Gaseous Elemental Mercury Concentrations along the Northern Gulf of Mexico Using Passive Air Sampling, with a Comparison to Active Sampling
Abstract
:1. Introduction
2. Material and Methods
2.1. Study Sites and Meteorological Measurements
2.2. The MerPAS® and Its Preparation and Deployment in This Study
2.3. Determination of Hg Collected on the Pas Sorbent and Calculation of Atmospheric Hg Concentratins
2.4. Measurement of GEM at NOAA’s Grand Bay Site Using Active Sampling
2.5. Statistical Analysis
3. Results and Discussion
3.1. Seasonal Trends of GEM Concentration along the nGoM Using PASs
3.2. Spatial Trends of GEM Concentration along the nGoM Using PASs
3.3. Comparison of GEM Determined by Cctive and Passive Sampling at Grand Bay
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Bay St. Louis | Gulf Port | GCRL (Main Campus) | GCRL (Cedar Point) | Grand Bay | Dauphin Island | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Deployment Sites: | 30.302°N, 89.327°W | 30.361°N, 89.083°W | 30.392°N, 88.799°W | 30.392°N, 88.775°W | 30.412°N, 88.404°W | 30.251°N, 88.077°W | ||||||
Weather Stations: | 30.287°N, 89.376°W | 30.364°N, 89.086°W | 30.401°N, 88.808°W | 30.401°N, 88.773°W | 30.412°N, 88.404°W | 30.254°N, 88.103°W | ||||||
Sampling Period | Temp. (℃) | Wind (m/s) | Temp. (℃) | Wind (m/s) | Temp. (℃) | Wind (m/s) | Temp. (℃) | Wind (m/s) | Temp. (℃) | Wind (m/s) | Temp. (℃) | Wind (m/s) |
May–June (16/5/2019–13/6/2019) | 27.0 | 1.6 | 27.0 | 5.7 | 27.2 | 0.3 | 26.4 | 0.9 | 26.7 | 3.0 | 27.2 | 1.0 |
June–July (13/6/2019–11/7/2019) | 28.1 | 1.4 | 28.5 | 4.7 | 28.7 | 0.3 | 27.9 | 0.9 | 27.9 | 2.9 | 28.7 | 1.2 |
July–August (11/7/2019–8/8/2019) | 26.8 | 1.3 | 26.4 | 4.9 | 27.4 | 0.3 | 26.8 | 0.8 | 26.7 | 2.2 | 28.3 | 1.1 |
August–September (8/8/2019–5/9/2019) | 27.4 | 0.8 | 28.4 | 3.5 | 27.5 | 0.2 | 27.1 | 0.4 | 27.4 | 1.8 | 28.5 | 0.9 |
November–December (1/11/2019–3/12/2019) | 12.8 | 1.0 | 13.7 | 3.6 | 13.0 | 0.5 | 13.0 | 0.5 | 13.4 | 2.3 | 14.9 | 2.1 |
January–February (27/1/2020–18/2/2020) | 13.7 | 1.3 | 14.3 | 4.6 | 14.3 | 0.7 | 14.3 | 1.1 | 14.8 | 4.9 | 14.6 | 2.1 |
Sampling Period | Amount of Hg Collected and GEM Level | Bay St. Louis | Gulf Port | GCRL Main Campus | GCRL Cedar Point | Grand Bay | Dauphin Island | All Locations | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Mean | SE | Mean | SE | Mean | SE | Mean | SE | Mean | SE | Mean | SE | Mean | SE | ||
16/5/2019–13/6/2019 | Hg (ng) | 4.12 a | 0.14 | 4.60 | 0.22 | 4.54 | 0.13 | 3.64 | 0.12 | 4.00 | 0.11 | 4.48 | 0.19 | 4.23 | 0.15 |
Conc. (ng m−3) | 1.22 | 0.04 | 1.40 | 0.07 | 1.34 | 0.04 | 1.06 | 0.03 | 1.14 | 0.03 | 1.33 | 0.06 | 1.25 | 0.03 | |
13/6/2019–11/7/2019 | Hg (ng) | 3.77 b | 0.09 | 3.90 | 0.08 | 3.95 | 0.17 | 3.45 a | 0.13 | 3.77 | 0.12 | 3.85 | 0.06 | 3.78 | 0.07 |
Conc. (ng m−3) | 1.15 | 0.03 | 1.10 | 0.02 | 1.24 | 0.05 | 1.06 | 0.04 | 1.11 | 0.04 | 1.18 | 0.02 | 1.14 | 0.02 | |
11/7/2019–8/8/2019 | Hg (ng) | Lost in tropical storm | 3.36 | 0.21 | 4.07 | 0.11 | 3.14 a | 0.06 | 4.00 | 0.16 | 3.98 a | 0.12 | 3.71 | 0.70 | |
Conc. (ng m−3) | 0.89 | 0.05 | 1.24 | 0.03 | 0.95 | 0.02 | 1.17 | 0.05 | 1.18 | 0.04 | 1.09 | 0.05 | |||
8/8/2019–5/9/2019 | Hg (ng) | 4.19 a | 0.07 | 4.29 | 0.06 | 3.95 | 0.10 | 3.25 | 0.21 | 3.98 | 0.07 | 4.11 | 0.02 | 3.96 | 0.15 |
Conc. (ng m−3) | 1.26 | 0.02 | 1.24 | 0.02 | 1.22 | 0.03 | 1.00 | 0.06 | 1.13 | 0.02 | 1.19 | 0.01 | 1.17 | 0.02 | |
1/11/2019–3/12/2019 | Hg (ng) | 4.36 a | 0.08 | 4.43 a | 0.10 | 3.92 a | 0.14 | 3.37 a | 0.09 | 3.96 | 0.05 | 4.26 | 0.25 | 4.05 | 0.16 |
Conc. (ng m−3) | 1.42 | 0.03 | 1.21 | 0.03 | 1.17 | 0.04 | 1.00 | 0.03 | 1.12 | 0.01 | 1.19 | 0.07 | 1.18 | 0.03 | |
27/1/2020–18/2/2020 | Hg (ng) | 4.58 b | 0.08 | 4.35 | 0.12 | 4.17 | 0.10 | 3.60 | 0.12 | 4.42 | 0.13 | 4.50 | 0.10 | 4.27 | 0.15 |
Conc. (ng m−3) | 1.77 | 0.03 | 1.54 | 0.04 | 1.56 | 0.04 | 1.33 | 0.04 | 1.46 | 0.04 | 1.62 | 0.04 | 1.53 | 0.03 | |
All Seasons | Hg (ng) | 4.21 | 0.07 | 4.15 | 0.09 | 4.10 | 0.06 | 3.42 | 0.06 | 4.02 | 0.05 | 4.20 | 0.07 | ||
Conc. (ng m−3) | 1.36 | 0.05 | 1.23 | 0.04 | 1.29 | 0.03 | 1.07 | 0.09 | 1.19 | 0.02 | 1.28 | 0.03 |
Season | Mean Temperature (℃) | Mean Wind Speed (m/s) | Statistical Parameter | Active Sampler (ng m−3) | Passive Sampler (ng m−3) |
---|---|---|---|---|---|
Spring 2019 | 26.7 | 3.0 | n | 324 | 6 |
Range | 0.90–1.81 | 1.07–1.27 | |||
Mean | 1.29 | 1.14 | |||
Median | 1.30 | 1.14 | |||
SD | 0.10 | 0.07 | |||
Summer 2019 | 27.3 | 2.5 | n | 550 | 18 |
Range | 0.98–1.64 | 1.03–1.38 | |||
Mean | 1.26 | 1.14 | |||
Median | 1.26 | 1.12 | |||
SD | 0.10 | 0.09 | |||
Fall 2019 | 13.4 | 2.3 | n | 371 | 6 |
Range | 0.71–1.68 | 1.06–1.15 | |||
Mean | 1.27 | 1.12 | |||
Median | 1.30 | 1.12 | |||
SD | 0.20 | 0.04 | |||
Winter 2020 | 14.8 | 4.9 | n | 256 | 6 |
Range | 0.89–1.66 | 1.35–1.64 | |||
Mean | 1.40 | 1.46 | |||
Median | 1.39 | 1.43 | |||
SD | 0.14 | 0.11 |
References
- Fitzgerald, W.F.; Engstrom, D.R.; Mason, R.P.; Nater, E.A. The Case for Atmospheric Mercury Contamination in Remote Areas. Environ. Sci. Technol. 1998, 32, 1–7. [Google Scholar] [CrossRef]
- Gustin, M.; Jaffe, D. Reducing the Uncertainty in Measurement and Understanding of Mercury in the Atmosphere. Environ. Sci. Technol. 2010, 44, 2222–2227. [Google Scholar] [CrossRef] [PubMed]
- Lyman, S.N.; Cheng, I.; Gratz, L.E.; Weiss-Penzias, P.; Zhang, L. An updated review of atmospheric mercury. Sci. Total Environ. 2020, 707, 135575. [Google Scholar] [CrossRef] [PubMed]
- Gustin, M.S.; Amos, H.M.; Huang, J.; Miller, M.B.; Heidecorn, K. Measuring and modeling mercury in the atmosphere: A critical review. Atmos. Chem. Phys. 2015, 15, 5697–5713. [Google Scholar] [CrossRef] [Green Version]
- Schroeder, W.H.; Munthe, J. Atmospheric mercury—An overview. Atmos. Environ. 1998, 32, 809–822. [Google Scholar] [CrossRef]
- Driscoll, C.T.; Mason, R.P.; Chan, H.M.; Jacob, D.J.; Pirrone, N. Mercury as a Global Pollutant: Sources, Pathways, and Effects. Environ. Sci. Technol. 2013, 47, 4967–4983. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.-J.; Pehkonen, S.O. The chemistry of atmospheric mercury: A review. Atmos. Environ. 1999, 33, 2067–2079. [Google Scholar] [CrossRef]
- Sprovieri, F.; Pirrone, N.; Bencardino, M.; D'Amore, F.; Carbone, F.; Cinnirella, S.; Mannarino, V.; Landis, M.; Ebinghaus, R.; Weigelt, A.; et al. Atmospheric mercury concentrations observed at ground-based monitoring sites globally distributed in the framework of the GMOS network. Atmos. Chem. Phys. 2016, 16, 11915–11935. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Jacob, D.J.; Horowitz, H.M.; Chen, L.; Amos, H.M.; Krabbenhoft, D.P.; Slemr, F.; St. Louis, V.L.; Sunderland, E.M. Observed decrease in atmospheric mercury explained by global decline in anthropogenic emissions. Proc. Natl. Acad. Sci. USA 2016, 113, 526–531. [Google Scholar] [CrossRef] [Green Version]
- Choi, A.L.; Grandjean, P. Methylmercury exposure and health effects in humans. Environ. Chem. 2008, 5, 112–120. [Google Scholar] [CrossRef] [Green Version]
- Hall, B.D.; Aiken, G.R.; Krabbenhoft, D.P.; Marvin-DiPasquale, M.; Swarzenski, C.M. Wetlands as principal zones of methylmercury production in southern Louisiana and the Gulf of Mexico region. Environ. Pollut. 2008, 154, 124–134. [Google Scholar] [CrossRef] [PubMed]
- Ren, X.; Luke, W.T.; Kelley, P.; Cohen, M.D.; Artz, R.; Olson, M.L.; Schmeltz, D.; Puchalski, M.; Goldberg, D.L.; Ring, A.; et al. Atmospheric mercury measurements at a suburban site in the Mid-Atlantic United States: Inter-annual, seasonal and diurnal variations and source-receptor relationships. Atmos. Environ. 2016, 146, 141–152. [Google Scholar] [CrossRef] [Green Version]
- Engle, M.A.; Tate, M.T.; Krabbenhoft, D.P.; Kolker, A.; Olson, M.L.; Edgerton, E.S.; DeWild, J.F.; McPherson, A.K. Characterization and cycling of atmospheric mercury along the central US Gulf Coast. Appl. Geochem. 2008, 23, 419–437. [Google Scholar] [CrossRef]
- Lincoln, R.A.; Shine, J.P.; Chesney, E.J.; Vorhees, D.J.; Grandjean, P.; Senn, D.B. Fish Consumption and Mercury Exposure among Louisiana Recreational Anglers. Environ. Health Perspect. 2011, 119, 245–251. [Google Scholar] [CrossRef] [Green Version]
- Merritt, K.A.; Amirbahman, A. Mercury methylation dynamics in estuarine and coastal marine environments—A critical review. Earth Sci. Rev. 2009, 96, 54–66. [Google Scholar] [CrossRef]
- Ren, X.; Luke, W.T.; Kelley, P.; Cohen, M.D.; Olson, M.L.; Walker, J.; Cole, R.; Archer, M.; Artz, R.; Stein, A.A. Long-Term Observations of Atmospheric Speciated Mercury at a Coastal Site in the Northern Gulf of Mexico during 2007–2018. Atmosphere 2020, 11, 268. [Google Scholar] [CrossRef] [Green Version]
- Ren, X.; Luke, W.; Kelley, P.; Cohen, M.; Ngan, F.; Artz, R.; Walker, J.; Brooks, S.; Moore, C.; Swartzendruber, P.; et al. Mercury Speciation at a Coastal Site in the Northern Gulf of Mexico: Results from the Grand Bay Intensive Studies in Summer 2010 and Spring 2011. Atmosphere 2014, 5, 230–251. [Google Scholar] [CrossRef] [Green Version]
- Rolison, J.M.; Landing, W.M.; Luke, W.; Cohen, M.; Salters, V.J.M. Isotopic composition of species-specific atmospheric Hg in a coastal environment. Chem. Geol. 2013, 336, 37–49. [Google Scholar] [CrossRef]
- Pandey, S.K.; Kim, K.-H.; Brown, R.J.C. Measurement techniques for mercury species in ambient air. TrAC Trends Anal. Chem. 2011, 30, 899–917. [Google Scholar] [CrossRef]
- Gustin, M.S.; Lyman, S.N.; Kilner, P.; Prestbo, E. Development of a passive sampler for gaseous mercury. Atmos. Environ. 2011, 45, 5805–5812. [Google Scholar] [CrossRef]
- Skov, H.; Sørensen, B.T.; Landis, M.S.; Johnson, M.S.; Sacco, P.; Goodsite, M.E.; Lohse, C.; Christiansen, K.S. Performance of a new diffusive sampler for Hg0 determination in the troposphere. Environ. Chem. 2007, 4, 75–80. [Google Scholar] [CrossRef]
- Brumbaugh, W.G.; Petty, J.D.; May, T.W.; Huckins, J.N. A passive integrative sampler for mercury vapor in air and neutral mercury species in water. Chemosphere Glob. Change Sci. 2000, 2, 1–9. [Google Scholar] [CrossRef]
- Peterson, C.; Alishahi, M.; Gustin, M.S. Testing the use of passive sampling systems for understanding air mercury concentrations and dry deposition across Florida, USA. Sci. Total Environ. 2012, 424, 297–307. [Google Scholar] [CrossRef] [PubMed]
- Lyman, S.N.; Gustin, M.S.; Prestbo, E.M. A passive sampler for ambient gaseous oxidzied mercury concentrations. Atmos. Environ. 2010, 44, 246–252. [Google Scholar] [CrossRef]
- McLagan, D.S.; Mitchell, C.P.J.; Huang, H.; Lei, Y.D.; Cole, A.S.; Steffen, A.; Hung, H.; Wania, F. A High-Precision Passive Air Sampler for Gaseous Mercury. Environ. Sci. Technol. Lett. 2016, 3, 24–29. [Google Scholar] [CrossRef] [Green Version]
- Szponar, N.; McLagan, D.S.; Kaplan, R.J.; Mitchell, C.P.J.; Wania, F.; Steffen, A.; Stupple, G.W.; Monaci, F.; Bergquist, B.A. Isotopic Characterization of Atmospheric Gaseous Elemental Mercury by Passive Air Sampling. Environ. Sci. Technol. 2020, 54, 10533–10543. [Google Scholar] [CrossRef] [PubMed]
- McLagan, D.S.; Monaci, F.; Huang, H.; Lei, Y.D.; Mitchell, C.P.J.J.; Wania, F. Characterization and Quantification of Atmospheric Mercury Sources Using Passive Air Samplers. J. Geophys. Res. Atmos. 2019, 124, 2351–2362. [Google Scholar] [CrossRef]
- Jeon, B.; Cizdziel, J.V. Can the MerPAS Passive Air Sampler Discriminate Landscape, Seasonal, and Elevation Effects on Atmospheric Mercury? A Feasibility Study in Mississippi, USA. Atmosphere 2019, 10, 617. [Google Scholar] [CrossRef] [Green Version]
- USEPA. Toxic Release Inventory. 2020. Available online: https://www.epa.gov/toxics-release-inventory-triprogram/tri-basic-data-files-calendar-years-1987-2018 (accessed on 13 January 2020).
- ESRI. USA National Land Cover Database 2011, Based on Data from the Multi-Resolution Land Characteristics Consortium; ESRI ArcGIS Data Server: Redlands, CA, USA, 2019. [Google Scholar]
- McLagan, D.S.; Mitchell, C.P.J.; Steffen, A.; Hung, H.; Shin, C.; Stupple, G.W.; Olson, M.L.; Luke, W.T.; Kelley, P.; Howard, D.; et al. Global evaluation and calibration of a passive air sampler for gaseous mercury. Atmos. Chem. Phys. 2018, 18, 5905–5919. [Google Scholar] [CrossRef] [Green Version]
- McLagan, D.S.; Mitchell, C.P.J.; Huang, H.; Abdul Hussain, B.; Lei, Y.D.; Wania, F. The effects of meteorological parameters and diffusive barrier reuse on the sampling rate of a passive air sampler for gaseous mercury. Atmos. Meas. Tech. 2017, 10, 3651–3660. [Google Scholar] [CrossRef] [Green Version]
- Stupple, G.; McLagan, D.; Steffen, A. In situ reactive gaseous mercury uptake on radiello diffusive barrier, cation exchange membrane and teflon filter membranes during atmospheric mercury depletion events. In Proceedings of the 14th International Conference on Mercury as a Global Pollutant (ICMGP), Krakow, Poland, 8–13 September 2019. [Google Scholar]
- McLagan, D.S.; Huang, H.; Lei, Y.D.; Wania, F.; Mitchell, C.P. Application of sodium carbonate prevents sulphur poisoning of catalysts in automated total mercury analysis. Spectrochim. Acta Part B Spectrosc. 2017, 133, 60–62. [Google Scholar] [CrossRef]
- Gay, D.A.; Schmeltz, D.; Prestbo, E.; Olson, M.; Sharac, T.; Tordon, R. The Atmospheric Mercury Network: Measurement and initial examination of an ongoing atmospheric mercury record across North America. Atmos. Chem. Phys. 2013, 13, 11339–11349. [Google Scholar] [CrossRef] [Green Version]
- National Atmospheric Deposition Program/Mercury Deposition Network. Available online: http://nadp.slh.wisc.edu (accessed on 24 September 2020).
- Nair, U.S.; Wu, Y.; Walters, J.; Jansen, J.; Edgerton, E.S. Diurnal and seasonal variation of mercury species at coastal-suburban, urban, and rural sites in the southeastern United States. Atmos. Environ. 2012, 47, 499–508. [Google Scholar] [CrossRef]
- Sexauer Gustin, M.; Weiss-Penzias, P.S.; Peterson, C. Investigating sources of gaseous oxidized mercury in dry deposition at three sites across Florida, USA. Atmos. Chem. Phys. 2012, 12, 9201–9219. [Google Scholar] [CrossRef] [Green Version]
- Griggs, T.; Liu, L.; Talbot, R.W.; Torres, A.; Lan, X. Comparison of atmospheric mercury speciation at a coastal and an urban site in Southeastern Texas, USA. Atmosphere 2020, 11, 73. [Google Scholar] [CrossRef] [Green Version]
- Sigler, J.M.; Mao, H.; Sive, B.C.; Talbot, R. Oceanic influence on atmospheric mercury at coastal and inland sites: A springtime noreaster in New England. Atmos Chem Phys 2009, 9, 4023–4030. [Google Scholar] [CrossRef] [Green Version]
- Coburn, S.; Dix, B.; Edgerton, E.; Holmes, C.D.; Kinnison, D.; Liang, Q.; ter Schure, A.; Wang, S.; Volkamer, R. Mercury oxidation from bromine chemistry in the free troposphere over the southeastern US. Atmos. Chem. Phys. 2016, 16, 3743–3760. [Google Scholar] [CrossRef] [Green Version]
- Hedgecock, I.M.; Pirrone, N. Chasing Quicksilver: Modeling the Atmospheric Lifetime of Hg in the Marine Boundary Layer at Various Latitudes. Environ. Sci. Technol. 2004, 38, 69–76. [Google Scholar] [CrossRef]
- Yi, J.; Cizdziel, J.; Lu, D. Temporal patterns of atmospheric mercury species in northern Mississippi during 2011–2012: Influence of sudden population swings. Chemosphere 2013, 93, 1694–1700. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jeon, B.; Cizdziel, J.V.; Brewer, J.S.; Luke, W.T.; Cohen, M.D.; Ren, X.; Kelley, P. Gaseous Elemental Mercury Concentrations along the Northern Gulf of Mexico Using Passive Air Sampling, with a Comparison to Active Sampling. Atmosphere 2020, 11, 1034. https://doi.org/10.3390/atmos11101034
Jeon B, Cizdziel JV, Brewer JS, Luke WT, Cohen MD, Ren X, Kelley P. Gaseous Elemental Mercury Concentrations along the Northern Gulf of Mexico Using Passive Air Sampling, with a Comparison to Active Sampling. Atmosphere. 2020; 11(10):1034. https://doi.org/10.3390/atmos11101034
Chicago/Turabian StyleJeon, Byunggwon, James V. Cizdziel, J. Stephen Brewer, Winston T. Luke, Mark D. Cohen, Xinrong Ren, and Paul Kelley. 2020. "Gaseous Elemental Mercury Concentrations along the Northern Gulf of Mexico Using Passive Air Sampling, with a Comparison to Active Sampling" Atmosphere 11, no. 10: 1034. https://doi.org/10.3390/atmos11101034
APA StyleJeon, B., Cizdziel, J. V., Brewer, J. S., Luke, W. T., Cohen, M. D., Ren, X., & Kelley, P. (2020). Gaseous Elemental Mercury Concentrations along the Northern Gulf of Mexico Using Passive Air Sampling, with a Comparison to Active Sampling. Atmosphere, 11(10), 1034. https://doi.org/10.3390/atmos11101034