Polymorphisms in RAS/RAF/MEK/ERK Pathway Are Associated with Gastric Cancer
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Genotyping and SNP Selection
2.3. Functional Annotation
2.4. Statistical Analyses
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Cancer Today. Available online: http://gco.iarc.fr/today/home (accessed on 21 October 2018).
- Guggenheim, D.E.; Shah, M.A. Gastric cancer epidemiology and risk factors. J. Surg. Oncol. 2013, 107, 230–236. [Google Scholar] [CrossRef]
- Mocellin, S.; Verdi, D.; Pooley, K.A.; Nitti, D. Genetic variation and gastric cancer risk: A field synopsis and meta-analysis. Gut 2015, 64, 1209–1219. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Yang, X.; Geng, M.; Huang, M. Targeting ERK, an Achilles’ Heel of the MAPK pathway, in cancer therapy. Acta Pharm. Sin. B 2018, 8, 552–562. [Google Scholar] [CrossRef] [PubMed]
- Cancer Genome Atlas Research Network. Comprehensive molecular characterization of gastric adenocarcinoma. Nature 2014, 513, 202–209. [Google Scholar] [CrossRef] [PubMed]
- Wong, S.S.; Kim, K.-M.; Ting, J.C.; Yu, K.; Fu, J.; Liu, S.; Cristescu, R.; Nebozhyn, M.; Gong, L.; Yue, Y.G.; et al. Genomic landscape and genetic heterogeneity in gastric adenocarcinoma revealed by whole-genome sequencing. Nat. Commun. 2014, 5, 5477. [Google Scholar] [CrossRef] [PubMed]
- Smith, J.P.; Nadella, S.; Osborne, N. Gastrin and gastric cancer. Cell Mol. Gastroenterol. Hepatol. 2017, 4, 75–83. [Google Scholar] [CrossRef] [PubMed]
- Lemmon, M.A.; Schlessinger, J. Cell signaling by receptor tyrosine kinases. Cell 2010, 141, 1117–1134. [Google Scholar] [CrossRef] [PubMed]
- Bar-Shavit, R.; Maoz, M.; Kancharla, A.; Nag, J.K.; Agranovich, D.; Grisaru-Granovsky, S.; Uziely, B. G-protein-coupled receptors in cancer. Int. J. Mol. Sci. 2016, 17, 79. [Google Scholar] [CrossRef]
- Bianconi, D.; Unseld, M.; Prager, G.W. Integrins in the spotlight of cancer. Int. J. Mol. Sci. 2016, 17, 2037. [Google Scholar] [CrossRef]
- Apicella, M.; Corso, S.; Giordano, S. Targeted therapies for gastric cancer: Failures and hopes from clinical trials. Oncotarget 2017, 8, 57654–57669. [Google Scholar] [CrossRef]
- Kim, H.J.; Oh, S.C. Novel systemic therapies for advanced gastric cancer. J. Gastric Cancer 2018, 18, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Rüschoff, J.; Hanna, W.; Bilous, M.; Hofmann, M.; Osamura, R.Y.; Penault-Llorca, F.; van de Vijver, M.; Viale, G. HER2 testing in gastric cancer: A practical approach. Mod. Pathol. 2012, 25, 637–650. [Google Scholar] [CrossRef] [PubMed]
- Cao, G.; Chen, K.; Xiong, M.; Chen, B. HER3, but not HER4, plays an essential role in the clinicopathology and prognosis of gastric cancer: A meta-analysis. PLoS ONE 2016, 11, e0161219. [Google Scholar] [CrossRef] [PubMed]
- Greenman, C.; Stephens, P.; Smith, R.; Dalgliesh, G.L.; Hunter, C.; Bignell, G.; Davies, H.; Teague, J.; Butler, A.; Stevens, C.; et al. Patterns of somatic mutation in human cancer genomes. Nature 2007, 446, 153–158. [Google Scholar] [CrossRef] [PubMed]
- De Luca, A.; Maiello, M.R.; D’Alessio, A.; Pergameno, M.; Normanno, N. The RAS/RAF/MEK/ERK and the PI3K/AKT signalling pathways: Role in cancer pathogenesis and implications for therapeutic approaches. Expert Opin. Ther. Targets 2012, 16, S17–S27. [Google Scholar] [CrossRef] [PubMed]
- Eblen, S.T. Extracellular-regulated kinases: Signaling from Ras to ERK substrates to control biological outcomes. In Advances in Cancer Research; Elsevier: New York, NY, USA, 2018; Volume 138, pp. 99–142. ISBN 978-0-12-815127-3. [Google Scholar]
- Chomczynski, P.; Sacchi, N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal. Biochem. 1987, 162, 156–159. [Google Scholar] [CrossRef]
- Anderson, C.A.; Pettersson, F.H.; Clarke, G.M.; Cardon, L.R.; Morris, A.P.; Zondervan, K.T. Data quality control in genetic case-control association studies. Nat. Protoc. 2010, 5, 1564–1573. [Google Scholar] [CrossRef]
- Boyle, A.P.; Hong, E.L.; Hariharan, M.; Cheng, Y.; Schaub, M.A.; Kasowski, M.; Karczewski, K.J.; Park, J.; Hitz, B.C.; Weng, S.; et al. Annotation of functional variation in personal genomes using RegulomeDB. Genome Res. 2012, 22, 1790–1797. [Google Scholar] [CrossRef]
- Machiela, M.J.; Chanock, S.J. LDlink: A web-based application for exploring population-specific haplotype structure and linking correlated alleles of possible functional variants. Bioinformatics 2015, 31, 3555–3557. [Google Scholar] [CrossRef]
- GTExPortal. Available online: www.gtexportal.org (accessed on 21 October 2018).
- PLINK 1.9. Available online: www.cog-genomics.org/plink/1.9/ (accessed on 21 October 2018).
- Price, A.L.; Zaitlen, N.A.; Reich, D.; Patterson, N. New approaches to population stratification in genome-wide association studies. Nat. Rev. Genet. 2010, 11, 459–463. [Google Scholar] [CrossRef]
- Benjamini, Y.; Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B Methodol. 1995, 57, 289–300. [Google Scholar] [CrossRef]
- Ernst, J.; Kheradpour, P.; Mikkelsen, T.S.; Shoresh, N.; Ward, L.D.; Epstein, C.B.; Zhang, X.; Wang, L.; Issner, R.; Coyne, M.; et al. Mapping and analysis of chromatin state dynamics in nine human cell types. Nature 2011, 473, 43–49. [Google Scholar] [CrossRef] [PubMed]
- Schaub, M.A.; Boyle, A.P.; Kundaje, A.; Batzoglou, S.; Snyder, M. Linking disease associations with regulatory information in the human genome. Genome Res. 2012, 22, 1748–1759. [Google Scholar] [CrossRef]
- Parsa, A.; Chang, Y.-P.C.; Kelly, R.J.; Corretti, M.C.; Ryan, K.A.; Robinson, S.W.; Gottlieb, S.S.; Kardia, S.L.R.; Shuldiner, A.R.; Liggett, S.B. Hypertrophy-associated polymorphisms ascertained in a founder cohort applied to heart failure risk and mortality. Clin. Transl. Sci. 2011, 4, 17–23. [Google Scholar] [CrossRef] [PubMed]
- Kratz, C.P.; Franke, L.; Peters, H.; Kohlschmidt, N.; Kazmierczak, B.; Finckh, U.; Bier, A.; Eichhorn, B.; Blank, C.; Kraus, C.; et al. Cancer spectrum and frequency among children with Noonan, Costello, and cardio-facio-cutaneous syndromes. Br. J. Cancer 2015, 112, 1392–1397. [Google Scholar] [CrossRef]
- Shin, C.; Ito, Y.; Ichikawa, S.; Tokunaga, M.; Sakata-Sogawa, K.; Tanaka, T. MKRN2 is a novel ubiquitin E3 ligase for the p65 subunit of NF-κB and negatively regulates inflammatory responses. Sci. Rep. 2017, 7, 46097. [Google Scholar] [CrossRef] [PubMed]
- Jiang, J.; Xu, Y.; Ren, H.; Wudu, M.; Wang, Q.; Song, X.; Su, H.; Jiang, X.; Jiang, L.; Qiu, X. MKRN2 inhibits migration and invasion of non-small-cell lung cancer by negatively regulating the PI3K/Akt pathway. J. Exp. Clin. Cancer Res. 2018, 37, 189. [Google Scholar] [CrossRef]
- Chandrashekar, D.S.; Bashel, B.; Balasubramanya, S.A.H.; Creighton, C.J.; Ponce-Rodriguez, I.; Chakravarthi, B.V.S.K.; Varambally, S. UALCAN: A portal for facilitating tumor subgroup gene expression and survival analyses. Neoplasia 2017, 19, 649–658. [Google Scholar] [CrossRef]
- Cristescu, R.; Lee, J.; Nebozhyn, M.; Kim, K.-M.; Ting, J.C.; Wong, S.S.; Liu, J.; Yue, Y.G.; Wang, J.; Yu, K.; et al. Molecular analysis of gastric cancer identifies subtypes associated with distinct clinical outcomes. Nat. Med. 2015, 21, 449–456. [Google Scholar] [CrossRef]
- Wu, X.Y.; Liu, W.T.; Wu, Z.F.; Chen, C.; Liu, J.Y.; Wu, G.N.; Yao, X.Q.; Liu, F.K.; Li, G. Identification of HRAS as cancer-promoting gene in gastric carcinoma cell aggressiveness. Am. J. Cancer Res. 2016, 6, 1935–1948. [Google Scholar]
- Buscà, R.; Pouysségur, J.; Lenormand, P. ERK1 and ERK2 map kinases: Specific roles or functional redundancy? Front. Cell Dev. Biol. 2016, 4, 53. [Google Scholar] [CrossRef] [PubMed]
- Samatar, A.A.; Poulikakos, P.I. Targeting RAS-ERK signalling in cancer: Promises and challenges. Nat. Rev. Drug Discov. 2014, 13, 928–942. [Google Scholar] [CrossRef] [PubMed]
- Birkner, K.; Wasser, B.; Loos, J.; Plotnikov, A.; Seger, R.; Zipp, F.; Witsch, E.; Bittner, S. The Role of ERK signaling in experimental autoimmune encephalomyelitis. Int. J. Mol. Sci. 2017, 18, 1990. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Jin, M.; Liu, B.; Ma, X.; Yao, K.; Li, Q.; Chen, K. Association between H-RAS T81C genetic polymorphism and gastrointestinal cancer risk: A population based case-control study in China. BMC Cancer 2008, 8, 256. [Google Scholar] [CrossRef] [PubMed]
- Pirinen, M.; Donnelly, P.; Spencer, C.C.A. Including known covariates can reduce power to detect genetic effects in case-control studies. Nat. Genet. 2012, 44, 848–851. [Google Scholar] [CrossRef] [PubMed]
Variable | Gastric Cancer (%) |
---|---|
TNM 8th edition stage | |
IA | 34 (14.0%) |
IB | 19 (7.9%) |
IIA | 24 (9.9%) |
IIB | 0 (0%) |
IIIA | 0 (0%) |
IIIB | 149 (61.6%) |
IIIC | 1 (0.4%) |
IV | 12 (1.2%) |
Not available | 3 (1.2%) |
Lauren’s classification | |
Intestinal | 132 (54.5%) |
Diffuse/Mixed | 109 (45.1%) |
Indeterminate | 1 (0.4%) |
Tumor size | |
<5 cm | 112 (46.3%) |
≥5 cm | 129 (53.3%) |
Not available | 1 (0.4%) |
rsID | Gene | Minor Allele | OR (95% CI) (1) | p-Value (1) | FDR q-Value (1) | OR (95% CI) (2) | p-Value (2) | FDR q-Value (3) | OR (95% CI) (3) | p-Value (3) | FDR q-Value (3) |
---|---|---|---|---|---|---|---|---|---|---|---|
rs3729931 | RAF1 | T | 1.54 (1.20–1.98) | 7.95 × 10−4 | 0.018 | 1.52 (1.18–1.96) | 1.29 × 10−3 | 0.028 | 1.52 (1.13–2.0) | 4.95 × 10−3 | 0.067 |
rs45604736 | HRAS | C | 1.60 (1.16–2.22) | 4.68 × 10−3 | 0.036 | 1.58 (1.14–2.20) | 5.24 × 10−3 | 0.036 | 1.45 (1.01–2.11) | 4.89 × 10−2 | 0.189 |
rs2283792 | MAPK1 | T | 1.45 (1.12–1.87) | 4.91 × 10−3 | 0.036 | 1.46 (1.13–1.90) | 5.23 × 10−3 | 0.036 | 1.48 (1.10–2.00) | 9.44 × 10−3 | 0.085 |
rs9610417 | MAPK1 | T | 0.60 (0.42–0.87) | 6.64 × 10−3 | 0.037 | 0.59 (0.41–0.86) | 6.55 × 10−3 | 0.036 | 0.54 (0.35–0.82) | 3.89 × 10−3 | 0.067 |
rs3729931 (RAF1) | p-Value (1) | rs45604736 (HRAS) | p-Value (1) | rs2283792 (MAPK1) | p-Value (1) | rs9610417 (MAPK1) | p-Value (1) | |
---|---|---|---|---|---|---|---|---|
aa + aA vs. AA | 1.63 (1.10–2.43) | 1.61 × 10−2 | 1.82 (1.24–2.66) | 2.20 × 10−3 | 1.77 (1.20–2.61) | 3.93 × 10−3 | 0.56 (0.38–0.84) | 4.53 × 10−3 |
aa vs. aA + AA | 1.98 (1.30–3.04) | 1.65 × 10−3 | 1.41 (0.56–3.57) | 4.67 × 10−1 | 1.46 (0.93–2.30) | 1.55 × 10−1 | 0.67 (0.19–2.39) | 5.34 × 10−1 |
aa vs. AA | 2.39 (1.44–3.96) | 7.04 × 10−4 | 1.71 (0.66–4.35) | 2.64 × 10−1 | 2.00 (1.19–3.37) | 8.89 × 10−3 | 0.57 (0.16–2.05) | 3.86 × 10−1 |
aA vs. AA | 1.35 (0.88–2.07) | 1.70 × 10−1 | 1.83 (1.23–2.73) | 2.92 × 10−3 | 1.69 (1.12–2.55) | 1.28 × 10−2 | 0.56 (0.37–0.84) | 5.62 × 10−3 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gonzalez-Hormazabal, P.; Musleh, M.; Bustamante, M.; Stambuk, J.; Pisano, R.; Valladares, H.; Lanzarini, E.; Chiong, H.; Rojas, J.; Suazo, J.; et al. Polymorphisms in RAS/RAF/MEK/ERK Pathway Are Associated with Gastric Cancer. Genes 2019, 10, 20. https://doi.org/10.3390/genes10010020
Gonzalez-Hormazabal P, Musleh M, Bustamante M, Stambuk J, Pisano R, Valladares H, Lanzarini E, Chiong H, Rojas J, Suazo J, et al. Polymorphisms in RAS/RAF/MEK/ERK Pathway Are Associated with Gastric Cancer. Genes. 2019; 10(1):20. https://doi.org/10.3390/genes10010020
Chicago/Turabian StyleGonzalez-Hormazabal, Patricio, Maher Musleh, Marco Bustamante, Juan Stambuk, Raul Pisano, Hector Valladares, Enrique Lanzarini, Hector Chiong, Jorge Rojas, Jose Suazo, and et al. 2019. "Polymorphisms in RAS/RAF/MEK/ERK Pathway Are Associated with Gastric Cancer" Genes 10, no. 1: 20. https://doi.org/10.3390/genes10010020
APA StyleGonzalez-Hormazabal, P., Musleh, M., Bustamante, M., Stambuk, J., Pisano, R., Valladares, H., Lanzarini, E., Chiong, H., Rojas, J., Suazo, J., Castro, V. G., Jara, L., & Berger, Z. (2019). Polymorphisms in RAS/RAF/MEK/ERK Pathway Are Associated with Gastric Cancer. Genes, 10(1), 20. https://doi.org/10.3390/genes10010020