Regulatory Mechanisms of Exogenous Gibberellin on Seed Germination and Transcriptomic Responses in Lomatogonium rotatum
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.2. Experimental Methods
2.2.1. Determination of Seed Morphological Characteristics
2.2.2. Seed Imbibition Rate
2.2.3. Gibberellin Treatment
2.2.4. Transcriptome Sequencing and Analysis
2.2.5. Microscopic Observation of Embryo Development
2.2.6. Calculation of Germination Parameters
2.2.7. qRT-PCR Validation
- 10 μL TB Green Premix.
- 1 μL forward primer (10 μM).
- 1 μL reverse primer (10 μM).
- 1 μL cDNA template.
- 7 μL RNase-free H2O.
2.2.8. Statistical Analysis
3. Results
3.1. Seed Size, Morphology, and Structure of L. rotatum
3.1.1. Seed Morphological Characteristics of L. rotatum
3.1.2. Embryo Morphogenesis Under Gibberellin Treatment
3.1.3. Seed Water Uptake Capacity
3.2. Effects of Gibberellic Acid Treatment on Seed Germination of L. rotatum
3.2.1. Effects of Different GA3 Concentrations on Seed Germination
3.2.2. Effects of Different Soaking Durations on Seed Germination of L. rotatum
3.3. RNA-Seq Analysis of Gibberellin-Induced Seed Germination
3.3.1. Quality Assessment of Sequencing Data
3.3.2. Sample Correlation and Principal Component Analysis (PCA)
3.3.3. Differentially Expressed Gene (DEG) Statistics
3.3.4. KEGG Pathway Enrichment Analysis of Differentially Expressed Genes
3.3.5. Trend Analysis of Differentially Expressed Genes
3.4. WGCNA Analysis
3.4.1. Construction of Weighted Gene Co-Expression Network and Identification of Key Modules
3.4.2. Identification and Functional Enrichment Analysis of Key Modules
3.5. Expression Patterns of Hormone Biosynthesis and Signal Transduction Genes
3.5.1. Expression of ABA-Related Biosynthesis and Signal Transduction Genes
3.5.2. Expression of Genes Related to GA Metabolism and Signal Transduction
3.6. Relative Expression Analysis of Key Genes
4. Discussion
4.1. Effects of GA3 Treatment on Seed Germination of L. rotatum
4.2. Transcriptomic Dynamics of L. rotatum Seed Germination
4.3. Co-Expression Modules and Hormonal Signaling Mechanisms Underlying L. rotatum Seed Germination
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ba-gen-na; Chen, Y.-L.; Baderihu; Tong, Y.-F.; Ye-ri-gui; Wang, Q.-H. Two New Xanthones from Lomatogonium Carinthiacum. Chin. J. Nat. Med. 2014, 12, 693–696. [Google Scholar] [CrossRef]
- Bao, B.; Wang, Q.; Wu, X.; Tai, W. The Isolation and Structural Elucidation of Three New Biflavonoid Glycosides from Lomatogonium Carinthiacum. Nat. Prod. Res. 2015, 29, 1358–1362. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.H.; Zhang, A.H.; Yun, X.H.; Zhang, C.H.; Li, M.H. Ecology Suitability Study of Lomatogonium Rotatum in Inner Mongolia. China J. Chin. Mater. Medica 2015, 40, 778–784. (In Chinese) [Google Scholar]
- Tuan, P.A.; Kumar, R.; Rehal, P.K.; Toora, P.K.; Ayele, B.T. Molecular Mechanisms Underlying Abscisic Acid/Gibberellin Balance in the Control of Seed Dormancy and Germination in Cereals. Front. Plant Sci. 2018, 9, 668. [Google Scholar] [CrossRef] [PubMed]
- Fu, Y.; Ma, L.; Li, J.; Hou, D.; Zeng, B.; Zhang, L.; Liu, C.; Bi, Q.; Tan, J.; Yu, X.; et al. Factors Influencing Seed Dormancy and Germination and Advances in Seed Priming Technology. Plants 2024, 13, 1319. [Google Scholar] [CrossRef] [PubMed]
- Carrera-Castano, G.; Calleja-Cabrera, J.; Pernas, M.; Gomez, L.; Onate-Sanchez, L. An Updated Overview on the Regulation of Seed Germination. Plants 2020, 9, 703. [Google Scholar] [CrossRef] [PubMed]
- Sajeev, N.; Koornneef, M.; Bentsink, L. A Commitment for Life: Decades of Unraveling the Molecular Mechanisms behind Seed Dormancy and Germination. Plant Cell 2024, 36, 1358–1376. [Google Scholar] [CrossRef] [PubMed]
- Dai, L.L.; Eni, R.G.; Fu, M.H.; Ba, G.N. Botanical, Chemical, and Pharmacological Characteristics of Lomatogonium Rotatum: A Review. World J. Pharmacol. 2022, 11, 6–15. [Google Scholar] [CrossRef]
- Castro-Camba, R.; Sanchez, C.; Vidal, N.; Vielba, J.M. Plant Development and Crop Yield: The Role of Gibberellins. Plants 2022, 11, 2650. [Google Scholar] [CrossRef] [PubMed]
- Waadt, R.; Seller, C.A.; Hsu, P.-K.; Takahashi, Y.; Munemasa, S.; Schroeder, J.I. Plant Hormone Regulation of Abiotic Stress Responses. Nat. Rev. Mol. Cell Biol. 2022, 23, 680–694. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhang, J.; He, W.; Yang, S.; Wang, X. Effect of Gibberellin Treatment on Dormancy-Breaking and Germination of Cherry Seeds. IOP Conf. Ser. Earth Environ. Sci. 2020, 446, 032079. [Google Scholar] [CrossRef]
- You, C.; Zang, S.; Cui, T.; Sun, X.; Su, Y.; Lin, Q.; Lin, H.; Que, Y.; Que, W. Internal Reference Genes for Normalizing Quantitative Real-Time PCR in Different Tissues of Gelsemium elegans or under Low Temperature, MeJA, and SA Stresses. Med. Plant Biol. 2024, 3, e014. [Google Scholar] [CrossRef]
- Mimi, C.O.; Sousa, M.C.; Correa, P.L.C.; De-la-Cruz-Chacon, I.; Boaro, C.S.F.; Ferreira, G. Impact of GA3 on Sugar and Lipid Degradation during Annona x Atemoya Mabb. Seed Germination. Horticulturae 2023, 9, 388. [Google Scholar] [CrossRef]
- Li, J.; Bai, Y.; Xie, Y.; Gao, J. Ultrastructure Change and Transcriptome Analysis of GA3 Treatment on Seed Germination of Moso Bamboo (Phyllostachys edulis). Plant Signal. Behav. 2022, 17, 2091305. [Google Scholar] [CrossRef] [PubMed]
- McGinty, E.M.; Murphy, K.M.; Hauvermale, A.L. Seed Dormancy and Preharvest Sprouting in Quinoa (Chenopodium Quinoa Willd). Plants 2021, 10, 458. [Google Scholar] [CrossRef] [PubMed]
- Santos, T.P.; Sá, M.E.; Malagutti, E.S.; Pinto, M.S.; Ferreira, A.F.A.; Monteiro, L.N.H.; Silva, A.C.C.; Soutello, R.V.G.; Rodrigues, M.G.F. Effects of Gibberellic Acid Concentration and Fruit Maturation Stage on Seed Germination and Vigor of Pitahaya Seedlings. Braz. J. Biol. 2024, 84, e260650. [Google Scholar] [CrossRef] [PubMed]
- Yanxia, Z.; Jianping, J.; Yanfen, H.; Qingsong, D.; Kunhua, W. Comparative Transcriptome Analysis of the Effects of Friction and Exogenous Gibberellin on Germination in Abrus Cantoniensis. Plant Signal. Behav. 2022, 17, 2149113. [Google Scholar] [CrossRef] [PubMed]
- Zhao, G.; Jiang, X. Roles of Gibberellin and Auxin in Promoting Seed Germination and Seedling Vigor in Pinus massoniana. For. Sci. 2014, 60, 367–373. [Google Scholar] [CrossRef]
- Liu, J.; Wu, Y.; Dong, G.; Zhu, G.; Zhou, G. Progress of Research on the Physiology and Molecular Regulation of Sorghum Growth under Salt Stress by Gibberellin. Int. J. Mol. Sci. 2023, 24, 6777. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Wang, J.; Chen, J.; Wang, Z.; Qaseem, M.F.; Li, H.; Wu, A. Physiological and Transcriptomic Responses of Growth in Neolamarckia Cadamba Stimulated by Exogenous Gibberellins. Int. J. Mol. Sci. 2022, 23, 11842. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Xu, T.; Li, Y.; Gao, R.; Tao, X.; Song, J.; Li, C.; Li, Q. Comparative Transcriptome Analysis Reveals the Potential Mechanism of GA3-Induced Dormancy Release in Suaeda Glauca Black Seeds. Front. Plant Sci. 2024, 15, 1354141. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Si, Q.; Yang, K.; Zhang, W.; Zhang, L.; Okita, T.W.; Yan, Y.; Tian, L. Transcriptome Analysis Reveals the Effects of Exogenous Gibberellin on the Germination of Solanum Torvum Seeds. Agron.-Basel 2024, 14, 1736. [Google Scholar] [CrossRef]
- Sun, J.; Wang, P.; Zhou, T.; Rong, J.; Jia, H.; Liu, Z. Transcriptome Analysis of the Effects of Shell Removal and Exogenous Gibberellin on Germination of Zanthoxylum Seeds. Sci. Rep. 2017, 7, 8521. [Google Scholar] [CrossRef] [PubMed]
- Song, Q.; Cheng, S.; Chen, Z.; Nie, G.; Xu, F.; Zhang, J.; Zhou, M.; Zhang, W.; Liao, Y.; Ye, J. Comparative Transcriptome Analysis Revealing the Potential Mechanism of Seed Germination Stimulated by Exogenous Gibberellin in Fraxinus Hupehensis. BMC Plant Biol. 2019, 19, 199. [Google Scholar] [CrossRef] [PubMed]
- Wu, B.; Sun, M.; Zhang, H.; Yang, D.; Lin, C.; Khan, I.; Wang, X.; Zhang, X.; Nie, G.; Feng, G.; et al. Transcriptome Analysis Revealed the Regulation of Gibberellin and the Establishment of Photosynthetic System Promote Rapid Seed Germination and Early Growth of Seedling in Pearl Millet. Biotechnol. Biofuels 2021, 14, 94. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Lv, P.; Yan, D.; Zhang, Z.; Xu, X.; Wang, T.; Wang, Y.; Peng, Z.; Yu, C.; Gao, Y.; et al. Exogenous Melatonin Improves Seed Germination of Wheat (Triticum aestivum L.) under Salt Stress. Int. J. Mol. Sci. 2022, 23, 8436. [Google Scholar] [CrossRef] [PubMed]
- Du, G.; Zhang, H.; Yang, Y.; Zhao, Y.; Tang, K.; Liu, F. Effects of Gibberellin Pre-Treatment on Seed Germination and Seedling Physiology Characteristics in Industrial Hemp under Drought Stress Condition. Life-Basel 2022, 12, 1907. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Chen, K.; Jiang, J.; Wang, D.; Zhang, K.; Fang, Y. Multi-omics Analysis of the Regulatory Network in Winter Buds of ‘Cabernet Sauvignon’ Grapevine from Dormancy to Bud Break. Plant Biotechnol. J. 2025, 23, 2110–2124. [Google Scholar] [CrossRef] [PubMed]
- Xu, F.; Yoshida, H.; Chu, C.; Matsuoka, M.; Sun, J. Seed Dormancy and Germination in Rice: Molecular Regulatory Mechanisms and Breeding. Mol. Plant 2025, 18, 960–977. [Google Scholar] [CrossRef] [PubMed]
- Miura, C.; Furui, Y.; Yamamoto, T.; Kanno, Y.; Honjo, M.; Yamaguchi, K.; Suetsugu, K.; Yagame, T.; Seo, M.; Shigenobu, S.; et al. Autoactivation of Mycorrhizal Symbiosis Signaling through Gibberellin Deactivation in Orchid Seed Germination. Plant Physiol. 2024, 194, 546–563. [Google Scholar] [CrossRef] [PubMed]
- Chang, J.; Li, J.; Li, J.; Chen, X.; Jiao, J.; Li, J.; Song, Z.; Zhang, B. The GA and ABA Signaling Is Required for Hydrogen-Mediated Seed Germination in Wax Gourd. BMC Plant Biol. 2024, 24, 542. [Google Scholar] [CrossRef] [PubMed]
- Guo, H.; Li, S.; Liu, Y.; Yang, Q. Catechin Promotes the Germination of Pistacia Chinensis Seeds via GA Biosynthesis. Ann. Bot. 2024, 134, 233–246. [Google Scholar] [CrossRef] [PubMed]
- Chen, F.; Huang, Y.; Cao, Z.; Li, Y.; Liu, D.; Han, X.; Yin, K.; Liu, Q. New Insights into the Molecular Mechanism of Low-Temperature Stratification on Dormancy Release and Germination of Saposhnikovia Divaricata Seeds. Braz. J. Bot. 2022, 45, 1183–1198. [Google Scholar] [CrossRef]
ID | Read Number | Base Number | GC Content | % ≥ Q30 |
---|---|---|---|---|
GA3-24h1 | 20,232,799 | 6,055,885,947 | 43.44% | 94.05% |
GA3-24h2 | 20,522,890 | 6,143,199,636 | 43.66% | 94.28% |
GA3-24h3 | 19,679,395 | 5,891,520,830 | 43.58% | 94.33% |
GA3-72h1 | 19,221,648 | 5,754,433,917 | 42.65% | 94.10% |
GA3-72h2 | 20,317,439 | 6,076,379,889 | 42.87% | 94.63% |
GA3-72h3 | 19,556,790 | 5,847,748,648 | 42.77% | 94.62% |
GA3-96h1 | 20,051,187 | 6,003,725,668 | 42.55% | 94.29% |
GA3-96h2 | 20,051,334 | 6,002,314,071 | 42.56% | 94.27% |
GA3-96h3 | 20,035,098 | 5,996,430,036 | 42.58% | 94.54% |
H2O-24h1 | 19,906,509 | 5,955,136,968 | 43.88% | 94.12% |
H2O-24h2 | 22,168,127 | 6,632,734,420 | 43.90% | 94.75% |
H2O-24h3 | 19,938,952 | 5,969,888,304 | 43.81% | 93.93% |
H2O-72h1 | 20,582,702 | 6,157,794,233 | 43.21% | 94.67% |
H2O-72h2 | 20,383,386 | 6,098,756,120 | 42.97% | 94.89% |
H2O-72h3 | 20,312,823 | 6,075,064,831 | 43.18% | 94.39% |
H2O-96h1 | 20,237,393 | 6,057,775,075 | 42.77% | 94.46% |
H2O-96h2 | 20,698,983 | 6,196,232,376 | 43.03% | 94.20% |
H2O-96h3 | 20,241,326 | 6,060,140,013 | 42.83% | 94.16% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cao, K.; Mu, Y.; Lu, S.; Zhao, Y. Regulatory Mechanisms of Exogenous Gibberellin on Seed Germination and Transcriptomic Responses in Lomatogonium rotatum. Genes 2025, 16, 878. https://doi.org/10.3390/genes16080878
Cao K, Mu Y, Lu S, Zhao Y. Regulatory Mechanisms of Exogenous Gibberellin on Seed Germination and Transcriptomic Responses in Lomatogonium rotatum. Genes. 2025; 16(8):878. https://doi.org/10.3390/genes16080878
Chicago/Turabian StyleCao, Kefan, Yingtong Mu, Sihai Lu, and Yanyan Zhao. 2025. "Regulatory Mechanisms of Exogenous Gibberellin on Seed Germination and Transcriptomic Responses in Lomatogonium rotatum" Genes 16, no. 8: 878. https://doi.org/10.3390/genes16080878
APA StyleCao, K., Mu, Y., Lu, S., & Zhao, Y. (2025). Regulatory Mechanisms of Exogenous Gibberellin on Seed Germination and Transcriptomic Responses in Lomatogonium rotatum. Genes, 16(8), 878. https://doi.org/10.3390/genes16080878