Next Article in Journal
The Response to DNA Damage at Telomeric Repeats and Its Consequences for Telomere Function
Previous Article in Journal
Mitochondrial Introgression, Color Pattern Variation, and Severe Demographic Bottlenecks in Three Species of Malagasy Poison Frogs, Genus Mantella
Article Menu
Issue 4 (April) cover image

Export Article

Open AccessArticle

Transcriptome Dynamics of Double Recessive Mutant, o2o2o16o16, Reveals the Transcriptional Mechanisms in the Increase of Its Lysine and Tryptophan Content in Maize

1
The State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang 550025, China
2
Guizhou Institute of Upland Food Crops, Guiyang Station for DUS Testing Center of New Plant Varieties (MOA), Guizhou Academy of Agricultural Sciences, Guiyang 550006, China
*
Authors to whom correspondence should be addressed.
Genes 2019, 10(4), 316; https://doi.org/10.3390/genes10040316
Received: 19 February 2019 / Revised: 12 April 2019 / Accepted: 16 April 2019 / Published: 23 April 2019
(This article belongs to the Section Plant Genetics and Genomics)
  |  
PDF [5023 KB, uploaded 23 April 2019]
  |  

Abstract

In maize, pyramiding of o2 and o16 alleles can greatly improve the nutritional quality of grains. To dissect its molecular mechanism, we created a double recessive mutant line, o2o2o16o16, by introgression of the o2 and o16 alleles into the wild-type maize inbred line, by molecular marker-assisted backcross selection. The kernels (18 day after pollination (DAP), 28 DAP, and 38 DAP) of the o2o2o16o16 mutant and its parent lines were subject to RNA sequencing (RNA-Seq). The RNA-Seq analysis revealed that 59 differentially expressed genes (DEGs) were involved in lysine metabolism and 43 DEGs were involved in tryptophan metabolism. Among them, the genes encoding AK, ASADH, and Dap-F in the lysine synthesis pathway were upregulated at different stages of endosperm development, promoting the synthesis of lysine. Meanwhile, the genes encoding LKR/SDH and L-PO in the lysine degradation pathway were downregulated, inhibiting the degradation of lysine. Moreover, the genes encoding TAA and YUC in the tryptophan metabolic pathway were downregulated, restraining the degradation of tryptophan. Thus, pyramiding o2 and o16 alleles could increase the lysine and tryptophan content in maize. These above results would help to uncover the molecular mechanisms involved in the increase in lysine and the tryptophan content, through the introgression of o2 and o16 alleles into the wild-type maize. View Full-Text
Keywords: opaque2; opaque16; lysine; tryptophan; RNA-Seq; Zea mays L. opaque2; opaque16; lysine; tryptophan; RNA-Seq; Zea mays L.
Figures

Figure 1

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited (CC BY 4.0).

Supplementary material

SciFeed

Share & Cite This Article

MDPI and ACS Style

Wang, W.; Dai, Y.; Wang, M.; Yang, W.; Zhao, D. Transcriptome Dynamics of Double Recessive Mutant, o2o2o16o16, Reveals the Transcriptional Mechanisms in the Increase of Its Lysine and Tryptophan Content in Maize. Genes 2019, 10, 316.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Genes EISSN 2073-4425 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top