Sow Thistle Chloroplast Genomes: Insights into the Plastome Evolution and Relationship of Two Weedy Species, Sonchus asper and Sonchus oleraceus (Asteraceae)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material Preparation, DNA Extraction, Genome Sequencing, and Annotation
2.2. Repeat Sequence Analysis
2.3. Identification of Highly Divergent Regions
2.4. Phylogenetic Analysis
3. Results and Discussion
3.1. Comparative Genomic Analysis of Five Weedy Sonchus Chloroplast Genomes in Content, Order, and Organization
3.2. SSRs and Large Repeat Sequences
3.3. Sequence Divergence and Hotspots
3.4. Phylogenetic Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Holm, L.G.; Plucknett, D.L.; Pancho, J.V.; Herberger, J.P. The World’s Worst Weeds: Distribution and Biology; University Press of Hawaii: Ann Arbor, MI, USA, 1977. [Google Scholar]
- Roberts, H.A.; Neilson, J.E. Seed survival and periodicity of seedling emergence in twelve weedy species of Compositae. Ann. Appl. Biol. 1981, 97, 325–334. [Google Scholar] [CrossRef]
- Hassan, M.O.; Gomaa, N.H.; Fahmy, G.M.; González, L.; Hammouda, O.; Atteya, A.M. Interactions between Sonchus oleraceus L. and some weeds in agroecosystems in Egypt. Ann. Agric. Sci. 2014, 59, 221–228. [Google Scholar] [CrossRef]
- Hutchinson, I.A.; Colosi, J.; Lewin, R.A. The biology of Canadian weeds. 63. Sonchus asper (L.) Hill and S. oleraceus L. Can. J. Plant. Sci. 1984, 64, 731–744. [Google Scholar] [CrossRef]
- Boutsalis, P.; Powles, S.B. Inheritance and mechanism of resistance to herbicides inhibiting acetolactate synthase in Sonchus oleraceus L. Theor. Appl. Genet. 1995, 91, 242–247. [Google Scholar] [CrossRef] [PubMed]
- Cook, T.; Davidson, B.; Miller, R. A new glyphosate resistant weed species confirmed for northern New South Wales and the world: Common sowthistle (Sonchus oleraceus). In Proceedings of the 19th Australasian Weeds Conference, Hobart, TAS, Australia, 1–4 September 2014; Tasmanian Weed Society: Hobart, Australia; pp. 206–209. [Google Scholar]
- Cambie, R.C.; Ferguson, L.R. Potential functional foods in the traditional Maori diet. Mutat. Res. Fundam. Mol. Mech. 2003, 523, 109–117. [Google Scholar] [CrossRef]
- Li, X.M.; Yang, P.L. Research progress of Sonchus species. Int. J. Food Prop. 2018, 21, 147–157. [Google Scholar] [CrossRef]
- Kilian, N.; Gemeinholzer, B.; Lack, H.W. Cichorieae. In Systematics, Evolution, and Biogeography of Compositae; Funk, V.A., Susanna, A., Stuessy, T.F., Bayer, R.J., Eds.; International Association for Plant Taxonomy: Vienna, Austria, 2009; pp. 343–383. [Google Scholar]
- Kilian, N.; Hand, R.; von Raab-Straube, E. (Eds.) Cichorieae Systematics Portal. Available online: http://cichorieae.e-taxonomy.net/portal/ (accessed on 15 December 2018).
- Boulos, L. Révision systématique du genre Sonchus L. s.l. I. Introduction et classification. Bot. Not. 1972, 125, 287–305. [Google Scholar]
- Mejías, J.A.; Kim, S.-C. Taxonomic treatment of Cichorieae (Asteraceae) endemic to the Juan Fernandez and Desventuradas Islands (SE Pacific). Ann. Bot. Fenn. 2012, 49, 171–178. [Google Scholar] [CrossRef]
- Kim, S.-C.; Lee, C.; Mejias, J. A Phylogenetic analysis of chloroplast DNA matK gene and ITS of nrDNA sequences reveals polyphyly of the genus Sonchus and new relationships among the subtribe Sonchinae (Asteraceae: Cichorieae). Mol. Phylogenet. Evol. 2007, 44, 578–597. [Google Scholar] [CrossRef]
- Boulos, L. Cytotaxonomic studies in the genus Sonchus 2. The genus Sonchus, a general systematic treatment. Bot. Not. 1960, 3, 400–420. [Google Scholar]
- CABI. Invasive Species Compendium, Sonchus Oleraceus Datasheet. Available online: https://www.cabi.org/isc/datasheet/50584#BE1550BF-EFDC-4477-BBF6-40BF99ECFA6D (accessed on 29 July 2018).
- Hsieh, T.S.; Schooler, A.B.; Hell, A.; Nalewaja, J.A. Cytotaxonomic of three Sonchus species. Am. J. Bot. 1972, 59, 789–796. [Google Scholar] [CrossRef]
- Mejías, J.A.; Andrés, C. Karyological studies in Iberian Sonchus (Asteraceae: Lactuceae): S. oleraceus, S. microcephalus and S. asper and a general discussion. Folia Geobot. 2004, 39, 275–291. [Google Scholar]
- Mulligan, G.A. Chromosome numbers of canadian weeds. I. Can. J. Bot. 1957, 35, 779–789. [Google Scholar] [CrossRef]
- Turner, B.L.; Ellison, W.L.; King, R.M. Chromosome numbers in the Compositae. IV. North American species with phyletic interpretations. Am. J. Bot. 1961, 48, 216–223. [Google Scholar] [CrossRef]
- Walter, R.; Kuta, E. Cytological and embryological studies in Sonchus L.I. Sonchus asper (L.) HILL and Sonchus oleraceus L. Acta Biol. Cracoviensia Ser. Bot. 1971, 14, 103–109. [Google Scholar]
- Stebbins, G.L.; Jenkins, J.A.; Walters, M.S. Chromosomes and phylogeny in the Compositae, tribe Cichorieae. Univ. Calif. Publ. Bot. 1953, 26, 401–430. [Google Scholar]
- Kim, S.-C.; Crawford, D.J.; Jansen, R.K. Phylogenetic relationships among the genera of the subtribe Sonchinae (Asteraceae): Evidence from ITS sequences. Syst. Bot. 1996, 21, 417–432. [Google Scholar] [CrossRef]
- Kim, S.-C.; Crawford, D.J.; Francisco-Ortega, J.; Santos-Guerra, A. A common origin for woody Sonchus and five related genera in the Macaronesian islands: Molecular evidence for extensive radiation. Proc. Natl. Acad. Sci. USA 1996, 93, 7743–7748. [Google Scholar] [CrossRef]
- Lee, C.; Kim, S.-C.; Lundy, K.; Santos-Guerra, A. Chloroplast DNA phylogeny of the woody Sonchus alliance (Asteraceae: Sonchinae) in the Macaronesian Islands. Am. J. Bot. 2005, 92, 2072–2085. [Google Scholar] [CrossRef]
- Daniell, H.; Lin, C.S.; Yu, M.; Chang, W.J. Chloroplast genomes: Diversity, evolution, and applications in genetic engineering. Genome Biol. 2016, 17, 134. [Google Scholar] [CrossRef]
- Zhang, H.; Li, C.; Miao, H.; Xiong, S. Insights from the complete chloroplast genome into the evolution of Sesamum indicum L. PLoS ONE 2013, 8, e80508. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Iaffaldano, B.J.; Zhuang, X.; Cardina, J.; Cornish, K. Chloroplast genome resources and molecular markers differentiate rubber dandelion species from weedy relatives. BMC Plant Biol. 2017, 17, 34. [Google Scholar] [CrossRef] [PubMed]
- Cristescu, M.E. Genetic reconstructions of invasion history. Mol. Ecol. 2015, 24, 2212–2225. [Google Scholar] [CrossRef] [PubMed]
- Gaudeul, M.; Giraud, T.; Kiss, L.; Shykoff, J.A. Nuclear and chloroplast microsatellites show multiple introductions in the worldwide invasion history of common ragweed, Ambrosia artemissifolia. PLoS ONE 2011, 6, e17658. [Google Scholar] [CrossRef] [PubMed]
- Besnard, G.; Henry, P.; Wille, L.; Cooke, D.; Chapuis, E. On the origin of the invasive olives (Olea europaea L., Oleaceae). Heredity 2007, 99, 608–619. [Google Scholar] [CrossRef] [PubMed]
- Parks, M.; Cronn, R.; Liston, A. Increasing phylogenetic resolution at low taxonomic levels using massively parallel sequencing of chloroplast genomes. BMC Biol. 2009, 7, 84. [Google Scholar] [CrossRef] [PubMed]
- Zerbino, D.R.; Birney, E. Velvet: Algorithms for de novo short read assembly using de Bruijn graphs. Genome Res. 2008, 18, 821–829. [Google Scholar] [CrossRef] [Green Version]
- Wyman, S.K.; Jansen, R.K.; Boore, J.L. Automatic annotation of organellar genomes with DOGMA. Bioinformatics 2004, 20, 3252–3255. [Google Scholar] [CrossRef] [Green Version]
- Laslett, D.; Canback, B. ARAGORN, a program to detect tRNA genes and tmRNA genes in nucleotide sequences. Nucleic Acids Res. 2004, 32, 11–16. [Google Scholar] [CrossRef]
- Lagesen, K.; Hallin, P.; Rødland, E.A.; Stærfeldt, H.H.; Rognes, T.; Ussery, D.W. RNammer: Consistent annotation of rRNA genes in genomic sequences. Nucleic Acids Res. 2007, 35, 3100–3108. [Google Scholar] [CrossRef]
- Lohse, M.; Drechsel, O.; Kahlau, S.; Bock, R. OrganellarGenomeDRAW—A suite of tools for generating physical maps of plastid and mitochondrial genomes and visualizing expression data sets. Nucleic Acids Res. 2013, 41, W575–W581. [Google Scholar] [CrossRef] [PubMed]
- Kurtz, S.; Choudhuri, J.V.; Ohlebusch, E.; Schleiermacher, C.; Stoye, J.; Giegerich, R. REPuter: The manifold applications of repeat analysis on a genomic scale. Nucleic Acids Res. 2001, 29, 4633–4642. [Google Scholar] [CrossRef] [PubMed]
- Librado, P.; Rozas, J. DnaSP v5: A software for comprehensive analysis of DNA polymorphism data. Bioinformatics 2009, 25, 1451–1452. [Google Scholar] [CrossRef] [PubMed]
- Frazer, K.A.; Pachter, L.; Poliakov, A.; Rubin, E.M.; Dubchak, I. VISTA: Computational tools for comparative genomics. Nucleic Acids Res. 2004, 32, W273–W279. [Google Scholar] [CrossRef] [PubMed]
- Brudno, M.; Do, C.B.; Cooper, G.M.; Kim, M.F.; Davydov, E.; Green, E.D.; Sidow, A.; Batzoglou, S. NISC Comparative Sequencing Program. LAGAN and Multi-LAGAN: Efficient Tools for Large-Scale Multiple Alignment of Genomic DNA. Genome Res. 2003, 13, 721–731. [Google Scholar] [CrossRef] [PubMed]
- Katoh, K.; Standley, D.M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 2013, 30, 772–780. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, L.T.; Schmidt, H.A.; von Haeseler, A.; Minh, B.Q. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 2014, 32, 268–274. [Google Scholar] [CrossRef]
- Kalyaanamoorthy, S.; Minh, B.Q.; Wong, T.K.; von Haeseler, A.; Jermiin, L.S. ModelFinder: Fast model selection for accurate phylogenetic estimates. Nat. Methods 2017, 14, 587–589. [Google Scholar] [CrossRef]
- Kim, K.J.; Choi, K.S.; Jansen, R.K. Two chloroplast DNA inversions originated simultaneously during the early evolution of the sunflower family (Asteraceae). Mol. Biol. Evol. 2005, 22, 1783–1792. [Google Scholar] [CrossRef]
- Timme, R.E.; Kuehl, J.V.; Boore, J.L.; Jansen, R.K. A comparative analysis of the Lactuca and Helianthus (Asteraceae) plastid genomes: Identification of divergent regions and categorization of shared repeats. Am. J. Bot. 2007, 94, 302–312. [Google Scholar] [CrossRef] [PubMed]
- Cho, M.S.; Yang, J.Y.; Yang, T.J.; Kim, S.-C. Evolutionary Comparison of the Chloroplast Genome in the Woody Sonchus Alliance (Asteraceae) on the Canary Islands. Genes 2019, 10, 217. [Google Scholar] [CrossRef] [PubMed]
- Curci, P.L.; De Paola, D.; Danzi, D.; Vendramin, G.G.; Sonnante, G. Complete chloroplast genome of the multifunctional crop globe artichoke and comparison with other Asteraceae. PLoS ONE 2015, 10, e0120589. [Google Scholar] [CrossRef] [PubMed]
- Salih, R.H.; Majeský, Ľ.; Schwarzacher, T.; Gornall, R.; Heslop-Harrison, P. Complete chloroplast genomes from apomictic Taraxacum (Asteraceae): Identity and variation between three microspecies. PLoS ONE 2017, 12, e0168008. [Google Scholar]
- Wang, M.; Cui, L.; Feng, K.; Deng, P.; Du, X.; Wan, F.; Weining, S.; Nie, X. Comparative analysis of Asteraceae chloroplast genomes: Structural organization, RNA editing and evolution. Plant. Mol. Biol. Rep. 2015, 33, 1526–1538. [Google Scholar] [CrossRef]
- Ogihara, Y.; Terachi, T.; Sasakuma, T. Intramolecular recombination of chloroplast genome mediated by short direct-repeat sequences in wheat species. Proc. Natl. Acad. Sci. USA 1988, 85, 8573–8577. [Google Scholar] [CrossRef] [PubMed]
- Milligan, B.G.; Hampton, J.N.; Palmer, J.D. Dispersed repeats and structural reorganization in subclover chloroplast DNA. Mol. Biol. Evol. 1989, 6, 355–368. [Google Scholar] [PubMed]
- Wang, M.L.; Barkley, N.A.; Jenkins, T.M. Microsatellite markers in plants and insects. Part I: Applications of biotechnology. Genesgenomes Genom. 2009, 3, 54–67. [Google Scholar]
- Thiel, T.; Michalek, W.; Varshney, R.; Graner, A. Exploiting EST databases for the development and characterization of gene-derived SSR-markers in barley (Hordeum vulgare L.). Theor. Appl. Genet. 2003, 106, 411–422. [Google Scholar] [CrossRef] [PubMed]
- Sablok, G.; Amiryousefi, A.; He, X.; Hyvönen, J.; Poczai, P. Sequencing the plastid genome of giant ragweed (Ambrosia trifida, Asteraceae) from a herbarium specimen. Front. Plant. Sci. 2019, 10, 218. [Google Scholar] [CrossRef]
- Wang, X.Y.; Zhou, Z.S.; Liu, G.; Qian, Z.Q. Characterization of the complete chloroplast genome of the invasive weed Galinsoga quadriradiata (Asterales: Asteraceae). Conserv. Genet. Resour. 2018, 10, 89–92. [Google Scholar] [CrossRef]
- Soltis, D.E.; Soltis, P.S. Polyploidy: Recurrent formation and genome evolution. Trends Ecol. Evol. 1999, 14, 348–352. [Google Scholar] [CrossRef]
- Soltis, D.E.; Soltis, P.S.; Pires, J.C.; Kovaric, A.; Tate, J.A.; Mavrodiev, E. Recent and recurrent polyploidy in Tragopogon (Asteraceae): Cytogenetic, genomic and genetic comparisons. Biol. J. Linn. Soc. 2004, 82, 485–501. [Google Scholar] [CrossRef]
Characteristics | S. asper | S. oleraceus | |||
---|---|---|---|---|---|
GenBank Accession Number/Locality ID | MK371015 Spain/VIL-1 | MK371016 Spain/MAR-1 | MG878405 Australia | MK371006 Spain/MAR-1 | MH908962 Korea/Dokdo |
Total length (bp) | 151,849 | 151,849 | 151,808 | 151,808 | 151,849 |
LSC size (bp) | 84,156 | 84,156 | 84,157 | 84,113 | 84,156 |
SSC size (bp) | 24,738 | 24,738 | 24,707 | 24,739 | 24,738 |
IR size (bp) | 18,217 | 18,217 | 18,237 | 18,217 | 18,217 |
Number of genes | 130 (17 duplicated in IR) | 130 (17 duplicated in IR) | 130 (17 duplicated in IR) | 130 (17 duplicated in IR) | 130 (17 duplicated in IR) |
Number of protein coding genes | 80 (+7 in IR) | 80 (+7 in IR) | 80 (+7 in IR) | 80 (+7 in IR) | 80 (+7 in IR) |
Number of tRNA genes | 30 (+7 in IR) | 30 (+7 in IR) | 30 (+7 in IR) | 30 (+7 in IR) | 30 (+7 in IR) |
Number of rRNA genes | 3 (+3 in IR) | 3 (+3 in IR) | 3 (+3 in IR) | 3 (+3 in IR) | 3 (+3 in IR) |
GC content of whole genome (frequency/%) | 57,133/37.6% | 57,134/37.6% | 57,130/37.6% | 57,130/37.6% | 57,134/37.6% |
Category | Gene Name |
---|---|
Photosystem I | psaA, psaB, psaC, psaI, psaJ, ycf3 b, ycf4 |
Photosystem II | psbA, psbB, psbC, psbD, psbE, psbF, psbH, psbI, psbJ, psbK, psbL, psbM, psbN, psbT, psbZ |
Cytochrome b6/f complex | petA, petB a, petD, petG, petL, petN |
Cytochrome C synthesis | ccsA |
ATP synthase | atpA, atpB, atpE, atpF a, atpH, atpI |
RuBisCO | rbcL |
NADH oxidoreductase | NdhA a, ndhB a,c, ndhC, ndhD, ndhE, ndhF, ndhG, ndhH, ndhI, ndhJ, ndhK |
Large subunit ribosomal proteins | rpl2 a,c, rpl14, rpl16a, rpl20, rpl22, rpl23c, rpl32, rpl33, rpl36 |
Small subunit ribosomal proteins | rps2, rps3, rps4, rps7c, rps8, rps11, rps12 b,c,d, rps14, rps15, rps16 a, rps18, rps19 |
RNA polymerase | rpoA, rpoB, rpoC1 a, rpoC2 |
Translation initiation factor | infA |
Others | accD, cemA, clpP b, matK |
Unknown function genes (conserved reading frames) | ycf1, ycf 2 c, ycf15 c |
Ribosomal RNAs | rrn5 c, rrn16 c, rrn23 c |
Transfer RNAs | trnA-UGC a,c, trnC-GCA, trnC-ACA a, trnD-GUC, trnE-UUC, trnE-UUC a,c, trnF-GAA, trnG-GCC, trnG-UCC a, trnH-GUG, trnK-UUU a, trnL-CAAc, trnL-UAA a, trnL-UAG, trnM-CAU, trnM-CAU, trnM-CAU c, trnN-GUU c, trnP-UGG, trnQ-UUG, trnR-ACG c, trnR-UCU, trnS-CGA a, trnS-UGA, trnS-GGA, trnT-GGU, trnT-UGU, trnV-GAC c, trnW-CCA, trnY-GUA |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cho, M.-S.; Kim, J.H.; Kim, C.-S.; Mejías, J.A.; Kim, S.-C. Sow Thistle Chloroplast Genomes: Insights into the Plastome Evolution and Relationship of Two Weedy Species, Sonchus asper and Sonchus oleraceus (Asteraceae). Genes 2019, 10, 881. https://doi.org/10.3390/genes10110881
Cho M-S, Kim JH, Kim C-S, Mejías JA, Kim S-C. Sow Thistle Chloroplast Genomes: Insights into the Plastome Evolution and Relationship of Two Weedy Species, Sonchus asper and Sonchus oleraceus (Asteraceae). Genes. 2019; 10(11):881. https://doi.org/10.3390/genes10110881
Chicago/Turabian StyleCho, Myong-Suk, Jin Hyeong Kim, Chang-Seok Kim, José A. Mejías, and Seung-Chul Kim. 2019. "Sow Thistle Chloroplast Genomes: Insights into the Plastome Evolution and Relationship of Two Weedy Species, Sonchus asper and Sonchus oleraceus (Asteraceae)" Genes 10, no. 11: 881. https://doi.org/10.3390/genes10110881