431 | 0.6328 | 0.6778 | 0.4547 |
Anyang | 0.2169 | 0.2505 | 0.2005 | 0.2928 | 0.4818 | 0.4979 | 0.5742 | 0.5560 | 0.7599 | 0.6946 | 0.4525 |
Hebi | 0.2715 | 0.2956 | 0.2420 | 0.3156 | 0.4275 | 0.5176 | 0.6857 | 0.5354 | 0.6164 | 0.6460 | 0.4553 |
Xinxiang | 0.2958 | 0.4879 | 0.5521 | 0.6455 | 0.7551 | 0.7486 | 0.5899 | 0.6293 | 0.5973 | 0.4931 | 0.5794 |
Jiaozuo | 0.2680 | 0.4091 | 0.5068 | 0.4971 | 0.5608 | 0.7401 | 0.5149 | 0.4807 | 0.7155 | 0.6871 | 0.5380 |
Puyang | 0.1747 | 0.1655 | 0.1660 | 0.1713 | 0.3048 | 0.3837 | 0.4129 | 0.5885 | 0.6234 | 0.7922 | 0.3783 |
Xuchang | 0.2334 | 0.2268 | 0.2316 | 0.2723 | 0.3631 | 0.3710 | 0.3985 | 0.4627 | 0.4096 | 0.7648 | 0.3734 |
Luohe | 0.1933 | 0.2133 | 0.1783 | 0.1833 | 0.4258 | 0.3056 | 0.3359 | 0.3587 | 0.6312 | 0.4758 | 0.3301 |
Sanmenxia | 0.3743 | 0.4227 | 0.3406 | 0.3253 | 0.4350 | 0.4793 | 0.5205 | 0.5693 | 0.6351 | 0.5785 | 0.4681 |
Nanyang | 0.2048 | 0.2665 | 0.2527 | 0.3360 | 0.5568 | 0.5690 | 0.5959 | 0.6316 | 0.6554 | 0.7168 | 0.4785 |
Shangqiu | 0.2258 | 0.3576 | 0.2752 | 0.3010 | 0.4013 | 0.4991 | 0.5797 | 0.6419 | 0.6991 | 0.7200 | 0.4701 |
Xinyang | 0.2055 | 0.4954 | 0.3721 | 0.4082 | 0.5426 | 0.4662 | 0.3982 | 0.4376 | 0.5535 | 0.6451 | 0.4524 |
Zhoukou | 0.1918 | 0.2292 | 0.1999 | 0.2227 | 0.2601 | 0.3016 | 0.3588 | 0.4545 | 0.5370 | 0.8043 | 0.3560 |
Zhumadian | 0.3202 | 0.3825 | 0.3359 | 0.3064 | 0.3461 | 0.3222 | 0.3666 | 0.4534 | 0.5797 | 0.6851 | 0.4098 |
Jiyuan | 0.3169 | 0.3710 | 0.3364 | 0.3723 | 0.4499 | 0.4618 | 0.4716 | 0.5043 | 0.6429 | 0.6417 | 0.4569 |
City | Driving Forces Index | ||||||||||
2006 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | Mean | |
Zhengzhou | 0.6474 | 0.6834 | 0.3997 | 0.3897 | 0.5558 | 0.6933 | 0.5185 | 0.3506 | 0.3430 | 0.3747 | 0.4956 |
Kaifeng | 0.5226 | 0.6071 | 0.6198 | 0.6251 | 0.6487 | 0.7244 | 0.5572 | 0.5494 | 0.4443 | 0.4810 | 0.5780 |
Luoyang | 0.7845 | 0.7836 | 0.7916 | 0.6207 | 0.6847 | 0.6499 | 0.3614 | 0.1832 | 0.3101 | 0.3480 | 0.5518 |
Pingdingshan | 0.7162 | 0.7336 | 0.6801 | 0.5846 | 0.5274 | 0.4906 | 0.2401 | 0.2500 | 0.3641 | 0.2834 | 0.4870 |
Anyang | 0.6108 | 0.7078 | 0.4937 | 0.4458 | 0.5075 | 0.4477 | 0.2066 | 0.2642 | 0.3635 | 0.3343 | 0.4382 |
Hebi | 0.5948 | 0.6778 | 0.4456 | 0.4109 | 0.4598 | 0.4482 | 0.3598 | 0.4557 | 0.3954 | 0.2899 | 0.4538 |
Xinxiang | 0.6987 | 0.7703 | 0.7067 | 0.6555 | 0.7865 | 0.8062 | 0.5483 | 0.3940 | 0.3925 | 0.2399 | 0.5998 |
Jiaozuo | 0.6752 | 0.7243 | 0.4644 | 0.3663 | 0.4009 | 0.5679 | 0.3848 | 0.3547 | 0.2751 | 0.3171 | 0.4530 |
Puyang | 0.6262 | 0.6107 | 0.4866 | 0.2612 | 0.3772 | 0.4161 | 0.4668 | 0.4551 | 0.3292 | 0.3432 | 0.4372 |
Xuchang | 0.4704 | 0.6309 | 0.5183 | 0.5366 | 0.6779 | 0.8240 | 0.5993 | 0.4225 | 0.3550 | 0.3768 | 0.5412 |
Luohe | 0.5360 | 0.5212 | 0.5413 | 0.3901 | 0.6128 | 0.5579 | 0.6641 | 0.3257 | 0.3695 | 0.3957 | 0.4914 |
Sanmenxia | 0.7896 | 0.8822 | 0.7450 | 0.5682 | 0.7581 | 0.6089 | 0.5673 | 0.3799 | 0.3888 | 0.1426 | 0.5830 |
Nanyang | 0.6544 | 0.6605 | 0.6340 | 0.4548 | 0.5047 | 0.4550 | 0.3128 | 0.2651 | 0.3323 | 0.3919 | 0.4665 |
Shangqiu | 0.6936 | 0.6070 | 0.4820 | 0.3909 | 0.5240 | 0.4972 | 0.4366 | 0.3485 | 0.2713 | 0.3148 | 0.4566 |
Xinyang | 0.4855 | 0.6231 | 0.5171 | 0.5748 | 0.4848 | 0.4444 | 0.4008 | 0.3356 | 0.3853 | 0.4232 | 0.4675 |
Zhoukou | 0.5312 | 0.6710 | 0.7595 | 0.7980 | 0.7246 | 0.6647 | 0.6623 | 0.5688 | 0.6127 | 0.5625 | 0.6555 |
Zhumadian | 0.6409 | 0.6693 | 0.5473 | 0.5059 | 0.5298 | 0.5094 | 0.4077 | 0.3180 | 0.2987 | 0.3596 | 0.4787 |
Jiyuan | 0.6919 | 0.7907 | 0.6428 | 0.6280 | 0.4910 | 0.6838 | 0.4632 | 0.4945 | 0.3696 | 0.2343 | 0.5490 |
City | Pressures Index | ||||||||||
2006 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | Mean | |
Zhengzhou | 0.3853 | 0.3110 | 0.2092 | 0.2526 | 0.2855 | 0.3837 | 0.3914 | 0.4612 | 0.4620 | 0.6477 | 0.3789 |
Kaifeng | 0.4294 | 0.5067 | 0.3872 | 0.4799 | 0.4570 | 0.4552 | 0.5066 | 0.4409 | 0.5671 | 0.4976 | 0.4728 |
Luoyang | 0.1995 | 0.3682 | 0.3392 | 0.4057 | 0.4102 | 0.4791 | 0.4851 | 0.5280 | 0.6189 | 0.7465 | 0.4580 |
Pingdingshan | 0.0583 | 0.1355 | 0.1435 | 0.1840 | 0.3047 | 0.3884 | 0.5426 | 0.6681 | 0.8261 | 0.9645 | 0.4216 |
Anyang | 0.3425 | 0.2857 | 0.2972 | 0.4544 | 0.5516 | 0.5558 | 0.5582 | 0.3557 | 0.6367 | 0.5909 | 0.4629 |
Hebi | 0.2971 | 0.2383 | 0.2805 | 0.3263 | 0.4861 | 0.6353 | 0.6274 | 0.5689 | 0.6292 | 0.5591 | 0.4648 |
Xinxiang | 0.3575 | 0.7440 | 0.7355 | 0.4588 | 0.5791 | 0.6493 | 0.4944 | 0.2925 | 0.6628 | 0.4828 | 0.5457 |
Jiaozuo | 0.2076 | 0.5844 | 0.4748 | 0.3902 | 0.6369 | 0.8566 | 0.6916 | 0.5362 | 0.8792 | 0.4190 | 0.5676 |
Puyang | 0.2365 | 0.3109 | 0.4089 | 0.2461 | 0.2960 | 0.2642 | 0.3174 | 0.2799 | 0.9810 | 0.6678 | 0.4009 |
Xuchang | 0.2532 | 0.3235 | 0.4236 | 0.3360 | 0.3833 | 0.3646 | 0.3618 | 0.4757 | 0.5954 | 0.5623 | 0.4079 |
Luohe | 0.4981 | 0.6776 | 0.3507 | 0.4262 | 0.4767 | 0.4244 | 0.1738 | 0.1401 | 0.5686 | 0.5567 | 0.4293 |
Sanmenxia | 0.2654 | 0.3111 | 0.1979 | 0.2284 | 0.1972 | 0.1985 | 0.2295 | 0.4488 | 0.6485 | 0.9271 | 0.3652 |
Nanyang | 0.3429 | 0.5088 | 0.3183 | 0.2164 | 0.5679 | 0.5143 | 0.4639 | 0.4757 | 0.6010 | 0.6955 | 0.4705 |
Shangqiu | 0.2618 | 0.8960 | 0.2724 | 0.2094 | 0.2951 | 0.2775 | 0.1869 | 0.1143 | 0.4592 | 0.3290 | 0.3302 |
Xinyang | 0.0826 | 0.7452 | 0.2176 | 0.2368 | 0.1962 | 0.1562 | 0.1877 | 0.2291 | 0.5804 | 0.4196 | 0.3051 |
Zhoukou | 0.4526 | 0.4458 | 0.4204 | 0.4156 | 0.4197 | 0.4270 | 0.4258 | 0.4344 | 0.9113 | 0.4596 | 0.4812 |
Zhumadian | 0.6169 | 0.6540 | 0.4544 | 0.4345 | 0.2992 | 0.1863 | 0.1888 | 0.5173 | 0.8770 | 0.5416 | 0.4770 |
Jiyuan | 0.4197 | 0.4957 | 0.5964 | 0.4909 | 0.4513 | 0.7843 | 0.3700 | 0.1968 | 0.6846 | 0.4470 | 0.4937 |
City | States Index | ||||||||||
2006 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | Mean | |
Zhengzhou | 0.4737 | 0.5270 | 0.2085 | 0.4209 | 0.9126 | 0.6984 | 0.3396 | 0.2828 | 0.3021 | 0.4265 | 0.4592 |
Kaifeng | 0.6138 | 0.8038 | 0.6689 | 0.7030 | 0.7379 | 0.6210 | 0.1834 | 0.2534 | 0.4417 | 0.4739 | 0.5501 |
Luoyang | 0.2297 | 0.2299 | 0.0966 | 0.2301 | 0.9527 | 0.8396 | 0.2674 | 0.0226 | 0.1772 | 0.1409 | 0.3187 |
Pingdingshan | 0.1775 | 0.4734 | 0.1847 | 0.2461 | 0.9972 | 0.4986 | 0.1661 | 0.0165 | 0.0282 | 0.0401 | 0.2829 |
Anyang | 0.3054 | 0.3457 | 0.4476 | 0.4103 | 0.7862 | 0.6533 | 0.2708 | 0.0234 | 0.2745 | 0.2378 | 0.3755 |
Hebi | 0.3360 | 0.3094 | 0.4028 | 0.2255 | 0.6045 | 0.6449 | 0.5816 | 0.3769 | 0.3658 | 0.3696 | 0.4217 |
Xinxiang | 0.5797 | 0.3770 | 0.5177 | 0.5550 | 0.5889 | 0.8741 | 0.2554 | 0.4030 | 0.5057 | 0.4213 | 0.5078 |
Jiaozuo | 0.6814 | 0.2064 | 0.1659 | 0.2365 | 0.2661 | 0.9503 | 0.1774 | 0.0942 | 0.3066 | 0.2300 | 0.3315 |
Puyang | 0.1965 | 0.2743 | 0.4305 | 0.3689 | 0.8396 | 0.4545 | 0.0660 | 0.1518 | 0.2747 | 0.1976 | 0.3254 |
Xuchang | 0.5195 | 0.7862 | 0.3778 | 0.4823 | 0.7364 | 0.4988 | 0.2142 | 0.2265 | 0.2895 | 0.3537 | 0.4485 |
Luohe | 0.0605 | 0.1332 | 0.0285 | 0.0474 | 0.0835 | 0.0699 | 0.0000 | 0.0431 | 0.8882 | 0.0586 | 0.1413 |
Sanmenxia | 0.1993 | 0.4061 | 0.0252 | 0.3386 | 0.6429 | 1.0000 | 0.2446 | 0.0898 | 0.3542 | 0.3858 | 0.3687 |
Nanyang | 0.2168 | 0.3772 | 0.2412 | 0.3319 | 1.0000 | 0.3327 | 0.2305 | 0.0019 | 0.0617 | 0.0924 | 0.2886 |
Shangqiu | 0.1883 | 1.0000 | 0.4722 | 0.3686 | 0.4103 | 0.3589 | 0.1348 | 0.0525 | 0.1225 | 0.3456 | 0.3454 |
Xinyang | 0.2991 | 0.9677 | 0.8070 | 0.3901 | 0.8408 | 0.1370 | 0.1625 | 0.2346 | 0.4518 | 0.5872 | 0.4878 |
Zhoukou | 0.4966 | 0.7242 | 0.5498 | 0.4591 | 0.5733 | 0.3648 | 0.3561 | 0.3607 | 0.5833 | 0.3374 | 0.4805 |
Zhumadian | 0.4498 | 1.0000 | 0.6206 | 0.2339 | 0.3603 | 0.0127 | 0.0209 | 0.1606 | 0.3776 | 0.1171 | 0.3353 |
Jiyuan | 0.8253 | 0.5703 | 0.2815 | 0.1761 | 0.3101 | 1.0000 | 0.5579 | 0.0830 | 0.2895 | 0.3093 | 0.4403 |
City | Impacts Index | ||||||||||
2006 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | Mean | |
Zhengzhou | 0.3092 | 0.2806 | 0.1945 | 0.2305 | 0.2669 | 0.3380 | 0.4349 | 0.4822 | 0.6883 | 0.6775 | 0.3903 |
Kaifeng | 0.4888 | 0.4925 | 0.4986 | 0.5139 | 0.5303 | 0.5293 | 0.5693 | 0.4427 | 0.4721 | 0.5111 | 0.5049 |
Luoyang | 0.4278 | 0.4932 | 0.5586 | 0.5821 | 0.6029 | 0.5397 | 0.4899 | 0.5728 | 0.5616 | 0.4835 | 0.5312 |
Pingdingshan | 0.4252 | 0.3892 | 0.3766 | 0.3745 | 0.3849 | 0.5350 | 0.5533 | 0.7756 | 0.3116 | 0.4831 | 0.4609 |
Anyang | 0.3445 | 0.3368 | 0.2413 | 0.2822 | 0.3111 | 0.5705 | 0.5738 | 0.4406 | 0.6335 | 0.6684 | 0.4403 |
Hebi | 0.3462 | 0.2649 | 0.2011 | 0.4209 | 0.5432 | 0.3295 | 0.6037 | 0.6319 | 0.4049 | 0.6405 | 0.4387 |
Xinxiang | 0.1803 | 0.2832 | 0.3377 | 0.6841 | 0.8037 | 0.8226 | 0.7952 | 0.6733 | 0.4175 | 0.5180 | 0.5516 |
Jiaozuo | 0.5108 | 0.5400 | 0.5893 | 0.6077 | 0.5563 | 0.6029 | 0.5758 | 0.4581 | 0.4736 | 0.4806 | 0.5395 |
Puyang | 0.2804 | 0.2765 | 0.3130 | 0.3212 | 0.2758 | 0.2951 | 0.5597 | 0.6961 | 0.7016 | 0.7196 | 0.4439 |
Xuchang | 0.2775 | 0.3347 | 0.3872 | 0.5510 | 0.7081 | 0.7126 | 0.6397 | 0.4435 | 0.6044 | 0.5528 | 0.5211 |
Luohe | 0.2924 | 0.3044 | 0.2775 | 0.2570 | 0.5135 | 0.6769 | 0.7039 | 0.6970 | 0.7125 | 0.7076 | 0.5142 |
Sanmenxia | 0.3895 | 0.4108 | 0.4769 | 0.3748 | 0.3491 | 0.4409 | 0.6718 | 0.5458 | 0.4512 | 0.4458 | 0.4557 |
Nanyang | 0.5046 | 0.4010 | 0.3699 | 0.5604 | 0.5343 | 0.5032 | 0.5185 | 0.5671 | 0.5582 | 0.6106 | 0.5128 |
Shangqiu | 0.5200 | 0.5311 | 0.5315 | 0.5115 | 0.4549 | 0.5312 | 0.5035 | 0.4923 | 0.4547 | 0.4583 | 0.4989 |
Xinyang | 0.3639 | 0.3109 | 0.3648 | 0.6886 | 0.6934 | 0.5728 | 0.3726 | 0.4633 | 0.5211 | 0.5708 | 0.4922 |
Zhoukou | 0.4420 | 0.4654 | 0.4418 | 0.4616 | 0.5046 | 0.5498 | 0.6081 | 0.6277 | 0.5923 | 0.6302 | 0.5324 |
Zhumadian | 0.5716 | 0.4729 | 0.5834 | 0.4951 | 0.5659 | 0.5315 | 0.3449 | 0.5207 | 0.4627 | 0.5723 | 0.5121 |
Jiyuan | 0.4567 | 0.4753 | 0.4746 | 0.5882 | 0.5757 | 0.6063 | 0.6313 | 0.4214 | 0.4006 | 0.4859 | 0.5116 |
City | Responses Index | ||||||||||
2006 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | Mean | |
Zhengzhou | 0.0489 | 0.1984 | 0.2776 | 0.3213 | 0.3817 | 0.4285 | 0.5286 | 0.6028 | 0.8014 | 1.0000 | 0.4589 |
Kaifeng | 0.0000 | 0.0518 | 0.1214 | 0.2553 | 0.4394 | 0.5345 | 0.6693 | 0.7603 | 0.8283 | 1.0000 | 0.4660 |
Luoyang | 0.0000 | 0.0716 | 0.1725 | 0.2522 | 0.2995 | 0.3511 | 0.4827 | 0.5632 | 0.6776 | 1.0000 | 0.3870 |
Pingdingshan | 0.0198 | 0.1566 | 0.2079 | 0.4191 | 0.4754 | 0.5666 | 0.4523 | 0.5955 | 0.7529 | 0.9942 | 0.4640 |
Anyang | 0.0392 | 0.0601 | 0.1160 | 0.2530 | 0.4712 | 0.4923 | 0.6398 | 0.6262 | 0.9010 | 0.8261 | 0.4425 |
Hebi | 0.1394 | 0.1589 | 0.1738 | 0.2964 | 0.4139 | 0.5280 | 0.7842 | 0.5464 | 0.6793 | 0.7952 | 0.4515 |
Xinxiang | 0.1199 | 0.3978 | 0.5245 | 0.6498 | 0.7593 | 0.7366 | 0.5967 | 0.7202 | 0.6675 | 0.5678 | 0.5740 |
Jiaozuo | 0.1666 | 0.3408 | 0.5125 | 0.5116 | 0.5771 | 0.7566 | 0.5248 | 0.4956 | 0.8223 | 0.8121 | 0.5520 |
Puyang | 0.0347 | 0.0382 | 0.0282 | 0.1295 | 0.2727 | 0.3944 | 0.4151 | 0.6314 | 0.6317 | 1.0000 | 0.3576 |
Xuchang | 0.2023 | 0.0961 | 0.1412 | 0.2115 | 0.2873 | 0.2939 | 0.3754 | 0.4785 | 0.3828 | 0.9974 | 0.3467 |
Luohe | 0.0660 | 0.0537 | 0.1382 | 0.1773 | 0.5479 | 0.3481 | 0.4262 | 0.4791 | 0.5394 | 0.6301 | 0.3406 |
Sanmenxia | 0.1280 | 0.0983 | 0.0382 | 0.1585 | 0.2491 | 0.3865 | 0.5666 | 0.7654 | 0.8857 | 0.8822 | 0.4159 |
Nanyang | 0.0014 | 0.0956 | 0.2009 | 0.3312 | 0.5045 | 0.6182 | 0.6928 | 0.8215 | 0.8430 | 0.9919 | 0.5101 |
Shangqiu | 0.0000 | 0.1976 | 0.2400 | 0.2968 | 0.4017 | 0.5322 | 0.6727 | 0.8240 | 0.8537 | 1.0000 | 0.5019 |
Xinyang | 0.0353 | 0.1391 | 0.2431 | 0.3987 | 0.6190 | 0.6993 | 0.5811 | 0.6316 | 0.6081 | 1.0000 | 0.4955 |
Zhoukou | 0.1223 | 0.1566 | 0.2025 | 0.2393 | 0.2766 | 0.3173 | 0.3684 | 0.4583 | 0.5411 | 0.7299 | 0.3412 |
Zhumadian | 0.0000 | 0.0938 | 0.2155 | 0.2458 | 0.3165 | 0.3379 | 0.4255 | 0.4805 | 0.5943 | 1.0000 | 0.3710 |
Jiyuan | 0.0893 | 0.1491 | 0.1376 | 0.2526 | 0.4368 | 0.3255 | 0.4882 | 0.5953 | 0.7302 | 0.9894 | 0.4194 |
References
- Pearce, M.; Willis, E.; Mamerow, L.; Jorgensen, B.; Martin, J. The prestige of sustainable living: Implications for water use in Australia. Geogr. J. 2014, 180, 161–174. [Google Scholar] [CrossRef]
- Molinos-Senante, M.; Mocholi-Arce, M.; Sala-Garrido, R. Estimating the environmental and resource costs of leakage in water distribution systems: A shadow price approach. Sci. Total Environ. 2016, 568, 180–188. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.J.; Zhang, J.Y.; Shahid, S.; Guan, E.H.; Wu, Y.X.; Gao, J.; He, R.M. Adaptation to climate change impacts on water demand. Mitig. Adapt. Strateg. Glob. Chang. 2016, 21, 81–99. [Google Scholar] [CrossRef]
- Salman, D.A.; Amer, S.A.; Ward, F.A. Water Appropriation Systems for Adapting to Water Shortages in Iraq. J. Am. Water Resour. Assoc. 2014, 50, 1208–1225. [Google Scholar] [CrossRef]
- Saglam, Y. Supply-based dynamic Ramsey pricing: Avoiding water shortages. Water Resour. Res. 2015, 51, 669–684. [Google Scholar] [CrossRef]
- Meng, L.; Chen, Y.; Xu, Z.; Ma, F. Evaluation of Sustainable Utilization of Water Resources in Jiangxi Province. Bull. Soil Water Conserv. 2013, 33, 166–170. [Google Scholar]
- Poff, N.L.; Brown, C.M.; Grantham, T.; Matthews, J.H.; Palmer, M.A.; Spence, C.M.; Wilby, R.L.; Haasnoot, M.; Mendoza, G.F.; Dominique, K.C.; et al. Sustainable water management under future uncertainty with eco-engineering decision scaling. Nat. Clim. Chang. 2016, 6, 25–34. [Google Scholar] [CrossRef] [Green Version]
- Gong, L.; Jin, C.L. Fuzzy Comprehensive Evaluation for Carrying Capacity of Regional Water Resources. Water Resour. Manag. 2009, 23, 2505–2513. [Google Scholar] [CrossRef]
- Chaves, H.M.L.; Alipaz, S. An integrated indicator based on basin hydrology, environment, life, and policy: The watershed sustainability index. Water Resour. Manag. 2007, 21, 883–895. [Google Scholar] [CrossRef]
- Juwana, I.; Muttil, N.; Perera, B.J.C. Indicator-based water sustainability assessment—A review. Sci. Total Environ. 2012, 438, 357–371. [Google Scholar] [CrossRef] [PubMed]
- Wada, Y.; Bierkens, M.F.P. Sustainability of global water use: Past reconstruction and future projections. Environ. Res. Lett. 2014, 9, 17. [Google Scholar] [CrossRef]
- Wang, R.; Chen, Y.; Chen, X. Establishment of Indicators System for Sustainability Assessment of Regional Water Resources Use. J. Nat. Resour. 2014, 29, 1441–1452. [Google Scholar]
- Yang, G.; He, X.; Li, J.; Jia, X. The evaluation method of water resources sustainable utilization in Manas River Basin. Acta Ecol. Sin. 2011, 31, 2407–2413. [Google Scholar]
- Zhou, L.; Wang, L.; Yu, J. Assessment System of Water Resource Sustainable Utilization Based on Water Footprint Theory: A Case Study of Jimo. Resour. Sci. 2014, 36, 913–921. [Google Scholar]
- Xu, L.; Huang, Y.; Liu, A. Study on the Carrying Capacity of Water Resources in Jiangsu Province Based on the Principal Component Analysis. Resour. Environ. Yangtze Basin 2011, 20, 1468–1474. [Google Scholar]
- Sarkki, S.; Ficko, A.; Grunewald, K.; Kyriazopoulos, A.P.; Nijnik, M. How pragmatism in environmental science and policy can undermine sustainability transformations: The case of marginalized mountain areas under climate and land-use change. Sustain. Sci. 2017, 12, 549–561. [Google Scholar] [CrossRef]
- Baldwin, C.; Lewison, R.L.; Lieske, S.N.; Seger, M.; Hines, E.; Dearden, P.; Rudd, M.A.; Jones, C.; Satumanatpan, S.; Junchompoo, C. Using the DPSIR framework for transdisciplinary training and knowledge elicitation in the Gulf of Thailand. Ocean Coast. Manag. 2016, 134, 163–172. [Google Scholar] [CrossRef]
- Hannouf, M.; Assefa, G. Life Cycle Sustainability Assessment for Sustainability Improvements: A Case Study of High-Density Polyethylene Production in Alberta, Canada. Sustainability 2017, 9, 2332. [Google Scholar] [CrossRef]
- Debnath, A.; Majumder, M.; Pal, M. A Cognitive Approach in Selection of Source for Water Treatment Plant based on Climatic Impact. Water Resour. Manag. 2015, 29, 1907–1919. [Google Scholar] [CrossRef]
- Chen, W.; Li, W.P.; Chai, H.C.; Hou, E.K.; Li, X.Q.; Ding, X. GIS-based landslide susceptibility mapping using analytical hierarchy process (AHP) and certainty factor (CF) models for the Baozhong region of Baoji City, China. Environ. Earth Sci. 2016, 75, 14. [Google Scholar] [CrossRef]
- Han, B.L.; Liu, H.X.; Wang, R.S. Urban ecological security assessment for cities in the Beijing-Tianjin-Hebei metropolitan region based on fuzzy and entropy methods. Ecol. Model. 2015, 318, 217–225. [Google Scholar] [CrossRef]
- Bao, C.; Zou, J.J. Analysis of spatiotemporal changes of the human-water relationship using water resources constraint intensity index in Northwest China. Ecol. Indic. 2018, 84, 119–129. [Google Scholar] [CrossRef]
- Song, J.Y.; Chung, E.S. Robustness, Uncertainty and Sensitivity Analyses of the TOPSIS Method for Quantitative Climate Change Vulnerability: A Case Study of Flood Damage. Water Resour. Manag. 2016, 30, 4751–4771. [Google Scholar] [CrossRef]
- Santos, J.; Pagsuyoin, S.A.; Latayan, J. A multi-criteria decision analysis framework for evaluating point-of-use water treatment alternatives. Clean Technol. Environ. Policy 2016, 18, 1263–1279. [Google Scholar] [CrossRef]
- Han, M.; Du, H.; Zhang, C.; Li, G.; Shi, L. Water Resources Sustainable Utilization Evaluation Based on the DPSIR in the Yellow River Delta. China Popul. Resour. Environ. 2015, 25, 154–160. [Google Scholar]
- Yu, H.; Han, M. Spatial-temporal Analysis of Sustainable Water Resources Utilization in Shandong Province Based on Water Footprint. J. Nat. Resour. 2017, 32, 474–483. [Google Scholar]
Factor | Indicators | Unit | Character | Identifier |
---|---|---|---|---|
Driving forces | GDP Growth Rate | % | + | D1 |
Population Growth Rate | ‰ | + | D2 | |
Urbanization Rate | % | + | D3 | |
Population Density | Pop. per km2 | + | D4 | |
Pressures | Unit GDP Water Consumption | m3 | − | P1 |
Household Water Consumption | 109 m3 | − | P2 | |
Farmland Irrigation Water Consumption | 109 m3 | − | P3 | |
Sewage Discharge | 109 m3 | − | P4 | |
Total Water Consumption | 109 m3 | − | P5 | |
States | Water Production Modulus | 103 m3 km2 | + | S1 |
Total Water Resources | 109 m3 | + | S2 | |
Annual Precipitation | mm | + | S3 | |
Per Capita Water Consumption | m3 | − | S4 | |
Impacts | Water Source Compliance Rate | % | + | I1 |
River Water Quality Compliance Rate | % | + | I2 | |
Per Capita Disposable Income | Yuan | + | I3 | |
Industrial Added Value Water Consumption | m3 | − | I4 | |
Responses | The Proportion of Tertiary Industry | % | + | R1 |
Sewage Treatment Rate | % | + | R2 | |
Forest Cover Rage | % | + | R3 | |
Investment in Water Conservancy Projects | 109 Yuan | + | R4 |
Factor | Identifier | AHP Weights (W1) | Entropy Weights (W2) | Combination Weights (W) |
---|---|---|---|---|
Driving forces (W 0.2118) | D1 | 0.3369 | 0.2527 | 0.3352 |
D2 | 0.2382 | 0.2735 | 0.2565 | |
D3 | 0.2833 | 0.2579 | 0.2878 | |
D4 | 0.1416 | 0.2159 | 0.1205 | |
Pressures (W 0.2406) | P1 | 0.1634 | 0.1949 | 0.1674 |
P2 | 0.1238 | 0.1920 | 0.1251 | |
P3 | 0.2685 | 0.1652 | 0.2334 | |
P4 | 0.1018 | 0.2630 | 0.1408 | |
P5 | 0.3425 | 0.1849 | 0.3333 | |
States (W 0.1071) | S1 | 0.1665 | 0.2223 | 0.1503 |
S2 | 0.4079 | 0.2224 | 0.3681 | |
S3 | 0.1064 | 0.2753 | 0.1189 | |
S4 | 0.3192 | 0.2800 | 0.3627 | |
Impacts (W 0.1019) | I1 | 0.2833 | 0.3367 | 0.3938 |
I2 | 0.3369 | 0.1714 | 0.2384 | |
I3 | 0.1416 | 0.2908 | 0.1701 | |
I4 | 0.2382 | 0.2011 | 0.1977 | |
Responses (W 0.3386) | R1 | 0.3317 | 0.2997 | 0.3957 |
R2 | 0.1972 | 0.2363 | 0.1855 | |
R3 | 0.1394 | 0.2535 | 0.1407 | |
R4 | 0.3317 | 0.2105 | 0.2780 |
2006 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | |
---|---|---|---|---|---|---|---|---|---|---|
DPSIR | 0.2507 | 0.3171 | 0.2963 | 0.3342 | 0.4451 | 0.4750 | 0.4896 | 0.5303 | 0.6273 | 0.6827 |
D | 0.6317 | 0.6864 | 0.5820 | 0.5115 | 0.5698 | 0.5827 | 0.4532 | 0.3731 | 0.3667 | 0.3452 |
P | 0.3171 | 0.4746 | 0.3627 | 0.3440 | 0.4052 | 0.4445 | 0.4002 | 0.3980 | 0.6772 | 0.5841 |
S | 0.3805 | 0.5284 | 0.3626 | 0.3458 | 0.6469 | 0.5561 | 0.2350 | 0.1598 | 0.3386 | 0.2847 |
I | 0.3962 | 0.3924 | 0.4010 | 0.4725 | 0.5097 | 0.5382 | 0.5639 | 0.5529 | 0.5235 | 0.5676 |
R | 0.0674 | 0.1419 | 0.2051 | 0.3000 | 0.4294 | 0.4804 | 0.5384 | 0.6153 | 0.7078 | 0.9009 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jia, Y.; Shen, J.; Wang, H.; Dong, G.; Sun, F. Evaluation of the Spatiotemporal Variation of Sustainable Utilization of Water Resources: Case Study from Henan Province (China). Water 2018, 10, 554. https://doi.org/10.3390/w10050554
Jia Y, Shen J, Wang H, Dong G, Sun F. Evaluation of the Spatiotemporal Variation of Sustainable Utilization of Water Resources: Case Study from Henan Province (China). Water. 2018; 10(5):554. https://doi.org/10.3390/w10050554
Chicago/Turabian StyleJia, Yizhen, Juqin Shen, Han Wang, Guanghua Dong, and Fuhua Sun. 2018. "Evaluation of the Spatiotemporal Variation of Sustainable Utilization of Water Resources: Case Study from Henan Province (China)" Water 10, no. 5: 554. https://doi.org/10.3390/w10050554
APA StyleJia, Y., Shen, J., Wang, H., Dong, G., & Sun, F. (2018). Evaluation of the Spatiotemporal Variation of Sustainable Utilization of Water Resources: Case Study from Henan Province (China). Water, 10(5), 554. https://doi.org/10.3390/w10050554