Carbonaceous Aerosols in PM1, PM2.5, and PM10 Size Fractions over the Lanzhou City, Northwest China
Abstract
:1. Introduction
2. Experimental Site and Methodology
2.1. Sampling Site and Sample Collection
2.2. OC and EC Analysis
2.3. Calculation of SOC
2.4. HYSPLIT Model and CWT Analysis
2.5. Measurements of Meteorological Parameters
3. Results and Discussion
3.1. Temporal Variations of Carbonaceous Aerosols
3.2. Variability of OC/EC
3.3. Source of Carbonaceous Aerosols
3.4. Potential Sources
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Petzold, A.; Ogren, J.A.; Fiebig, M.; Laj, P.; Li, S.M.; Baltensperger, U.; Holzer-Popp, T.; Kinne, S.; Pappalardo, G.; Sugimoto, N.; et al. Recommendations for reporting “black carbon” measurements. Atmos. Chem. Phys. 2013, 13, 8365–8379. [Google Scholar] [CrossRef] [Green Version]
- Mordukhovich, I.; Wilker, E.; Suh, H.; Wright, R.; Sparrow, D.; Vokonas, P.S.; Schwartz, J. Black carbon exposure, oxidative stress genes, and blood pressure in a repeated-measures study. Environ. Health PERSP 2009, 117, 1767–1772. [Google Scholar] [CrossRef] [PubMed]
- Jacobson, M.Z. Short-term effects of controlling fossil-fuel soot, biofuel soot and gases, and methane on climate, Arctic ice, and air pollution health. J. Geophys. Res. 2010, 115, D14. [Google Scholar] [CrossRef]
- Khan, M.F.; Latif, M.T.; Saw, W.H.; Amil, N.; Nadzir, M.S.M.; Sahani, M.; Tahir, N.M.; Chung, J.X. Fine particulate matter in the tropical environment: Monsoonal effects, source apportionment, and health risk assessment. Atmos. Chem. Phys. 2016, 16, 597–617. [Google Scholar] [CrossRef] [Green Version]
- Ramanathan, V.; Carmichael, G. Global and regional climate changes due to black carbon. Nat. Geosci. 2008, 1, 221–227. [Google Scholar] [CrossRef]
- Bond, T.C.; Doherty, S.J.; Fahey, D.W.; Forster, P.M.; Berntsen, T.; DeAngelo, B.J.; Flanner, M.G.; Ghan, S.; Kärcher, B.; Koch, D.; et al. Bounding the role of black carbon in the climate system: A scientific assessment. J. Geophys. Res. Atmos. 2013, 118, 5380–5552. [Google Scholar] [CrossRef]
- Chung, S.H. Global distribution and climate forcing of carbonaceous aerosols. J. Geophys. Res. 2002, 107, D19. [Google Scholar] [CrossRef] [Green Version]
- Panicker, A.S.; Pandithurai, G.; Safai, P.D.; Dipu, S.; Lee, D.I. On the contribution of black carbon to the composite aerosol radiative forcing over an urban environment. Atmos. Environ. 2010, 44, 3066–3070. [Google Scholar] [CrossRef]
- Flanner, M.G.; Zender, C.S.; Randerson, J.T.; Rasch, P.J. Present-day climate forcing and response from black carbon in snow. J. Geophys. Res. 2007, 112, D11. [Google Scholar] [CrossRef] [Green Version]
- Ming, J.; Xiao, C.D.; Cachier, H.; Qin, D.H.; Qin, X.; Li, Z.Q.; Pu, J.C. Black carbon (BC) in the snow of glaciers in west China and its potential effects on albedos. Atmos. Res. 2009, 92, 114–123. [Google Scholar] [CrossRef]
- Ming, J.; Wang, Y.; Du, Z.; Zhang, T.; Guo, W.; Xiao, C.; Xu, X.; Ding, M.; Zhang, D.; Yang, W. Widespread albedo decreasing and induced melting of Himalayan snow and ice in the early 21st century. PLoS ONE 2015, 10, e0126235. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.; Jia, C.; Tao, J.; Zhang, L.; Liang, X.; Ma, J.; Gao, H.; Huang, T.; Zhang, K. Chemical characterization and source apportionment of PM2.5 in a semi-arid and petrochemical-industrialized city, Northwest China. Sci. Total Environ. 2016, 573, 1031–1040. [Google Scholar] [CrossRef] [PubMed]
- Cao, J.J.; Lee, S.C.; Chow, J.C.; Watson, J.G.; Ho, K.F.; Zhang, R.J.; Jin, Z.D.; Shen, Z.X.; Chen, G.C.; Kang, Y.M.; et al. Spatial and seasonal distributions of carbonaceous aerosols over China. J. Geophys. Res. 2007, 112, D22. [Google Scholar] [CrossRef] [Green Version]
- Zhao, S.Y.; Ming, J.; Xiao, C.D.; Sun, W.J.; Qin, X. A preliminary study on measurements of black carbon in the atmosphere of northwest Qilian Shan. J. Environ. Sci. 2012, 24, 152–159. [Google Scholar] [CrossRef]
- Zhao, S.Y.; Tie, X.X.; Cao, J.J.; Li, N.; Li, G.H.; Zhang, Q.; Zhu, C.S.; Long, X.; Li, J.D.; Feng, T.; et al. Seasonal variation and four-year trend of black carbon in the Mid-west China: The analysis of the ambient measurement and WRF-Chem modeling. Atmos. Environ. 2015, 123, 430–439. [Google Scholar] [CrossRef]
- Li, C.L.; Chen, P.F.; Kang, S.C.; Yan, F.P.; Hu, Z.F.; Qu, B.; Sillanpaa, M. Concentrations and light absorption characteristics of carbonaceous aerosol in PM2.5 and PM10 of Lhasa city, the Tibetan Plateau. Atmos. Environ. 2016, 1127, 340–346. [Google Scholar] [CrossRef]
- Chen, P.; Kang, S.; Li, C.; Zhang, Q.; Guo, J.; Tripathee, L.; Zhang, Y.; Li, G.; Gul, C.; Cong, Z.; et al. Carbonaceous aerosol characteristics on the Third Pole: A primary study based on the Atmospheric Pollution and Cryospheric Change (APCC) network. Environ. Pollut. 2019, 253, 49–60. [Google Scholar] [CrossRef]
- Huang, R.J.; Zhang, Y.; Bozzetti, C.; Ho, K.F.; Cao, J.J.; Han, Y.; Daellenbach, K.R.; Slowik, J.G.; Platt, S.M.; Canonaco, F.; et al. High secondary aerosol contribution to particulate pollution during haze events in China. Nature 2014, 514, 218–222. [Google Scholar] [CrossRef] [Green Version]
- Tao, J.; Gao, J.; Zhang, L.; Zhang, R.; Che, H.; Zhang, Z.; Lin, Z.; Jing, J.; Cao, J.; Hsu, S.C. PM2.5 pollution in a megacity of southwest China: Source apportionment and implication. Atmos. Chem. Phys. 2014, 14, 8679–8699. [Google Scholar] [CrossRef] [Green Version]
- Wang, G.; Cheng, S.; Li, J.; Lang, J.; Wen, W.; Yang, X.; Tian, L. Source apportionment and seasonal variation of PM2.5 carbonaceous aerosol in the Beijing-Tianjin-Hebei region of China. Environ. Monit. Assess. 2015, 187, 143. [Google Scholar] [CrossRef]
- Xiong, Y.; Zhou, J.; Schauer, J.J.; Yu, W.; Hu, Y. Seasonal and spatial differences in source contributions to PM2.5 in Wuhan, China. Sci. Total Environ. 2016, 577, 155–165. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Wu, J.; Zhang, J.; Wang, L.; Yang, J.; Liang, D.; Dai, Q.; Bi, X.; Feng, Y.; Zhang, Y.; et al. Characterization and source apportionment of PM2.5 based on error estimation from EPA PMF 5.0 model at a medium city in China. Environ. Pollut. 2017, 222, 10–22. [Google Scholar] [CrossRef] [PubMed]
- Shao, P.; Tian, H.; Sun, Y.; Liu, H.; Wu, B.; Liu, S.; Liu, X.; Wu, Y.; Liang, W.; Wang, Y.; et al. Characterizing remarkable changes of severe haze events and chemical compositions in multi-size airborne particles (PM1, PM2.5 and PM10) from January 2013 to 2016–2017 winter in Beijing, China. Atmos. Environ. 2018, 189, 133–144. [Google Scholar] [CrossRef]
- Zhang, N.; Cao, J.; Liu, S.; Zhao, Z.; Xu, H.; Xiao, S. Chemical composition and sources of PM2.5 and TSP collected at Qinghai Lake during summertime. Atmos. Res. 2014, 138, 213–222. [Google Scholar] [CrossRef]
- Huang, X.; Liu, Z.; Liu, J.; Hu, B.; Wen, T.; Tang, G.; Zhang, J.; Wu, F.; Ji, D.; Wang, L.; et al. Chemical characterization and source identification of PM2.5 at multiple sites in the Beijing-Tianjin-Hebei region, China. Atmos. Chem. Phys. 2017, 17, 12941–12962. [Google Scholar] [CrossRef]
- Li, L.; Tan, Q.; Zhang, Y.; Feng, M.; Qu, Y.; An, J.; Liu, X. Characteristics and source apportionment of PM2.5 during persistent extreme haze events in Chengdu, southwest China. Environ. Pollut. 2017, 230, 718–729. [Google Scholar] [CrossRef]
- Dai, Q.; Bi, X.; Liu, B.; Li, L.; Ding, J.; Song, W.; Bi, S.; Schulze, B.C.; Song, C.; Wu, J.; et al. Chemical nature of PM2.5 and PM10 in Xi’an, China: Insights into primary emissions and secondary particle formation. Environ. Pollut. 2018, 240, 155–166. [Google Scholar] [CrossRef] [PubMed]
- Zong, Z.; Wang, X.; Tian, C.; Chen, Y.; Fu, S.; Qu, L.; Ji, L.; Li, J.; Zhang, G. PMF and PSCF based source apportionment of PM2.5 at a regional background site in North China. Atmos. Res. 2018, 203, 207–215. [Google Scholar] [CrossRef] [Green Version]
- Chu, P.C.; Chen, Y.; Lu, S.; Li, Z.; Lu, Y. Particulate air pollution in Lanzhou China. Environ. Int. 2008, 34, 698–713. [Google Scholar] [CrossRef] [Green Version]
- Qiu, X.; Duan, L.; Gao, J.; Wang, S.; Chai, F.; Hu, J.; Zhang, J.; Yun, Y. Chemical composition and source apportionment of PM10 and PM2.5 in different functional areas of Lanzhou, China. J. Environ. Sci. 2016, 40, 75–83. [Google Scholar] [CrossRef]
- Wang, L.; Zhou, X.; Ma, Y.; Cao, Z.; Wu, R.; Wang, W. Carbonaceous aerosols over China—Review of observations, emissions, and climate forcing. Environ. Sci. Pollut. Res. Int. 2016, 23, 1671–1680. [Google Scholar] [CrossRef] [PubMed]
- Tan, J.; Zhang, L.; Zhou, X.; Duan, J.; Li, Y.; Hu, J.; He, K. Chemical characteristics and source apportionment of PM2.5 in Lanzhou, China. Sci. Total Environ. 2017, 601, 1743–1752. [Google Scholar] [CrossRef] [PubMed]
- Zhao, S.; Yu, Y.; Yin, D.; Yu, Z.; Dong, L.; Mao, Z.; He, J.; Yang, J.; Li, P.; Qin, D. Concentrations, optical and radiative properties of carbonaceous aerosols over urban Lanzhou, a typical valley city: Results from in-situ observations and numerical model. Atmos. Environ. 2019, 213, 470–484. [Google Scholar] [CrossRef]
- Chow, J.C.; Watson, J.G.; Pritchett, L.C.; Pierson, W.R.; Frazier, C.A.; Purcell, R.G. The DRI thermal/optical reflectance carbon analysis system: Description, evaluation and applications in U.S. Air quality studies. Atmos. Environ. Part A Gen. Top. 1993, 27, 1185–1201. [Google Scholar] [CrossRef]
- Chow, J.C.; Watson, J.G.; Chen, L.-W.; Arnott, W.P.; Moosmüller, H.; Fung, K. Equivalence of Elemental Carbon by Thermal/Optical Reflectance and Transmittance with Different Temperature Protocols. Environ. Sci. Technol. 2004, 38, 4414–4422. [Google Scholar] [CrossRef]
- Wu, C.; Ng, W.M.; Huang, J.; Wu, D.; Yu, J.Z. Determination of Elemental and Organic Carbon in PM2.5 in the Pearl River Delta Region: Inter-Instrument (Sunset vs. DRI Model 2001 Thermal/Optical Carbon Analyzer) and Inter-Protocol Comparisons (IMPROVE vs. ACE-Asia Protocol). Aerosol Sci. Technol. 2012, 46, 610–621. [Google Scholar] [CrossRef] [Green Version]
- Turpin, B.J.; Huntzicker, J.J. Secondary formation of organic aerosol in the Los Angeles basin: A descriptive analysis of organic and elemental carbon concentrations. Atmos. Environ. Part A Gen. Top. 1991, 25, 207–215. [Google Scholar] [CrossRef]
- Draxler, R.R.; Hess, G.D. An Overview of the Hysplit 4 modeling system for trajectories, dispersion and deposition. Aust. Meteorol. Mag. 1998, 47, 295–308. [Google Scholar]
- Babu, S.S.; Chaubey, J.P.; Krishna Moorthy, K.; Gogoi, M.M.; Kompalli, S.K.; Sreekanth, V.; Bagare, S.P.; Bhatt, B.C.; Gaur, V.K.; Prabhu, T.P.; et al. High altitude (~4520 m amsl) measurements of black carbon aerosols over western trans-Himalayas: Seasonal heterogeneity and source apportionment. J. Geophys. Res. Atmos. 2011, 116, D24201. [Google Scholar] [CrossRef] [Green Version]
- Schauer, J.J.; Kleeman, M.J.; Cass, G.R.; Simoneit, B.R.T. Measurement of emissions from air pollution sources. 5. C-1-C-32 organic compounds from gasolinepowered motor vehicles. Environ. Sci. Technol. 2002, 36, 1169–1180. [Google Scholar] [CrossRef]
- Chen, Y.; Zhi, G.; Feng, Y.; Fu, J.; Feng, J.; Sheng, G.; Simoneit, B.R.T. Measurements of emission factors for primary carbonaceous particles from residential raw-coal combustion in China. Geophys. Res. Lett. 2006, 33, 20. [Google Scholar] [CrossRef]
- Cao, J.J.; Wu, F.; Chow, J.C.; Lee, S.C.; Li, Y.; Chen, S.W.; An, Z.S.; Fung, K.K.; Watson, J.G.; Zhu, C.S.; et al. Characterization and source apportionment of atmospheric organic and elemental carbon during fall and winter of 2003 in Xi’an, China. Atmos. Chem. Phys. 2005, 5, 3127–3137. [Google Scholar] [CrossRef] [Green Version]
- Ming, J.; Xiao, C.D.; Sun, J.Y.; Kang, S.C.; Bonasoni, P. Carbonaceous particles in the atmosphere and precipitation of the Nam Co region, central Tibet. J. Environ. Sci. 2010, 22, 1748–1756. [Google Scholar] [CrossRef]
- Zhang, Y.L.; Kawamura, K.; Agrios, K.; Lee, M.; Salazar, G.; Szidat, S. Fossil and Nonfossil Sources of Organic and Elemental Carbon Aerosols in the Outflow from Northeast China. Environ. Sci. Technol. 2016, 50, 6284–6292. [Google Scholar] [CrossRef] [PubMed]
- Streets, D.G.; Gupta, S.; Waldhoff, S.T.; Wang, M.Q.; Bond, T.C.; Yiyun, B. Black carbon emissions in China. Atmos. Environ. 2001, 35, 4281–4296. [Google Scholar] [CrossRef]
- Chow, J.C.; Watson, J.G.; Kuhns, H.D.; Etyemezian, V.; Lowenthal, D.H.; Crow, D.J.; Kohl, S.D.; Engelbrecht, J.P.; Green, M.C. Source profiles for industrial, mobile, and area sources in the Big Bend Regional Aerosol Visibility and Observational (BRAVO) Study. Chemosphere 2003, 54, 185–208. [Google Scholar] [CrossRef]
- Ellis, E.C.; Novakov, T.; Zeldin, M.D. Thermal characterization of organic aerosols. Sci. Total Environ. 1984, 36, 261–270. [Google Scholar] [CrossRef]
- Watson, J.G.; Chow, J.C.; Lowenthal, D.H.; Pritchett, L.C.; Frazier, C.A.; Neuroth, G.R.; Robbins, R. Differences in the carbon composition of source profiles for dieseland gasoline-powered vehicles. Atmos. Environ. 1994, 28, 2493–2505. [Google Scholar] [CrossRef]
- Zhou, X.; Zhang, T.; Li, Z.; Tao, Y.; Wang, F.; Zhang, X.; Xu, C.; Ma, S.; Huang, J. Particulate and gaseous pollutants in a petrochemical industrialized valley city, Western China during 2013–2016. Environ. Sci. Pollut. Res. Int. 2018, 25, 15174–15190. [Google Scholar] [CrossRef]
Size Fraction | Season | Concentration (µg/m3) | EC (µg/m3) | OC (µg/m3) | OC/PM (%) | EC/PM (%) |
---|---|---|---|---|---|---|
PM1 | Winter | 96.36 ± 28.26 | 3.65 ± 1.78 | 11.24 ± 4.41 | 11.66 | 3.79 |
Spring | 60.88 ± 24.44 | 1.24 ± 0.81 | 4.51 ± 1.29 | 7.41 | 2.04 | |
Summer | 72.42 ± 24.83 | 1.43 ± 0.69 | 5.19 ± 0.91 | 7.17 | 1.97 | |
Average | 76.55 ± 18.1 | 2.11 ± 1.34 | 6.98 ± 3.71 | 8.75 | 2.60 | |
PM2.5 | Winter | 104.26 ± 35.11 | 4.21 ± 1.12 | 14.47 ± 4.58 | 13.88 | 4.04 |
Spring | 60.37 ± 39.04 | 1.82 ± 1.23 | 5.48 ± 2.31 | 9.08 | 3.01 | |
Summer | 78.98 ± 13.79 | 1.63 ± 0.75 | 5.85 ± 1.83 | 7.41 | 2.06 | |
Average | 81.20 ± 22.03 | 2.55 ± 1.44 | 8.60 ± 5.09 | 10.12 | 3.04 | |
PM10 | Winter | 176.69 ± 56.17 | 5.94 ± 1.8 | 18.15 ± 6.11 | 10.27 | 3.36 |
Spring | 161.83 ± 70.63 | 3.38 ± 2.11 | 9.06 ± 3.52 | 6 | 2.08 | |
Summer | 130.87 ± 39.65 | 2.69 ± 1.03 | 7.58 ± 1.58 | 5.79 | 2.06 | |
Average | 156.46 ± 23.38 | 4.01 ± 1.72 | 11.60 ± 5.72 | 7.35 | 2.50 |
Location | Period | Size Fraction | OC (µg/m3) | EC (µg/m3) | References |
---|---|---|---|---|---|
Lanzhou | January 2019–July 2019 | PM1 | 6.98 ± 3.71 | 2.11 ± 1.34 | This study |
PM2.5 | 8.6 ± 5.09 | 2.55 ± 1.44 | |||
PM10 | 11.6 ± 5.72 | 4.01 ± 1.72 | |||
Lanzhou | January 2014–December 2014 | PM2.5 | 15.3 | 6.7 | [12] |
Lanzhou | December 2012–January 2013 | PM2.5 | 9.4 | 4.3 | [30] |
Beijing | 2016–2017 winter | PM1 | 21.22 | 5.74 | [23] |
PM2.5 | 41.25 | 11.02 | |||
PM10 | 45.89 | 14.26 | |||
Chengdu | January 2011–October 2011 | PM2.5 | 17 ± 8 | 7 ± 4 | [19] |
Xi’an | December 2014–November 2015 | PM2.5 | 19.73 ± 15.03 | 1.86 ± 1.00 | [27] |
PM10 | 22.47 ± 17.42 | 2.23 ± 1.42 | |||
14 cities, China | Winter, 2003 | PM2.5 | 38.1 | 9.9 | [13] |
Summer, 2003 | PM2.5 | 13.8 | 3.6 | ||
Lhasa | PM10 | 4.74 | 2.31 | [16] |
Species | PM | Spring | Summer | Winter | |||
---|---|---|---|---|---|---|---|
F1 | F2 | F1 | F2 | F1 | F2 | ||
OC1 | PM1 | 0.525 | 0.787 | 0.182 | 0.633 | 0.865 | - |
PM2.5 | 0.614 | - | 0.661 | 0.724 | 0.784 | −0.385 | |
PM10 | 0.566 | −0.674 | −0.038 | 0.999 | 0.807 | −0.186 | |
OC2 | PM1 | 0.956 | 0.373 | 0.886 | 0.160 | 0.984 | - |
PM2.5 | 0.974 | - | 0.922 | 0.288 | 0.968 | −0.185 | |
PM10 | 0.908 | −0.286 | 0.993 | 0.041 | 0.967 | −0.110 | |
OC3 | PM1 | 0.950 | 0.399 | 0.869 | −0.420 | 0.968 | - |
PM2.5 | 0.963 | - | 0.912 | −0.285 | 0.917 | 0.158 | |
PM10 | 0.955 | −0.138 | 0.996 | 0.024 | 0.963 | −0.064 | |
OC4 | PM1 | 0.956 | 0.367 | 0.899 | −0.199 | 0.950 | - |
PM2.5 | 0.893 | - | 0.943 | −0.161 | 0.793 | 0.460 | |
PM10 | 0.955 | 0.123 | 0.995 | 0.002 | 0.896 | 0.063 | |
EC1 | PM1 | 0.942 | 0.335 | 0.934 | 0.266 | 0.943 | - |
PM2.5 | 0.969 | - | 0.924 | −0.309 | 0.944 | −0.191 | |
PM10 | 0.961 | −0.059 | 0.997 | 0.033 | 0.971 | −0.039 | |
EC2 | PM1 | 0.811 | −0.080 | 0.873 | 0.092 | 0.940 | - |
PM2.5 | 0.935 | - | 0.935 | −0.201 | 0.679 | 0.606 | |
PM10 | 0.899 | 0.304 | 0.995 | −0.005 | 0.826 | 0.197 | |
EC3 | PM1 | 0.506 | 0.777 | 0.343 | −0.766 | 0.508 | - |
PM2.5 | 0.560 | - | 0.673 | 0.659 | −0.235 | 0.704 | |
PM10 | 0.520 | 0.607 | 0.884 | −0.064 | 0.168 | 0.960 | |
OPC | PM1 | 0.892 | 0.315 | 0.690 | 0.320 | 0.945 | - |
PM2.5 | 0.936 | - | 0.865 | −0.287 | 0.923 | −0.103 | |
PM10 | 0.911 | 0.136 | 0.994 | 0.001 | 0.941 | −0.025 | |
Eigenvalues | PM1 | 5.603 | 1.015 | 4.611 | 1.412 | 6.480 | - |
PM2.5 | 6.056 | - | 5.936 | 1.337 | 5.278 | 1.328 | |
PM10 | 5.805 | 1.053 | 6.723 | 1.005 | 5.855 | 1.017 | |
FVCR (%) | PM1 | 70.035% | 12.688% | 57.632% | 17.651% | 80.997% | - |
PM2.5 | 75.694% | - | 74.199% | 16.714% | 65.981% | 16.605% | |
PM10 | 72.559% | 13.159% | 84.037% | 12.558% | 73.186% | 12.712% | |
CVCR (%) | PM1 | 70.035% | 82.723% | 57.632% | 75.283% | 80.997% | - |
PM2.5 | 75.694% | - | 74.199% | 90.914% | 65.981% | 82.585% | |
PM10 | 72.559% | 85.718% | 84.037% | 96.595% | 73.186% | 85.898% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.; Li, Z.; Wang, F.; Song, M.; Zhou, X.; Ming, J. Carbonaceous Aerosols in PM1, PM2.5, and PM10 Size Fractions over the Lanzhou City, Northwest China. Atmosphere 2020, 11, 1368. https://doi.org/10.3390/atmos11121368
Zhang X, Li Z, Wang F, Song M, Zhou X, Ming J. Carbonaceous Aerosols in PM1, PM2.5, and PM10 Size Fractions over the Lanzhou City, Northwest China. Atmosphere. 2020; 11(12):1368. https://doi.org/10.3390/atmos11121368
Chicago/Turabian StyleZhang, Xin, Zhongqin Li, Feiteng Wang, Mengyuan Song, Xi Zhou, and Jing Ming. 2020. "Carbonaceous Aerosols in PM1, PM2.5, and PM10 Size Fractions over the Lanzhou City, Northwest China" Atmosphere 11, no. 12: 1368. https://doi.org/10.3390/atmos11121368