A Review of Offshore Methane Quantification Methodologies
Abstract
:1. Introduction
2. Materials and Methods
2.1. Component Level Measurements
2.2. Downwind Dispersion Approach—Gaussian Plume Inverse Approach
2.3. Tracer Flux
2.4. Mass Balance Approaches
2.5. Remote Sensing: Aircraft and Satellite-Based Methods
3. Results
3.1. Published Emission Estimates from Offshore Facilities
3.2. Measurement Methods’ Average Emissions
- Downwind dispersion: 32 kg h−1 from 188 facilities.
- Mass balance: 118 kg h−1 from 104 platforms.
- Tracer flux: 122 kg h−1 from 5 platforms.
- Aircraft remote sensing: 284 kg h−1 from 151 platforms.
- Satellite remote sensing: 19,088 kg h−1 from 10 platforms.
3.3. Potential Measurement Uncertainty and Bias—Case Study Gulf of Mexico
4. Discussion
4.1. Review of Methods
4.2. Possible Causes of Bias or Uncertainty in the Methodologies
- In most mass balance surveys, the size and shape of the downwind plume are generated by extrapolating between measurements made at different altitudes. If observations do not extend from 0 m above sea level to the top of the boundary layer, then an extrapolation could be made from the lowest/highest transect height to either sea level or the boundary layer height. A scenario could feasibly exist where a large concentration measurement is observed at the top/bottom transect which is then used to extrapolate a large vertical distance. This would likely result in an overestimation of the vertical size of the plume and overall emission. Care must be taken to ensure that transects bound the top and bottom of the plume.
- If transect measurements are made at relatively sparse vertical sampling heights between sea level and the boundary layer, the plume could be missed and result in zero emissions being observed. This could affect laminar plumes in a stratified MBL as these are likely to be less vertically dispersed than in a well-mixed atmosphere.
- If the winds move the plume vertically on a timescale faster than the time of repeat observations at different heights, plume dynamics could cause you a “double count” if the plume, i.e., the centerline of the plume shifts upwards while the flight is going from low to high, in this way, the calculated emission rate would likely end up with an overestimate.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Statistica. Production of Natural Gas Worldwide in 2022 with a Forecast for 2030 to 2050, by Project Location. Available online: https://www.statista.com/statistics/1365007/natural-gas-production-by-project-location-worldwide/ (accessed on 23 March 2024).
- EIA. Offshore Production Nearly 30% of Global Crude Oil Output in 2015. Available online: https://www.eia.gov/todayinenergy/detail.php?id=28492 (accessed on 28 December 2021).
- EIA. Oil and Petroleum Products Explained Offshore Oil and Natural Gas. Available online: https://www.eia.gov/energyexplained/oil-and-petroleum-products/offshore-oil-and-gas-in-depth.php (accessed on 10 June 2020).
- Biener, K.J.; Gorchov Negron, A.M.; Kort, E.A.; Ayasse, A.K.; Chen, Y.; MacLean, J.-P.; McKeever, J. Temporal Variation and Persistence of Methane Emissions from Shallow Water Oil and Gas Production in the Gulf of Mexico. Environ. Sci. Technol. 2024, 58, 4948–4956. [Google Scholar] [CrossRef] [PubMed]
- Gorchov Negron, A.M.; Kort, E.A.; Chen, Y.; Brandt, A.R.; Smith, M.L.; Plant, G.; Ayasse, A.K.; Schwietzke, S.; Zavala-Araiza, D.; Hausman, C.; et al. Excess Methane Emissions from Shallow Water Platforms Elevate the Carbon Intensity of US Gulf of Mexico Oil and Gas Production. Proc. Natl. Acad. Sci. USA 2023, 120, e2215275120. [Google Scholar] [CrossRef] [PubMed]
- Gorchov Negron, A.M.; Kort, E.A.; Conley, S.A.; Smith, M.L. Airborne Assessment of Methane Emissions from Offshore Platforms in the U.S. Gulf of Mexico. Environ. Sci. Technol. 2020, 54, 5112–5120. [Google Scholar] [CrossRef]
- Ayasse, A.K.; Thorpe, A.K.; Cusworth, D.H.; Kort, E.A.; Negron, A.G.; Heckler, J.; Asner, G.; Duren, R.M. Methane Remote Sensing and Emission Quantification of Offshore Shallow Water Oil and Gas Platforms in the Gulf of Mexico. Environ. Res. Lett. 2022, 17, 084039. [Google Scholar] [CrossRef]
- Yacovitch, T.I.; Daube, C.; Herndon, S.C. Methane Emissions from Offshore Oil and Gas Platforms in the Gulf of Mexico. Environ. Sci. Technol. 2020, 54, 3530–3538. [Google Scholar] [CrossRef]
- Speight, J.G. Handbook of Offshore Oil and Gas Operations, 1st ed.; Elsevier Gulf Professional Publishing: Amsterdam, The Netherlands; Boston, MA, USA; Waltham, MA, USA, 2015; ISBN 978-1-85617-558-6. [Google Scholar]
- BSEE. Bureau of Safety and Environmental Enforcement (BSEE) Data Center. Available online: https://www.data.bsee.gov/Main/Default.aspx (accessed on 23 March 2024).
- Barkley, Z.; Davis, K.; Miles, N.; Richardson, S.; Deng, A.; Hmiel, B.; Lyon, D.; Lauvaux, T. Quantification of Oil and Gas Methane Emissions in the Delaware and Marcellus Basins Using a Network of Continuous Tower-Based Measurements. Atmos. Chem. Phys. 2023, 23, 6127–6144. [Google Scholar] [CrossRef]
- Alvarez, R.A.; Zavala-Araiza, D.; Lyon, D.R.; Allen, D.T.; Barkley, Z.R.; Brandt, A.R.; Davis, K.J.; Herndon, S.C.; Jacob, D.J.; Karion, A.; et al. Assessment of Methane Emissions from the U.S. Oil and Gas Supply Chain. Science 2018, 361, eaar7204. [Google Scholar] [CrossRef]
- Ravikumar, A.P.; Wang, J.; Brandt, A.R. Are Optical Gas Imaging Technologies Effective For Methane Leak Detection? Environ. Sci. Technol. 2017, 51, 718–724. [Google Scholar] [CrossRef]
- Rutherford, J.S.; Sherwin, E.D.; Ravikumar, A.P.; Heath, G.A.; Englander, J.; Cooley, D.; Lyon, D.; Omara, M.; Langfitt, Q.; Brandt, A.R. Closing the Methane Gap in US Oil and Natural Gas Production Emissions Inventories. Nat. Commun. 2021, 12, 4715. [Google Scholar] [CrossRef]
- Omara, M.; Sullivan, M.R.; Li, X.; Subramanian, R.; Robinson, A.L.; Presto, A.A. Methane Emissions from Conventional and Unconventional Natural Gas Production Sites in the Marcellus Shale Basin. Environ. Sci. Technol. 2016, 50, 2099–2107. [Google Scholar] [CrossRef]
- Robertson, A.M.; Edie, R.; Field, R.A.; Lyon, D.; McVay, R.; Omara, M.; Zavala-Araiza, D.; Murphy, S.M. New Mexico Permian Basin Measured Well Pad Methane Emissions Are a Factor of 5–9 Times Higher Than U.S. EPA Estimates. Environ. Sci. Technol. 2020, 54, 13926–13934. [Google Scholar] [CrossRef]
- Sherwin, E.D.; Rutherford, J.S.; Chen, Y.; Aminfard, S.; Kort, E.A.; Jackson, R.B.; Brandt, A.R. Single-Blind Validation of Space-Based Point-Source Detection and Quantification of Onshore Methane Emissions. Sci. Rep. 2023, 13, 3836. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2022: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Pörtner, H.-O., Roberts, D.C., Tignor, M., Poloczanska, E.S., Mintenbeck, K., Alegría, A., Craig, M., Langsdorf, S., Löschke, S., Möller, V., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2022; ISBN 978-1-009-32584-4. [Google Scholar]
- Stocker, T. (Ed.) Climate Change 2013: The Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2014; ISBN 978-1-107-41532-4. [Google Scholar]
- Nisbet, E.G.; Fisher, R.E.; Lowry, D.; France, J.L.; Allen, G.; Bakkaloglu, S.; Broderick, T.J.; Cain, M.; Coleman, M.; Fernandez, J.; et al. Methane Mitigation: Methods to Reduce Emissions, on the Path to the Paris Agreement. Rev. Geophys. 2020, 58, e2019RG000675. [Google Scholar] [CrossRef]
- Nisbet, E.G.; Manning, M.R.; Dlugokencky, E.J.; Fisher, R.E.; Lowry, D.; Michel, S.E.; Myhre, C.L.; Platt, S.M.; Allen, G.; Bousquet, P.; et al. Very Strong Atmospheric Methane Growth in the 4 Years 2014–2017: Implications for the Paris Agreement. Global Biogeochem. Cycles 2019, 33, 318–342. [Google Scholar] [CrossRef]
- Vaughn, T.L.; Bell, C.S.; Yacovitch, T.I.; Roscioli, J.R.; Herndon, S.C.; Conley, S.; Schwietzke, S.; Heath, G.A.; Pétron, G.; Zimmerle, D. Comparing Facility-Level Methane Emission Rate Estimates at Natural Gas Gathering and Boosting Stations. Elem. Sci. Anthr. 2017, 5, 71. [Google Scholar] [CrossRef]
- Bell, C.S.; Vaughn, T.L.; Zimmerle, D.; Herndon, S.C.; Yacovitch, T.I.; Heath, G.A.; Pétron, G.; Edie, R.; Field, R.A.; Murphy, S.M.; et al. Comparison of Methane Emission Estimates from Multiple Measurement Techniques at Natural Gas Production Pads. Elem. Sci. Anthr. 2017, 5, 79. [Google Scholar] [CrossRef]
- Riddick, S.N.; Mbua, M.; Santos, A.; Emerson, E.W.; Cheptonui, F.; Houlihan, C.; Hodshire, A.L.; Anand, A.; Hartzell, W.; Zimmerle, D.J. Methane Emissions from Abandoned Oil and Gas Wells in Colorado. Sci. Total Environ. 2024, 922, 170990. [Google Scholar] [CrossRef]
- Caulton, D.R.; Li, Q.; Bou-Zeid, E.; Fitts, J.P.; Golston, L.M.; Pan, D.; Lu, J.; Lane, H.M.; Buchholz, B.; Guo, X.; et al. Quantifying Uncertainties from Mobile-Laboratory-Derived Emissions of Well Pads Using Inverse Gaussian Methods. Atmos. Chem. Phys. 2018, 18, 15145–15168. [Google Scholar] [CrossRef]
- Edie, R.; Robertson, A.M.; Field, R.A.; Soltis, J.; Snare, D.A.; Zimmerle, D.; Bell, C.S.; Vaughn, T.L.; Murphy, S.M. Constraining the Accuracy of Flux Estimates Using OTM 33A. Atmos. Meas. Tech. 2020, 13, 341–353. [Google Scholar] [CrossRef]
- Riddick, S.N.; Cheptonui, F.; Yuan, K.; Mbua, M.; Day, R.; Vaughn, T.L.; Duggan, A.; Bennett, K.E.; Zimmerle, D.J. Estimating Regional Methane Emission Factors from Energy and Agricultural Sector Sources Using a Portable Measurement System: Case Study of the Denver–Julesburg Basin. Sensors 2022, 22, 7410. [Google Scholar] [CrossRef]
- Lamb, B.K.; McManus, J.B.; Shorter, J.H.; Kolb, C.E.; Mosher, B.; Harriss, R.C.; Allwine, E.; Blaha, D.; Howard, T.; Guenther, A.; et al. Development of Atmospheric Tracer Methods To Measure Methane Emissions from Natural Gas Facilities and Urban Areas. Environ. Sci. Technol. 1995, 29, 1468–1479. [Google Scholar] [CrossRef] [PubMed]
- Conley, S.A.; Faloona, I.C.; Lenschow, D.H.; Karion, A.; Sweeney, C. A Low-Cost System for Measuring Horizontal Winds from Single-Engine Aircraft. J. Atmos. Ocean. Technol. 2014, 31, 1312–1320. [Google Scholar] [CrossRef]
- Cusworth, D.H.; Jacob, D.J.; Varon, D.J.; Chan Miller, C.; Liu, X.; Chance, K.; Thorpe, A.K.; Duren, R.M.; Miller, C.E.; Thompson, D.R.; et al. Potential of Next-Generation Imaging Spectrometers to Detect and Quantify Methane Point Sources from Space. Atmos. Meas. Tech. 2019, 12, 5655–5668. [Google Scholar] [CrossRef]
- Duren, R.M.; Thorpe, A.K.; Foster, K.T.; Rafiq, T.; Hopkins, F.M.; Yadav, V.; Bue, B.D.; Thompson, D.R.; Conley, S.; Colombi, N.K.; et al. California’s Methane Super-Emitters. Nature 2019, 575, 180–184. [Google Scholar] [CrossRef] [PubMed]
- Kunkel, W.M.; Carre-Burritt, A.E.; Aivazian, G.S.; Snow, N.C.; Harris, J.T.; Mueller, T.S.; Roos, P.A.; Thorpe, M.J. Extension of Methane Emission Rate Distribution for Permian Basin Oil and Gas Production Infrastructure by Aerial LiDAR. Environ. Sci. Technol. 2023, 57, 12234–12241. [Google Scholar] [CrossRef]
- Ayasse, A.K.; Dennison, P.E.; Foote, M.; Thorpe, A.K.; Joshi, S.; Green, R.O.; Duren, R.M.; Thompson, D.R.; Roberts, D.A. Methane Mapping with Future Satellite Imaging Spectrometers. Remote Sens. 2019, 11, 3054. [Google Scholar] [CrossRef]
- Jervis, D.; McKeever, J.; Durak, B.O.A.; Sloan, J.J.; Gains, D.; Varon, D.J.; Ramier, A.; Strupler, M.; Tarrant, E. The GHGSat-D Imaging Spectrometer. Atmos. Meas. Tech. 2021, 14, 2127–2140. [Google Scholar] [CrossRef]
- MacLean, J.-P.W.; Girard, M.; Jervis, D.; Marshall, D.; McKeever, J.; Ramier, A.; Strupler, M.; Tarrant, E.; Young, D. Offshore Methane Detection and Quantification from Space Using Sun Glint Measurements with the GHGSat Constellation. Atmos. Meas. Tech. 2024, 17, 863–874. [Google Scholar] [CrossRef]
- Irakulis-Loitxate, I.; Gorroño, J.; Zavala-Araiza, D.; Guanter, L. Satellites Detect a Methane Ultra-Emission Event from an Offshore Platform in the Gulf of Mexico. Environ. Sci. Technol. Lett. 2022, 9, 520–525. [Google Scholar] [CrossRef]
- Valverde, A.; Irakulis-Loitxate, I.; Roger, J.; Gorroño, J.; Guanter, L. Satellite Characterization of Methane Point Sources by Offshore Oil and Gas PlatForms. Environ. Sci. Proc. 2023, 28, 22. [Google Scholar]
- Stamnes, K. Methane Detection from Space: Use of Sunglint. Opt. Eng. 2006, 45, 016202. [Google Scholar] [CrossRef]
- Seinfeld, J.H.; Pandis, S.N. Atmospheric Chemistry and Physics: From Air Pollution to Climate Change, 3rd ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2016; ISBN 978-1-118-94740-1. [Google Scholar]
- Garratt, J. Review: The Atmospheric Boundary Layer. Earth-Sci. Rev. 1994, 37, 89–134. [Google Scholar] [CrossRef]
- Garratt, J.R. The Atmospheric Boundary Layer; Cambridge Atmospheric and Space Science Series; Cambridge University Press: Cambridge, UK, 1994; ISBN 978-0-521-46745-2. [Google Scholar]
- Albrecht, B.A.; Jensen, M.P.; Syrett, W.J. Marine Boundary Layer Structure and Fractional Cloudiness. J. Geophys. Res. 1995, 100, 14209–14222. [Google Scholar] [CrossRef]
- Galewsky, J.; Jensen, M.P.; Delp, J. Marine Boundary Layer Decoupling and the Stable Isotopic Composition of Water Vapor. JGR Atmos. 2022, 127, e2021JD035470. [Google Scholar] [CrossRef]
- BOEM US Bureau of Ocean Energy Management (BOEM). Outer Continental Shelf Air Quality System (OCS AQS): Year 2021 Emissions Inventory. Available online: https://www.boem.gov/Gulfwide-Offshore-Activity-Data-System-GOADS/ (accessed on 23 March 2024).
- Heath SEMTECH® HI-FLOW 2. Available online: https://heathus.com/product/semtech-hi-flow-2/ (accessed on 17 May 2025).
- Vaughn, T.L.; Ross, C.; Zimmerle, D.J.; Bennett, K.E.; Harrison, M.; Wilson, A.; Johnson, C. Open-Source High Flow Sampler for Natural Gas Leak Quantification. Available online: https://mountainscholar.org/items/ad820fd7-ee72-4277-afbd-0eb96231d95f (accessed on 17 May 2025).
- Riddick, S.N.; Ancona, R.; Mbua, M.; Bell, C.S.; Duggan, A.; Vaughn, T.L.; Bennett, K.; Zimmerle, D.J. A Quantitative Comparison of Methods Used to Measure Smaller Methane Emissions Typically Observed from Superannuated Oil and Gas Infrastructure. Atmos. Meas. Tech. 2022, 15, 6285–6296. [Google Scholar] [CrossRef]
- Pasquill, F. Atmospheric diffusion. By F. Pasquill. London (Van Nostrand Co.), 1962. Pp. Xii, 297; 60s. Q. J. R. Meteorol. Soc. 1962, 88, 202–203. [Google Scholar] [CrossRef]
- Pasquill, F. Limitations and Prospects in the Estimation of Dispersion of Pollution on a Regional Scale. In Advances in Geophysics; Elsevier: Amsterdam, The Netherlands, 1975; Volume 18, pp. 1–13. ISBN 978-0-12-018848-2. [Google Scholar]
- Pasquill, F.; Smith, F.B. Atmospheric Diffusion, 3rd ed.; Ellis Horwood, (John Wiley & Sons): Chichester, UK, 1983; Volume 110. [Google Scholar]
- US EPA Industrial Source Complex (ISC3) Dispersion Model; User’s Guide. EPA 454/B 95 003a (Vol. I) and EPA 454/B 95 003b (Vol. II); U.S. Environmental Protection Agency: Research Triangle Park, NC, USA, 1995.
- Blackall, T.D.; Wilson, L.J.; Bull, J.; Theobald, M.R.; Bacon, P.J.; Hamer, K.C.; Wanless, S.; Sutton, M.A. Temporal Variation in Atmospheric Ammonia Concentrations Above Seabird Colonies. Atmos. Environ. 2008, 42, 6942–6950. [Google Scholar] [CrossRef]
- Blackall, T.D.; Wilson, L.J.; Theobald, M.R.; Milford, C.; Nemitz, E.; Bull, J.; Bacon, P.J.; Hamer, K.C.; Wanless, S.; Sutton, M.A. Ammonia Emissions from Seabird Colonies. Geophys. Res. Lett. 2007, 34. [Google Scholar] [CrossRef]
- Denmead, O.T. Approaches to Measuring Fluxes of Methane and Nitrous Oxide Between Landscapes and the Atmosphere. Plant Soil 2008, 309, 5–24. [Google Scholar] [CrossRef]
- Subramanian, R.; Williams, L.L.; Vaughn, T.L.; Zimmerle, D.; Roscioli, J.R.; Herndon, S.C.; Yacovitch, T.I.; Floerchinger, C.; Tkacik, D.S.; Mitchell, A.L.; et al. Methane Emissions from Natural Gas Compressor Stations in the Transmission and Storage Sector: Measurements and Comparisons with the EPA Greenhouse Gas Reporting Program Protocol. Environ. Sci. Technol. 2015, 49, 3252–3261. [Google Scholar] [CrossRef]
- Allen, D.T. Emissions from Oil and Gas Operations in the United States and Their Air Quality Implications. J. Air Waste Manag. Assoc. 2016, 66, 549–575. [Google Scholar] [CrossRef] [PubMed]
- Fredenslund, A.M.; Rees-White, T.C.; Beaven, R.P.; Delre, A.; Finlayson, A.; Helmore, J.; Allen, G.; Scheutz, C. Validation and Error Assessment of the Mobile Tracer Gas Dispersion Method for Measurement of Fugitive Emissions from Area Sources. Waste Manag. 2019, 83, 68–78. [Google Scholar] [CrossRef] [PubMed]
- Conley, S.; Faloona, I.; Mehrotra, S.; Suard, M.; Lenschow, D.H.; Sweeney, C.; Herndon, S.; Schwietzke, S.; Pétron, G.; Pifer, J.; et al. Application of Gauss’s Theorem to Quantify Localized Surface Emissions from Airborne Measurements of Wind and Trace Gases. Atmos. Meas. Tech. 2017, 10, 3345–3358. [Google Scholar] [CrossRef]
- Cooper, J.; Dubey, L.; Hawkes, A. Methane Detection and Quantification in the Upstream Oil and Gas Sector: The Role of Satellites in Emissions Detection, Reconciling and Reporting. Environ. Sci. Atmos. 2022, 2, 9–23. [Google Scholar] [CrossRef]
- Schneising, O.; Buchwitz, M.; Reuter, M.; Bovensmann, H.; Burrows, J.P.; Borsdorff, T.; Deutscher, N.M.; Feist, D.G.; Griffith, D.W.T.; Hase, F.; et al. A Scientific Algorithm to Simultaneously Retrieve Carbon Monoxide and Methane from TROPOMI Onboard Sentinel-5 Precursor. Atmos. Meas. Tech. 2019, 12, 6771–6802. [Google Scholar] [CrossRef]
- Veefkind, J.P.; Aben, I.; McMullan, K.; Förster, H.; De Vries, J.; Otter, G.; Claas, J.; Eskes, H.J.; De Haan, J.F.; Kleipool, Q.; et al. TROPOMI on the ESA Sentinel-5 Precursor: A GMES Mission for Global Observations of the Atmospheric Composition for Climate, Air Quality and Ozone Layer Applications. Remote Sens. Environ. 2012, 120, 70–83. [Google Scholar] [CrossRef]
- Riddick, S.N.; Mauzerall, D.L.; Celia, M.; Harris, N.R.P.; Allen, G.; Pitt, J.; Staunton-Sykes, J.; Forster, G.L.; Kang, M.; Lowry, D.; et al. Methane Emissions from Oil and Gas Platforms in the North Sea. Atmos. Chem. Phys. 2019, 19, 9787–9796. [Google Scholar] [CrossRef]
- Nara, H.; Tanimoto, H.; Tohjima, Y.; Mukai, H.; Nojiri, Y.; Machida, T. Emissions of Methane from Offshore Oil and Gas Platforms in Southeast Asia. Sci. Rep. 2015, 4, 6503. [Google Scholar] [CrossRef]
- Zang, K.; Zhang, G.; Wang, J. Methane Emissions from Oil and Gas Platforms in the Bohai Sea, China. Environ. Pollut. 2020, 263, 114486. [Google Scholar] [CrossRef]
- Hensen, A.; Velzeboer, I.; Frumau, K.F.A.; van den Bulk, W.C.M.; van Dinter, D. Methane Emission Measurements of Offshore Oil and Gas Platforms; TNO: Petten, The Netherlands, 2019; p. 94. [Google Scholar]
- Khaleghi, A.; MacKay, K.; Darlington, A.; James, L.A.; Risk, D. Methane Emission Rate Estimates of Offshore Oil Platforms in Newfoundland and Labrador, Canada. Elem. Sci. Anthr. 2024, 12, 00025. [Google Scholar] [CrossRef]
- Fiehn, A.; Eckl, M.; Bräuer, T.; Pühl, M.; Dapurkar, N.; Gottschaldt, K.-D.; Aufmhoff, H.; Eirenschmalz, L.; Neumann, G.; Sakellariou, F.; et al. Aircraft-Based Mass Balance Estimate of Methane Emissions from the Offshore Oil Industry in Angola. In Proceedings of the EGU General Assembly 2024, Vienna, Austria, 14–19 April 2024. [Google Scholar]
- Pühl, M.; Roiger, A.; Fiehn, A.; Gorchov Negron, A.M.; Kort, E.A.; Schwietzke, S.; Pisso, I.; Foulds, A.; Lee, J.; France, J.L.; et al. Aircraft-Based Mass Balance Estimate of Methane Emissions from Offshore Gas Facilities in the Southern North Sea. Atmos. Chem. Phys. 2024, 24, 1005–1024. [Google Scholar] [CrossRef]
- Zavala-Araiza, D.; Omara, M.; Gautam, R.; Smith, M.L.; Pandey, S.; Aben, I.; Almanza-Veloz, V.; Conley, S.; Houweling, S.; Kort, E.A.; et al. A Tale of Two Regions: Methane Emissions from Oil and Gas Production in Offshore/Onshore Mexico. Environ. Res. Lett. 2021, 16, 024019. [Google Scholar] [CrossRef]
- Jiménez, M.A.; Simó, G.; Wrenger, B.; Telisman-Prtenjak, M.; Guijarro, J.A.; Cuxart, J. Morning Transition Case Between the Land and the Sea Breeze Regimes. Atmos. Res. 2016, 172–173, 95–108. [Google Scholar] [CrossRef]
- Foulds, A.; Allen, G.; Shaw, J.T.; Bateson, P.; Barker, P.A.; Huang, L.; Pitt, J.R.; Lee, J.D.; Wilde, S.E.; Dominutti, P.; et al. Quantification and Assessment of Methane Emissions from Offshore Oil and Gas Facilities on the Norwegian Continental Shelf. Atmos. Chem. Phys. 2022, 22, 4303–4322. [Google Scholar] [CrossRef]
- Lee, J.D.; Mobbs, S.D.; Wellpott, A.; Allen, G.; Bauguitte, S.J.-B.; Burton, R.R.; Camilli, R.; Coe, H.; Fisher, R.E.; France, J.L.; et al. Flow Rate and Source Reservoir Identification from Airborne Chemical Sampling of the Uncontrolled Elgin Platform Gas Release. Atmos. Meas. Tech. 2018, 11, 1725–1739. [Google Scholar] [CrossRef]
- Cain, M.; Warwick, N.J.; Fisher, R.E.; Lowry, D.; Lanoisellé, M.; Nisbet, E.G.; France, J.; Pitt, J.; O’Shea, S.; Bower, K.N.; et al. A Cautionary Tale: A Study of a Methane Enhancement over the North Sea. J. Geophys. Res. Atmos. 2017, 122, 7630–7645. [Google Scholar] [CrossRef]
- Purvis, R.; Lee, J.; Moore, T.; Burton, R.; Hopkins, J.; Lewis, A.; Mobbs, S.; Young, S. Emissions of Methane and Volatile Organic Compounds from Offshore Oil Loading Using Shuttle Tankers. In Proceedings of the EGU General Assembly 2024, Vienna, Austria, 14–19 April 2024. [Google Scholar]
- France, J.L.; Bateson, P.; Dominutti, P.; Allen, G.; Andrews, S.; Bauguitte, S.; Coleman, M.; Lachlan-Cope, T.; Fisher, R.E.; Huang, L.; et al. Facility Level Measurement of Offshore Oil and Gas Installations from a Medium-Sized Airborne Platform: Method Development for Quantification and Source Identification of Methane Emissions. Atmos. Meas. Tech. 2021, 14, 71–88. [Google Scholar] [CrossRef]
- Dahan, B.; Machuca, V.; Castillo, R.; Hess, M. Gulf of Mexico Health & Air Quality II Mapping Methane Emission Plumes Using Sunglint-Configured Imagery for Monitoring Offshore Oil & Gas Activity. NASA DEVELOP National Program California—JPL. Fall 2022. Available online: https://ntrs.nasa.gov/api/citations/20230001674/downloads/20230001674.pdf (accessed on 5 May 2025).
- Riddick, S.N.; Mauzerall, D.L. Likely Substantial Underestimation of Reported Methane Emissions from United Kingdom Upstream Oil and Gas Activities. Energy Environ. Sci. 2023, 16, 295–304. [Google Scholar] [CrossRef]
Lead Author | Region of Study | Method | Type of Platforms Sampled | # Platforms Sampled | Av. Emission | Max. Emission | Min. Emission |
---|---|---|---|---|---|---|---|
Yacovitch | GoM | D | Caisson | 29 | 9.5 | 94.2 | 0.0 |
Yacovitch | GoM | D | Compliant tower | 1 | 2.7 | 2.7 | 2.7 |
Yacovitch | GoM | D | Drillship | 3 | 0.0 | 0.0 | 0.0 |
Yacovitch | GoM | D | Fixed Leg | 54 | 25.4 | 185 | 0.0 |
Yacovitch | GoM | D | Mini Tension Leg | 1 | 5.8 | 5.8 | 5.8 |
Yacovitch | GoM | D | Semi-Sub | 2 | 0.2 | 0.3 | 0.0 |
Yacovitch | GoM | D | SPAR | 2 | 2.1 | 4.1 | 0.0 |
Yacovitch | GoM | D | Tension leg | 3 | 0.0 | 0.0 | 0.0 |
Yacovitch | GoM | D | Well Protector | 3 | 34.8 | 63.2 | 0.0 |
Yacovitch | GoM | D | Unidentified | 5 | 4.5 | 18.2 | 0.0 |
Riddick | North Sea | D | Fixed Leg | 7 | 22.8 | 65.2 | 4.0 |
Riddick | North Sea | D | FPSO | 1 | 80.3 | 80.3 | 80.3 |
Nara | Malaysia | MB | Unidentified | 8 | 449 | 1536 | 14.0 |
Nara | Borneo | MB | Unidentified | 6 | 60.8 | 165.6 | 6.5 |
Hensen | North Sea | D | Fixed leg | 37 | 23 | 151.2 | 0.04 |
Hensen | North Sea | TF | Fixed leg | 5 | 122 | 194.4 | 18.4 |
Hensen | North Sea | D | Fixed leg | 37 | 70 | 126 | 10.4 |
Khaleghi | Canada | D | Fixed Leg | 2 | 187.5 | 260.1 | 114.9 |
Khaleghi | Canada | D | FPSO | 1 | 93.1 | 93.1 | 93.1 |
Khaleghi | Canada | MB | Fixed Leg | 2 | 128.1 | 232.7 | 23.5 |
Khaleghi | Canada | MB | FPSO | 1 | 79.4 | 79.4 | 79.4 |
Pühl | North Sea | MB | Fixed Leg | 7 | 213.2 | 1258.7 | 12.1 |
Gorchov Negron | GoM | MB | Fixed Leg | 56 | 103 | 901 | −41 |
Gorchov Negron | GoM | MB | Caisson | 0 | 0 | 0 | 0 |
Gorchov Negron | GoM | MB | Fixed Leg | 2 | 58.5 | 86 | 31 |
Gorchov Negron | GoM | MB | Tension Leg | 2 | 66 | 92 | 40 |
Gorchov Negron | GoM | MB | SPAR | 2 | 59.5 | 96 | 23 |
Foulds | North Sea | MB | Unspecified | 3 | 73.1 | 136.9 | 26.2 |
Foulds | North Sea | MB | Unspecified | 15 | 11.2 | 61.6 | −0.1 |
Valverde | Malaysia | RSS | Unspecified | 1 | 23,000 | ||
Valverde | Malaysia | RSS | Unspecified | 1 | 5000 | ||
Irakulis-Loitxate | GoM | RSS | Unspecified | 1 | 99,000 | ||
Dahan | GoM | RSS | Unspecified | 1 | 24,710 | ||
Dahan | GoM | RSS | Unspecified | 1 | 9630 | ||
Dahan | GoM | RSS | Unspecified | 1 | 27,569 | ||
MacLean | GoM | RSS | Unspecified | 3 | 273 | 390 | 180 |
MacLean | East Africa | RSS | Unspecified | 1 | 1160 | ||
Ayasse | GoM | RSA | Mixed | 151 | 284 | 4930 | 30 |
Classification | Subset 1 | Subset 2 | Subset 3 | Subset 4 |
---|---|---|---|---|
Total | ||||
Platforms measured | 131 | 102 | 18 | 43 |
Average emission (kg h−1) | 98 | 1012 | 2 | 33 |
Max emission (kg h−1) | 4127 | 4930 | 5 | 94 |
Min emission (kg h−1) | −41 | 104 | 0.1 | 6 |
Aircraft RS | ||||
Platforms Measured | 32 | 95 | - | 8 |
Average emission (kg h−1) | 277 | 1060 | - | 50 |
Mass balance | ||||
Platforms Measured | 41 | 7 | - | 8 |
Average emission (kg h−1) | 70 | 360 | - | 46 |
Downwind methods | ||||
Platforms Measured | 58 | - | 18 | 27 |
Average emission (kg h−1) | 19 | - | 2 | 24 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Riddick, S.N.; Mbua, M.; Laughery, C.; Zimmerle, D.J. A Review of Offshore Methane Quantification Methodologies. Atmosphere 2025, 16, 626. https://doi.org/10.3390/atmos16050626
Riddick SN, Mbua M, Laughery C, Zimmerle DJ. A Review of Offshore Methane Quantification Methodologies. Atmosphere. 2025; 16(5):626. https://doi.org/10.3390/atmos16050626
Chicago/Turabian StyleRiddick, Stuart N., Mercy Mbua, Catherine Laughery, and Daniel J. Zimmerle. 2025. "A Review of Offshore Methane Quantification Methodologies" Atmosphere 16, no. 5: 626. https://doi.org/10.3390/atmos16050626
APA StyleRiddick, S. N., Mbua, M., Laughery, C., & Zimmerle, D. J. (2025). A Review of Offshore Methane Quantification Methodologies. Atmosphere, 16(5), 626. https://doi.org/10.3390/atmos16050626