Diurnal Outdoor Thermal Comfort Mapping through Envi-Met Simulations, Remotely Sensed and In Situ Measurements
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Used in This Study
2.2.1. ECOSTRESS Dataset
2.2.2. Sentinel 2 Dataset
2.2.3. LIDAR Dataset
2.2.4. Meteorological and Land Cover Data
3. Methods
- Modelling Envi-met on test areas representative of the different urban fabrics in the monitored study area to derive hourly test areas PET maps;
- Developing a modified version of the UHTI index [14], named hUHTI, which exploits the daytime temporal acquisition variability provided by the ECOSTRESS sensor and is, therefore, capable of providing hourly study area outputs to be used as a PET proxy;
- Establishing simple linear regressive relationships between PET and hUHTI of the same time of the day;
- Spatializing the hourly PET test area maps using hUHTI of the same time as proxy though simple linear models to derive a set of hourly PET maps of the whole study area;
- Deriving a synthesis map, defined as exceedance map, which summarizes the information on thermal patterns of the hourly PET maps and can, thus, be exploited for urban planning purposes.
3.1. Envi-Met Modelling
- Wind speed: 2.0 m/s;
- Wind direction: 70° from North;
- Maximum air temperature at h 14:00: 39.75 °C;
- Minimum air temperature at h 04:00: 24.07 °C;
- Maximum air relative humidity at h 4:00: 58%;
- Minimum air relative humidity at h 14:00: 15%.
3.2. Hourly Urban Heatwave Thermal Index (hUHTI) Calculation
3.2.1. LST-Tair Relationship Establishment
3.2.2. SVF–Tair Relationship Establishment
3.2.3. VFC–Tair Relationship Establishment
3.3. Hourly PET Map Spatialization and Comparison between ECOSTRESS LST and hUHTI as PET Predictors
3.4. Analysis of PET Diurnal Variations According to Land Cover and Crop Type
3.5. Average PET Exceedance Map
4. Results
4.1. Envi-Met PET Simulations
4.2. hUHTI Maps
4.3. PET Maps and Land Cover Trends
4.4. hUHTI—PET Hourly Relationships during Heatwave Event
4.5. Exceedance Map and Statistics
5. Discussion
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Santamouris, M. Energy and Climate in the Urban Built Environment; Routledge: New York, NY, USA, 2013; ISBN 9781134257904. [Google Scholar]
- Learn About Heat Islands. Available online: https://www.epa.gov/heatislands/learn-about-heat-islands (accessed on 8 November 2022).
- Jamei, E.; Rajagopalan, P.; Seyedmahmoudian, M.; Jamei, Y. Review on the Impact of Urban Geometry and Pedestrian Level Greening on Outdoor Thermal Comfort. Renew. Sustain. Energy Rev. 2016, 54, 1002–1017. [Google Scholar] [CrossRef]
- Zuo, J.; Pullen, S.; Palmer, J.; Bennetts, H.; Chileshe, N.; Ma, T. Impacts of Heat Waves and Corresponding Measures: A Review. J. Clean. Prod. 2015, 92, 1–12. [Google Scholar] [CrossRef]
- Woolley, H. Urban Open Spaces; Taylor & Francis: Abingdon, UK, 2003; ISBN 9781135802295. [Google Scholar]
- Peng, S.; Piao, S.; Ciais, P.; Friedlingstein, P.; Ottle, C.; Bréon, F.-M.; Nan, H.; Zhou, L.; Myneni, R.B. Surface Urban Heat Island Across 419 Global Big Cities. Environ. Sci. Technol. 2012, 46, 696–703. [Google Scholar] [CrossRef] [PubMed]
- Sheng, L.; Tang, X.; You, H.; Gu, Q.; Hu, H. Comparison of the Urban Heat Island Intensity Quantified by Using Air Temperature and Landsat Land Surface Temperature in Hangzhou, China. Ecol. Indic. 2017, 72, 738–746. [Google Scholar] [CrossRef]
- Hu, L.; Brunsell, N.A. The Impact of Temporal Aggregation of Land Surface Temperature Data for Surface Urban Heat Island (SUHI) Monitoring. Remote Sens. Environ. 2013, 134, 162–174. [Google Scholar] [CrossRef]
- Gallo, K.; Hale, R.; Tarpley, D.; Yu, Y. Evaluation of the Relationship between Air and Land Surface Temperature under Clear- and Cloudy-Sky Conditions. J. Appl. Meteorol. Climatol. 2011, 50, 767–775. [Google Scholar] [CrossRef]
- Good, E.J.; Ghent, D.J.; Bulgin, C.E.; Remedios, J.J. A Spatiotemporal Analysis of the Relationship between Near-surface Air Temperature and Satellite Land Surface Temperatures Using 17 Years of Data from the ATSR Series. J. Geophys. Res. Atmos. 2017, 122, 9185–9210. [Google Scholar] [CrossRef] [Green Version]
- Huang, W.; Li, J.; Guo, Q.; Mansaray, L.; Li, X.; Huang, J. A Satellite-Derived Climatological Analysis of Urban Heat Island over Shanghai during 2000–2013. Remote Sens. 2017, 9, 641. [Google Scholar] [CrossRef] [Green Version]
- Agathangelidis, I.; Cartalis, C.; Santamouris, M. Estimation of Air Temperatures for the Urban Agglomeration of Athens with the Use of Satellite Data. Geoinformatics Geostat. Overv. 2016, 4, 2. [Google Scholar] [CrossRef]
- Dos Santos, R.S. Estimating Spatio-Temporal Air Temperature in London (UK) Using Machine Learning and Earth Observation Satellite Data. Int. J. Appl. Earth Obs. Geoinf. 2020, 88, 102066. [Google Scholar] [CrossRef]
- Nardino, M.; Cremonini, L.; Crisci, A.; Georgiadis, T.; Guerri, G.; Morabito, M.; Fiorillo, E. Mapping Daytime Thermal Patterns of Bologna Municipality (Italy) during a Heatwave: A New Methodology for Cities Adaptation to Global Climate Change. Urban Clim. 2022, 46, 101317. [Google Scholar] [CrossRef]
- Pichierri, M.; Bonafoni, S.; Biondi, R. Satellite Air Temperature Estimation for Monitoring the Canopy Layer Heat Island of Milan. Remote Sens. Environ. 2012, 127, 130–138. [Google Scholar] [CrossRef]
- Vulova, S.; Meier, F.; Fenner, D.; Nouri, H.; Kleinschmit, B. Summer Nights in Berlin, Germany: Modeling Air Temperature Spatially with Remote Sensing, Crowdsourced Weather Data, and Machine Learning. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 5074–5087. [Google Scholar] [CrossRef]
- Chang, Y.; Xiao, J.; Li, X.; Zhou, D.; Wu, Y. Combining GOES-R and ECOSTRESS Land Surface Temperature Data to Investigate Diurnal Variations of Surface Urban Heat Island. Sci. Total Environ. 2022, 823, 153652. [Google Scholar] [CrossRef]
- Chang, Y.; Xiao, J.; Li, X.; Middel, A.; Zhang, Y.; Gu, Z.; Wu, Y.; He, S. Exploring Diurnal Thermal Variations in Urban Local Climate Zones with ECOSTRESS Land Surface Temperature Data. Remote Sens. Environ. 2021, 263, 112544. [Google Scholar] [CrossRef]
- Hulley, G.; Shivers, S.; Wetherley, E.; Cudd, R. New ECOSTRESS and MODIS Land Surface Temperature Data Reveal Fine-Scale Heat Vulnerability in Cities: A Case Study for Los Angeles County, California. Remote Sens. 2019, 11, 2136. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Xu, X.; Wang, F.; Qiao, Z.; An, H.; Han, D.; Luo, J. Exploring the Cooling Effect of Urban Parks Based on the ECOSTRESS Land Surface Temperature. Front. Ecol. Evol. 2022, 10, 1031517. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, X.; Meng, Y.; Zhou, Y.; Wang, H. Exploring the Impact of Urban Features on the Spatial Variation of Land Surface Temperature within the Diurnal Cycle. Sustain. Cities Soc. 2023, 91, 104432. [Google Scholar] [CrossRef]
- Binarti, F.; Koerniawan, M.D.; Triyadi, S.; Utami, S.S.; Matzarakis, A. A Review of Outdoor Thermal Comfort Indices and Neutral Ranges for Hot-Humid Regions. Urban Clim. 2020, 31, 100531. [Google Scholar] [CrossRef]
- Chen, L.; Ng, E. Outdoor Thermal Comfort and Outdoor Activities: A Review of Research in the Past Decade. Cities 2012, 29, 118–125. [Google Scholar] [CrossRef]
- Zhao, Q.; Lian, Z.; Lai, D. Thermal Comfort Models and Their Developments: A Review. Energy Built Environ. 2021, 2, 21–33. [Google Scholar] [CrossRef]
- Matzarakis, A.; Mayer, H.; Iziomon, M.G. Applications of a Universal Thermal Index: Physiological Equivalent Temperature. Int. J. Biometeorol. 1999, 43, 76–84. [Google Scholar] [CrossRef] [PubMed]
- Matzarakis, A.; Endler, C. Climate Change and Thermal Bioclimate in Cities: Impacts and Options for Adaptation in Freiburg, Germany. Int. J. Biometeorol. 2010, 54, 479–483. [Google Scholar] [CrossRef] [PubMed]
- Höppe, P. The Physiological Equivalent Temperature—A Universal Index for the Biometeorological Assessment of the Thermal Environment. Int. J. Biometeorol. 1999, 43, 71–75. [Google Scholar] [CrossRef]
- Matzarakis, A.; Mayer, H. Another Kind of Environmental Stress: Thermal Stress. WHO Collab. Cent. Air Qual. Manag. Air Pollut. Control. Newsl. 1996, 18, 7–10. [Google Scholar]
- Matzarakis, A.; Rutz, F.; Mayer, H. Modelling Radiation Fluxes in Simple and Complex Environments: Basics of the RayMan Model. Int. J. Biometeorol. 2010, 54, 131–139. [Google Scholar] [CrossRef] [Green Version]
- Fröhlich, D.; Matzarakis, A. Spatial Estimation of Thermal Indices in Urban Areas-Basics of the Skyhelios Model. Atmosphere 2018, 9, 209. [Google Scholar] [CrossRef] [Green Version]
- Matzarakis, A.; Gangwisch, M.; Fröhlich, D. RayMan and SkyHelios Model. In Urban Microclimate Modelling for Comfort and Energy Studies; Palme, M., Salvati, A., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 339–361. ISBN 978-3-030-65421-4. [Google Scholar]
- Bruse, M.; Fleer, H. Simulating Surface–Plant–Air Interactions inside Urban Environments with a Three Dimensional Numerical Model. Environ. Model. Softw. 1998, 13, 373–384. [Google Scholar] [CrossRef]
- Liu, Z.; Cheng, W.; Jim, C.Y.; Morakinyo, T.E.; Shi, Y.; Ng, E. Heat Mitigation Benefits of Urban Green and Blue Infrastructures: A Systematic Review of Modeling Techniques, Validation and Scenario Simulation in ENVI-Met V4. Build. Environ. 2021, 200, 107939. [Google Scholar] [CrossRef]
- Tsoka, S.; Tsikaloudaki, A.; Theodosiou, T. Analyzing the ENVI-Met Microclimate Model’s Performance and Assessing Cool Materials and Urban Vegetation Applications–A Review. Sustain. Cities Soc. 2018, 43, 55–76. [Google Scholar] [CrossRef]
- Yang, X.; Zhao, L.; Bruse, M.; Meng, Q. Evaluation of a Microclimate Model for Predicting the Thermal Behavior of Different Ground Surfaces. Build. Environ. 2013, 60, 93–104. [Google Scholar] [CrossRef]
- Kottek, M.; Grieser, J.; Beck, C.; Rudolf, B.; Rubel, F. World Map of the Köppen-Geiger Climate Classification Updated. Meteorol. Z. 2006, 15, 259–263. [Google Scholar] [CrossRef] [PubMed]
- Consorzio LaMMA. Available online: http://www.lamma.rete.toscana.it/ (accessed on 20 November 2022).
- Magno, R.; De Filippis, T.; Di Giuseppe, E.; Pasqui, M.; Rocchi, L.; Gozzini, B. Semi-Automatic Operational Service for Drought Monitoring and Forecasting in the Tuscany Region. Geosciences 2018, 8, 49. [Google Scholar] [CrossRef] [Green Version]
- Ondate Di Calore—Ministero Della Salute. Available online: https://www.salute.gov.it/portale/caldo/homeCaldo.jsp (accessed on 20 November 2022).
- Guattari, C.; Evangelisti, L.; Balaras, C.A. On the Assessment of Urban Heat Island Phenomenon and Its Effects on Building Energy Performance: A Case Study of Rome (Italy). Energy Build. 2018, 158, 605–615. [Google Scholar] [CrossRef]
- Copernicus Open Access Hub. Available online: https://scihub.copernicus.eu (accessed on 20 November 2022).
- Rouse, J.; Haas, R.; Schell, J.; Deering, D. Monitoring Vegetation Systems in the Great Plains with ERTS. In Proceedings of the 3rd Earth Resources Technology Satellite-1 Symposium, Washington, DC, USA, 10–14 December 1973; Technical Presentations. NASA SP-351: Washington, DC, USA, 1974; Volume 1, pp. 309–317. [Google Scholar]
- Qi, J. Spatial and Temporal Dynamics of Vegetation in the San Pedro River Basin Area. Agric. For. Meteorol. 2000, 105, 55–68. [Google Scholar] [CrossRef] [Green Version]
- Oke, T.R. Canyon Geometry and the Nocturnal Urban Heat Island: Comparison of Scale Model and Field Observations. J. Climatol. 1981, 1, 237–254. [Google Scholar] [CrossRef]
- Toscana Geoportal. Available online: https://dati.toscana.it/dataset/ucs (accessed on 20 November 2022).
- QGIS Software. Available online: https://www.qgis.org/en/site/ (accessed on 20 November 2022).
- R Software. Available online: https://www.r-project.org/ (accessed on 20 November 2022).
- Stewart, I.D.; Oke, T.R. Local Climate Zones for Urban Temperature Studies. Bull. Am. Meteorol. Soc. 2012, 93, 1879–1900. [Google Scholar] [CrossRef]
- International Standard Organization ISO 7730: Ergonomics of the Thermal Environment Analytical Determination and Interpretation of Thermal Comfort Using Calculation of the PMV and PPD Indices and Local Thermal Comfort Criteria. Management 2005, 3, 605–615.
- MacQueen, J. Some Methods of Classification and Analysis of Multivariate Observation. In Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability University of California, Los Angeles, CA, USA, 21 June–8 July 1965, 27 December 1965–7 January1966; pp. 281–297. [Google Scholar]
- Koopmans, S.; Heusinkveld, B.G.; Steeneveld, G.J. A Standardized Physical Equivalent Temperature Urban Heat Map at 1-m Spatial Resolution to Facilitate Climate Stress Tests in the Netherlands. Build. Environ. 2020, 181, 106984. [Google Scholar] [CrossRef]
- Brilli, L.; Carotenuto, F.; Chiesi, M.; Fiorillo, E.; Genesio, L.; Magno, R.; Morabito, M.; Nardino, M.; Zaldei, A.; Gioli, B. An Integrated Approach to Estimate How Much Urban Afforestation Can Contribute to Move towards Carbon Neutrality. Sci. Total Environ. 2022, 842, 156843. [Google Scholar] [CrossRef]
- Guolo, F.; Stivanello, E.; Pizzi, L.; Georgiadis, T.; Cremonini, L.; Musti, M.A.; Nardino, M.; Ferretti, F.; Marzaroli, P.; Perlangeli, V.; et al. Emergency Department Visits and Summer Temperatures in Bologna, Northern Italy, 2010–2019: A Case-Crossover Study and Geographically Weighted Regression Methods. Int. J. Environ. Res. Public Health 2022, 19, 5592. [Google Scholar] [CrossRef] [PubMed]
- Cremonini, L.; Nardino, M.; Georgiadis, T. The Utilization of the WMO-1234 Guidance to Improve Citizen’s Wellness and Health: An Italian Perspective. Int. J. Environ. Res. Public Health 2022, 19, 5056. [Google Scholar] [CrossRef] [PubMed]
- Guerri, G.; Crisci, A.; Congedo, L.; Munafò, M.; Morabito, M. A Functional Seasonal Thermal Hot-Spot Classification: Focus on Industrial Sites. Sci. Total Environ. 2022, 806, 151383. [Google Scholar] [CrossRef] [PubMed]
Start | End | Duration (Days) |
---|---|---|
12 June 2021 | 29 June 2021 | 18 |
5 July 2021 | 12 July 2021 | 8 |
18 July 2021 | 1 August 2021 | 15 |
7 August 2021 | 23 August 2021 | 17 |
LAND COVER | AREA (km2) | VFC 1 | LST 2 | SVF 3 |
---|---|---|---|---|
Crops | 26.95 | 0.41 | 31.07 | 0.95 |
Industrial and commercial areas | 12.52 | 0.10 | 32.59 | 0.81 |
Residential areas with discontinuous and sparse fabric | 11.51 | 0.34 | 31.44 | 0.7 |
Residential areas with continuous fabric | 6.66 | 0.20 | 32.25 | 0.64 |
Woodland | 5.63 | 0.79 | 28.12 | 0.46 |
Road and rail infrastructure | 5.45 | 0.23 | 31.81 | 0.8 |
Tree crops | 3.73 | 0.53 | 29.76 | 0.78 |
Recreational and sports areas | 2.61 | 0.46 | 31.14 | 0.85 |
Green urban areas | 1.87 | 0.49 | 31.84 | 0.77 |
Areas with evolving woodland and shrub vegetation | 1.79 | 0.51 | 30.55 | 0.82 |
Meadows | 0.82 | 0.40 | 31.88 | 0.93 |
Water areas | 0.82 | 0.34 | 30.34 | 0.9 |
Construction sites | 0.48 | 0.19 | 32.02 | 0.93 |
Quarries and landfills | 0.08 | 0.39 | 31.12 | 0.88 |
Swamps | 0.04 | 0.54 | 30.71 | 0.99 |
TEST AREA | Extension (m) | Number of Grid Cells | CENTROID | MAIN LCZ CLASS 1 | LST 2 | VFC 3 | SVF 4 | Google Earth Picture | |
---|---|---|---|---|---|---|---|---|---|
LAT. | LON. | ||||||||
Historical Centre | 1000 × 1000 × 50 | 200 × 200 × 25 | 11.095 | 43.876 | Compact Midrise | 37.55 | 0.11 | 0.65 | |
Industrial area | 1000 × 1000 × 50 | 200 × 200 × 25 | 11.061 | 43.852 | Large lowrise | 38.03 | 0.1 | 0.82 | |
Residential area | 1000 × 1000 × 60 | 200 × 200 × 30 | 11.050 | 43.887 | Open Lowrise | 35.60 | 0.26 | 0.77 | |
Green area | 400 × 400 × 60 | 80 × 80 × 30 | 11.036 | 43.866 | Scattered trees | 32.79 | 0.47 | 0.72 |
DAYTIME hUHTI | ECOSTRESS LST | SENTINEL VFC | SVF | ||
---|---|---|---|---|---|
DAYTIME | DATE | DAYTIME | DATE | YEAR | |
07:00 | 07:24 | 2021-06-23 (DOY 174) | 10:05 | 2021-06-27 (DOY 178) | 2008 |
12:00 | 11:32 | 2021-06-26 (DOY 177) | |||
06:00 | 05:52 | 2021-06-27 (DOY 178) | |||
21:00 | 20.39 | 2021-07-20 (DOY 201) | 10:10 | 2021-07-22 (DOY 203) | |
16:00 | 16:17 | 2021-08-13 (DOY 225) | 10:10 | 2021-08-11 (DOY 223) | |
11:00 | 10:37 | 2021-08-14 (DOY 226) | |||
09:00 | 09:05 | 2021-08-18 (DOY 230) | 10:10 | 2021-08-21 (DOY 233) | |
13:00 | 13:12 | 2021-08-21 (DOY 233) |
DAYTIME | SLOPE | INTERCEPT | R2 |
---|---|---|---|
06:00 | 0.93 | 27.52 | 0.53 * |
07:00 | 2.38 | 27.80 | 0.71 ** |
09:00 | 5.68 | 28.94 | 0.71 ** |
11:00 | 7.75 | 30.04 | 0.7 ** |
12.00 | 7.75 | 30.04 | 0.7 ** |
13:00 | 9.04 | 31.47 | 0.67 ** |
16:00 | 8.04 | 32.8 | 0.66 ** |
21.00 | 5.09 | 29.34 | 0.52 * |
LAND COVER CLASS | AVERAGE PET EXCEEDANCE (°C) |
---|---|
Construction sites | 13.73 |
Meadows | 13.37 |
Industrial and commercial areas | 13.21 |
Crops | 13.15 |
Swamps | 12.90 |
Road and rail infrastructure | 12.85 |
Quarries and landfills | 12.73 |
Recreational and sports areas | 12.49 |
Water areas | 12.43 |
Green urban areas | 12.19 |
Areas with evolving woodland and shrub vegetation | 11.88 |
Residential areas with continuous fabric | 11.84 |
Residential areas with discontinuous and sparse fabric | 11.78 |
Tree crops | 11.26 |
Woodland | 8.35 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fiorillo, E.; Brilli, L.; Carotenuto, F.; Cremonini, L.; Gioli, B.; Giordano, T.; Nardino, M. Diurnal Outdoor Thermal Comfort Mapping through Envi-Met Simulations, Remotely Sensed and In Situ Measurements. Atmosphere 2023, 14, 641. https://doi.org/10.3390/atmos14040641
Fiorillo E, Brilli L, Carotenuto F, Cremonini L, Gioli B, Giordano T, Nardino M. Diurnal Outdoor Thermal Comfort Mapping through Envi-Met Simulations, Remotely Sensed and In Situ Measurements. Atmosphere. 2023; 14(4):641. https://doi.org/10.3390/atmos14040641
Chicago/Turabian StyleFiorillo, Edoardo, Lorenzo Brilli, Federico Carotenuto, Letizia Cremonini, Beniamino Gioli, Tommaso Giordano, and Marianna Nardino. 2023. "Diurnal Outdoor Thermal Comfort Mapping through Envi-Met Simulations, Remotely Sensed and In Situ Measurements" Atmosphere 14, no. 4: 641. https://doi.org/10.3390/atmos14040641
APA StyleFiorillo, E., Brilli, L., Carotenuto, F., Cremonini, L., Gioli, B., Giordano, T., & Nardino, M. (2023). Diurnal Outdoor Thermal Comfort Mapping through Envi-Met Simulations, Remotely Sensed and In Situ Measurements. Atmosphere, 14(4), 641. https://doi.org/10.3390/atmos14040641