Deep Learning-Based Downscaling of CMIP6 for Projecting Heat-Driven Electricity Demand and Cost Management in Chengdu
Abstract
1. Introduction
2. Data and Methods
- SSP2-4.5 represents a “medium stabilization” pathway, assuming moderate mitigation policies, medium population and economic growth, and a gradual transition toward low-carbon energy. Under this scenario, global warming is partially constrained, making it suitable for assessing relatively moderate climate risks.
- SSP3-7.0 represents a “regional rivalry” pathway, characterized by weak international cooperation, rapid population growth, and continued reliance on fossil fuels, leading to sustained medium-to-high levels of greenhouse gas emissions. This scenario reflects the potential high-risk conditions that climate-sensitive cities may face in terms of extreme heat and energy system stress. Note that only 14 models were available for this scenario. Results from GFDL-CM4, EC-Earth3-HR, and NESM3 under SSP3-7.0 were not available at the time of this study.
3. Results
3.1. Model Validation
3.2. Projected Temperature Changes
3.3. Projected Cdd Changes and Its Impact on Electricity Demand
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| GCM | global climate models |
| CDD | Cooling Degree Days |
| CMIP6 | Coupled Model Intercomparison Project Phase 6 |
| HDD | Heating Degree Days |
| MAM | March, April, May |
| JJA | June, July, August |
| SON | September, October, November |
References
- Seneviratne, S.I.; Zhang, X.; Adnan, M.; Badi, W.; Dereczynski, C.; Luca, A.D.; Ghosh, S.; Iskandar, I.; Kossin, J.; Lewis, S.; et al. Weather and climate extreme events in a changing climate. In Climate Change 2021: The Physical Science Basis: Working Group I Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Masson-Delmotte, V.P., Zhai, A., Pirani, S.L., Connors, C., Eds.; Cambridge University Press: Cambridge, UK, 2021; pp. 1513–1766. [Google Scholar]
- Pachauri, R.K.; Allen, M.R.; Barros, V.R.; Broome, J.; Cramer, W.; Christ, R.; Church, J.A.; Clarke, L.; Dahe, Q.; Dasgupta, P.; et al. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Pachauri, R., Meyer, L., Eds.; IPCC: Geneva, Switzerland, 2014; 151p, ISBN 978-92-9169-143-2. [Google Scholar]
- Perkins-Kirkpatrick, S.E.; Gibson, P.B. Changes in regional heatwave characteristics as a function of increasing global temperature. Sci. Rep. 2017, 7, 12256. [Google Scholar] [CrossRef]
- Arnfield, A.J. Two decades of urban climate research: A review of turbulence, exchanges of energy and water, and the urban heat island. Int. J. Climatol. J. R. Meteorol. Soc. 2003, 23, 1–26. [Google Scholar] [CrossRef]
- Li, L.; Zha, Y.; Wang, R. Relationship of surface urban heat island with air temperature and precipitation in global large cities. Ecol. Indic. 2020, 117, 106683. [Google Scholar] [CrossRef]
- Grimmond, S.U.E. Urbanization and global environmental change: Local effects of urban warming. Geogr. J. 2007, 173, 83–88. [Google Scholar] [CrossRef]
- Seto, K.C.; Güneralp, B.; Hutyra, L.R. Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools. Proc. Natl. Acad. Sci. USA 2012, 109, 16083–16088. [Google Scholar] [CrossRef] [PubMed]
- Auffhammer, M.; Mansur, E.T. Measuring climatic impacts on energy consumption: A review of the empirical literature. Energy Econ. 2014, 46, 522–530. [Google Scholar] [CrossRef]
- Davis, L.W.; Gertler, P.J. Contribution of air conditioning adoption to future energy use under global warming. Proc. Natl. Acad. Sci. USA 2015, 112, 5962–5967. [Google Scholar] [CrossRef]
- Yang, Q.; Lin, Z.; Li, Q. Quantitative Simulation and Planning for the Heat Island Mitigation Effect in Sponge City Planning: A Case Study of Chengdu, China. Land (2012) 2025, 14, 264. [Google Scholar] [CrossRef]
- Liu, X.; Tian, G.; Feng, J.; Wang, J.; Kong, L. Assessing summertime urban warming and the cooling efficacy of adaptation strategy in the Chengdu-Chongqing metropolitan region of China. Sci. Total Environ. 2018, 610, 1092–1102. [Google Scholar] [CrossRef]
- Chengdu Bureau of Statistics. Chengdu Statistical Yearbooks 2003–2024; China Statistics Press: Beijing, China, 2024.
- Eyring, V.; Bony, S.; Meehl, G.A.; Senior, C.A.; Stevens, B.; Stouffer, R.J.; Taylor, K.E. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model. Dev. 2016, 9, 1937–1958. [Google Scholar] [CrossRef]
- Knutti, R.; Sedláček, J. Robustness and uncertainties in the new CMIP5 climate model projections. Nat. Clim. Change 2013, 3, 369–373. [Google Scholar] [CrossRef]
- Giorgi, F.; Mearns, L.O. Introduction to special section: Regional climate modeling revisited. J. Geophys. Res. Atmos. 1999, 104, 6335–6352. [Google Scholar] [CrossRef]
- Maraun, D.; Widmann, M. Statistical Downscaling and Bias Correction for Climate Research; Cambridge University Press: Cambridge, UK, 2018. [Google Scholar]
- Giorgi, F. Thirty years of regional climate modeling: Where are we and where are we going next? J. Geophys. Res. Atmos. 2019, 124, 5696–5723. [Google Scholar] [CrossRef]
- International Energy Agency (IEA). World Energy Outlook 2022; IEA: Paris, France, 2022; Available online: https://www.iea.org/reports/world-energy-outlook-2022 (accessed on 6 July 2025).
- Lund, H.; Østergaard, P.A.; Connolly, D.; Mathiesen, B.V. Smart energy and smart energy systems. Energy 2017, 137, 556–565. [Google Scholar] [CrossRef]
- Duchesne, L.; Karangelos, E.; Wehenkel, L. Recent developments in machine learning for energy systems reliability management. Proc. IEEE 2020, 108, 1656–1676. [Google Scholar] [CrossRef]
- Rolnick, D.; Donti, P.L.; Kaack, L.H.; Kochanski, K.; Lacoste, A.; Sankaran, K.; Ross, A.S.; Milojevic-Dupont, N.; Jaques, N.; Waldman-Brown, A.; et al. Tackling climate change with machine learning. ACM Comput. Surv. (CSUR) 2022, 55, 1–96. [Google Scholar] [CrossRef]
- Reichstein, M.; Camps-Valls, G.; Stevens, B.; Jung, M.; Denzler, J.; Carvalhais, N.; Prabhat, F. Deep learning and process understanding for data-driven Earth system science. Nature 2019, 566, 195–204. [Google Scholar] [CrossRef]
- O’Neill, B.C.; Tebaldi, C.; van Vuuren, D.P.; Eyring, V.; Friedlingstein, P.; Hurtt, G.; Knutti, R.; Kriegler, E.; Lamarque, J.-F.; Lowe, J.; et al. The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6. Geosci. Model. Dev. 2016, 9, 3461–3482. [Google Scholar] [CrossRef]
- Tebaldi, C.; Debeire, K.; Eyring, V.; Fischer, E.; Fyfe, J.; Friedlingstein, P.; Knutti, R.; Lowe, J.; O’Neill, B.; Sanderson, B.; et al. Climate model projections from the scenario model intercomparison project (ScenarioMIP) of CMIP6. Earth Syst. Dyn. 2021, 12, 253–293. [Google Scholar] [CrossRef]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention is all you need. Adv. Neural Inf. Process. Syst. 2017, 30, 5998–6008. [Google Scholar]
- Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn, D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.; Heigold, G.; Gelly, S.; et al. An image is worth 16 × 16 words: Transformers for image recognition at scale. arXiv 2020, arXiv:2010.11929. [Google Scholar]
- Nguyen, T.H.; Chen, J.; Yu, R. ClimaX: A foundation model for weather and climate. arXiv 2023, arXiv:2301.10343. [Google Scholar] [CrossRef]
- Chen, Y.; Xue, P. Dual-transformer deep learning framework for seasonal forecasting of Great Lakes water levels. J. Geophys. Res. Mach. Learn. Comput. 2025, 2, e2024JH000519. [Google Scholar] [CrossRef]
- Huang, C.; Zhu, L.; Ma, G.; Meadows, G.A.; Xue, P. Wave climate associated with changing water level and ice cover in Lake Michigan. Front. Mar. Sci. 2021, 8, 746916. [Google Scholar] [CrossRef]
- NOAA. Available online: https://www.cpc.ncep.noaa.gov/products/analysis_monitoring/cdus/degree_days/ddayexp.shtml (accessed on 9 July 2025).
- Fan, J.-L.; Hu, J.-W.; Zhang, X. Impacts of climate change on electricity demand in China: An empirical estimation based on panel data. Energy 2019, 170, 880–888. [Google Scholar] [CrossRef]
- Hou, J.J.; Liu, L.C.; Dong, Z.Y.; Wang, Z.; Yu, S.W.; Zhang, J.T. Response of China’s electricity consumption to climate change using monthly household data. Environ. Sci. Pollut. Res. 2022, 29, 90272–90289. [Google Scholar] [CrossRef]
- Pardo, A.; Meneu, V.; Valor, E. Temperature and seasonality influences on Spanish electricity load. Energy Econ. 2002, 24, 55–70. [Google Scholar] [CrossRef]
- Ding, D.P.; Xie, Z.; Li, X.; You, H.L.; Han, C. Relationship between electric demand and CDD and the forecast of daily peak electric load in Beijing. WIT Trans. Ecol. Environ. 2007, 105, 55–59. [Google Scholar] [CrossRef]
- Cao, J.; Shi, J.; Li, M.; Zhai, Z.; Zhang, R.; Wang, M. Variations of cooling and dehumidification degree days in major climate zones of China during the past 57 years. Atmosphere 2023, 14, 752. [Google Scholar] [CrossRef]
- Taylor, K.E. Summarizing multiple aspects of model performance in a single diagram. J. Geophys. Res. Atmos. 2001, 106, 7183–7192. [Google Scholar] [CrossRef]
- Auffhammer, M.; Baylis, P.; Hausman, C.H. Climate change is projected to have severe impacts on the frequency and intensity of peak electricity demand across the United States. Proc. Natl. Acad. Sci. USA 2017, 114, 1886–1891. [Google Scholar] [CrossRef] [PubMed]
- Chen, A.; Gao, J. Urbanization in China and the coordinated development model—The case of Chengdu. Soc. Sci. J. 2011, 48, 500–513. [Google Scholar] [CrossRef]
- Li, Y.; Pizer, W.A.; Wu, L. Climate change and residential electricity consumption in the Yangtze River Delta, China. Proc. Natl. Acad. Sci. USA 2019, 116, 472–477. [Google Scholar] [CrossRef]
- Kang, J.; Reiner, D.M. Off seasons, holidays and extreme weather events: Using data-mining techniques on smart meter and energy consumption data from China. Energy Res. Soc. Sci. 2022, 89, 102637. [Google Scholar] [CrossRef]
- Thornbush, M.; Golubchikov, O. Smart energy cities: The evolution of the city-energy-sustainability nexus. Environ. Dev. 2021, 39, 100626. [Google Scholar] [CrossRef]
- Budd, G.M. Wet-bulb globe temperature (WBGT)—Its history and its limitations. J. Sci. Med. Sport 2008, 11, 20–32. [Google Scholar] [CrossRef]
- Di Napoli, C.; Pappenberger, F.; Cloke, H.L. Verification of heat stress thresholds for a health-based heat-wave definition. J. Appl. Meteorol. Climatol. 2019, 58, 1177–1194. [Google Scholar] [CrossRef]
- Buzan, J.R.; Huber, M. Moist heat stress on a hotter Earth. Annu. Rev. Earth Planet. Sci. 2020, 48, 623–655. [Google Scholar] [CrossRef]
- Buhl, M.; Markolf, S. A review of emerging strategies for incorporating climate change considerations into infrastructure planning, design, and decision making. Sustain. Resilient Infrastruct. 2023, 8 (Suppl. 1), 157–169. [Google Scholar] [CrossRef]
- Kalogiannidis, S.; Kalfas, D.; Papaevangelou, O.; Chatzitheodoridis, F.; Katsetsiadou, K.N.; Lekkas, E. 756 Integration of climate change strategies into policy and planning for regional development: A case study of Greece. Land 2024, 13, 268. [Google Scholar] [CrossRef]
- Billio, M.; Murgia, M.; Vismara, S. Sustainable and climate finance: An integrative framework from corporates to markets and society. Rev. Corp. Financ. 2024, 4, 1–16. [Google Scholar] [CrossRef]
- National Development and Reform Commission (NDRC); Territorial Development and Regional Economy Institute. Strategic Positioning and Planning Objectives of the Chengdu-Chongqing Urban Agglomeration [EB/OL]; People’s Daily Online (Theory Edition); National Development and Reform Commission: Beijing, China, 2016. [Google Scholar]
- Wang, J.; Zhou, W.Q.; Pickett, S.T.; Qian, Y. A scaling law for predicting urban tree canopy cooling efficiency. Proc. Natl. Acad. Sci. USA 2024, 121, e2401210121. [Google Scholar] [CrossRef] [PubMed]
- Chengdu Municipal Institute of Planning and Design. Specialized Research Report of Chengdu Municipal Institute of Planning and Design; Chengdu Municipal Institute of Planning and Design: Chengdu, China, 2022. [Google Scholar]








| GCM Model | Institute | Resolution (°) | ||
|---|---|---|---|---|
| Latitude | Longitude | |||
| 1 | EC-Earth3-HR | European Earth System Model Consortium, led by the Swedish Meteorological and Hydrological Institute (SMHI), Sweden | 0.5 | 0.5 |
| 2 | CNRM-CM6-1-HR | Centre National de Recherches Météorologiques, Centre Européen de Recherche et de Formation Avancée en Calcul Scientifique (CNRM–CERFACS), Météo-France, France | 0.5 | 0.5 |
| 3 | MRI-ESM2-0 | Meteorological Research Institute (MRI), Japan | 1.125 | 1.125 |
| 4 | CMCC-CM2-SR5 | Centro Euro-Mediterraneo sui Cambiamenti Climatici (CMCC), Italy | 0.9375 | 1.25 |
| 5 | GFDL-CM4 | Geophysical Fluid Dynamics Laboratory, NOAA, United States | 1.0 | 1.25 |
| 6 | BCC-CSM2-MR | Beijing Climate Center, China Meteorological Administration (BCC/CMA), China | 1.125 | 1.125 |
| 7 | NorESM2-MM | Bjerknes Centre for Climate Research, Norwegian Meteorological Institute, Norway | 0.9375 | 1.25 |
| 8 | KACE-1-0-G | Korea Meteorological Administration (KMA), South Korea | 1.25 | 1.875 |
| 9 | NESM3 | Nanjing University of Information Science and Technology (NUIST), China | 1.875 | 1.875 |
| 10 | NorESM2-LM | Bjerknes Centre for Climate Research, Norwegian Meteorological Institute, Norway | 1.875 | 2.5 |
| 11 | MPI-ESM1-2 | Max Planck Institute for Meteorology, Germany | 1.875 | 1.875 |
| 12 | MIROC6 | Atmosphere and Ocean Research Institute, National Institute for Environmental Studies, and Japan Agency for Marine-Earth Science and Technology, Japan | 1.40625 | 1.40625 |
| 13 | IPSL-CM6A-LR | Institute Pierre Simon Laplace, France | ~1.2587 | 2.5 |
| 14 | ACCESS-ESM1-5 | Commonwealth Scientific and Industrial Research Organisation / Bureau of Meteorology, Australia | ~1.2414 | 1.875 |
| 15 | CNRM-CM6-1 | Centre National de Recherches Météorologiques, Centre Européen de Recherche et de Formation Avancée en Calcul Scientifique (CNRM–CERFACS), Météo-France, France | ~1.40625 | ~1.40625 |
| 16 | MIROC-ES2L | Atmosphere and Ocean Research Institute, National Institute for Environmental Studies, and Japan Agency for Marine-Earth Science and Technology, Japan | ~2.8125 | ~2.8125 |
| 17 | CanESM5-1 | Canadian Centre for Climate Modelling and Analysis, Canada | ~2.8125 | ~2.8125 |
| 2025–2034 | 2035–2044 | 2045–2054 | 2055–2064 | 2065–2074 | 2075–2084 | 2085–2094 | |||
|---|---|---|---|---|---|---|---|---|---|
| SSP2-4.5 | MAM | Median (P50) | 1.000 | 1.000 | 1.000 | 1.001 | 1.001 | 1.000 | 1.001 |
| P25 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.005 | ||
| P75 | 1.000 | 1.000 | 1.001 | 1.001 | 1.002 | 1.003 | 1.003 | ||
| JJA | Median (P50) | 1.021 | 1.036 | 1.057 | 1.071 | 1.100 | 1.107 | 1.128 | |
| P25 | 1.011 | 1.027 | 1.043 | 1.061 | 1.074 | 1.090 | 1.089 | ||
| P75 | 1.028 | 1.053 | 1.072 | 1.091 | 1.114 | 1.127 | 1.152 | ||
| SON | Median (P50) | 1.000 | 1.000 | 1.001 | 1.002 | 1.003 | 1.005 | 1.005 | |
| P25 | 1.000 | 1.000 | 1.00 | 1.001 | 1.000 | 1.002 | 1.003 | ||
| P75 | 1.001 | 1.001 | 1.002 | 1.005 | 1.009 | 1.015 | 1.018 | ||
| SSP3-7.0 | MAM | Median (P50) | 1.000 | 1.000 | 1.000 | 1.000 | 1.001 | 1.005 | 1.006 |
| P25 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.001 | 1.002 | ||
| P75 | 1.000 | 1.000 | 1.001 | 1.002 | 1.002 | 1.010 | 1.014 | ||
| JJA | Median (P50) | 1.016 | 1.038 | 1.066 | 1.084 | 1.145 | 1.192 | 1.201 | |
| P25 | 1.012 | 1.030 | 1.047 | 1.070 | 1.101 | 1.134 | 1.166 | ||
| P75 | 1.025 | 1.041 | 1.084 | 1.120 | 1.171 | 1.223 | 1.262 | ||
| SON | Median (P50) | 1.000 | 1.000 | 1.001 | 1.002 | 1.008 | 1.008 | 1.019 | |
| P25 | 1.000 | 1.000 | 1.000 | 1.000 | 1.002 | 1.006 | 1.012 | ||
| P75 | 1.000 | 1.001 | 1.002 | 1.005 | 1.015 | 1.029 | 1.030 | ||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, R.; Teng, G. Deep Learning-Based Downscaling of CMIP6 for Projecting Heat-Driven Electricity Demand and Cost Management in Chengdu. Atmosphere 2025, 16, 1355. https://doi.org/10.3390/atmos16121355
Yang R, Teng G. Deep Learning-Based Downscaling of CMIP6 for Projecting Heat-Driven Electricity Demand and Cost Management in Chengdu. Atmosphere. 2025; 16(12):1355. https://doi.org/10.3390/atmos16121355
Chicago/Turabian StyleYang, Rui, and Geer Teng. 2025. "Deep Learning-Based Downscaling of CMIP6 for Projecting Heat-Driven Electricity Demand and Cost Management in Chengdu" Atmosphere 16, no. 12: 1355. https://doi.org/10.3390/atmos16121355
APA StyleYang, R., & Teng, G. (2025). Deep Learning-Based Downscaling of CMIP6 for Projecting Heat-Driven Electricity Demand and Cost Management in Chengdu. Atmosphere, 16(12), 1355. https://doi.org/10.3390/atmos16121355
