The Zebrafish as a Model for Ocular Translational Research: From Retinal Repair to Regeneration
Abstract
1. Introduction
2. Age-Related Eye Diseases: Therapeutic Routes and Experimental Models
2.1. Therapeutic Approaches
2.2. Experimental Models in the XXI Century: Monolayers, Organoids, and the 3Rs Refined In Vivo Experiments
3. Properties of Zebrafish Model: Retina Development and Degeneration Interplays
4. Genetic and Epigenetic Factors Regulating Retinal Neurogenesis: From a Zebrafish Point of View
4.1. Genetic and Epigenetic Factors
4.2. Histone Modifications and Changes in the Chromatin Landscape
4.3. DNA Methylation and Hydroxymethylation
5. Retinal Degeneration, Regeneration, and Engineered Approaches: The Contribution of Zebrafish
6. Concluding Remarks and New Perspective
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Easter, S.S., Jr.; Malicki, J.J. The zebrafish eye: Developmental and genetic analysis. Results Probl. Cell Differ. 2002, 40, 346–370. [Google Scholar] [CrossRef]
- Stenkamp, D.L. Neurogenesis in the fish retina. Int. Rev. Cytol. 2007, 259, 173–224. [Google Scholar] [CrossRef]
- Gemberling, M.; Karra, R.; Dickson, A.L.; Poss, K.D. Nrg1 is an injury-induced cardiomyocyte mitogen for the endogenous heart regeneration program in zebrafish. eLife 2015, 4, e05871. [Google Scholar] [CrossRef] [PubMed]
- Fadool, J.M.; Dowling, J.E. Zebrafish: A model system for the study of eye genetics. Prog. Retin. Eye Res. 2008, 27, 89–110. [Google Scholar] [CrossRef]
- Hitchcock, P.F.; Raymond, P.A. The teleost retina as a model for developmental and regeneration biology. Zebrafish 2004, 1, 257–271. [Google Scholar] [CrossRef]
- Allison, W.T. Preface: Zebrafish models of neurology. Biochim. Biophys. Acta 2011, 1812, 333–334. [Google Scholar] [CrossRef] [PubMed]
- Stenkamp, D.L.; Cameron, D.A. Cellular pattern formation in the retina: Retinal regeneration as a model system. Mol. Vis. 2002, 8, 280–293. [Google Scholar] [PubMed]
- Zhao, Z.C.; Zhou, Y.; Tan, G.; Li, J. Research progress about the effect and prevention of blue light on eyes. Int. J. Ophthalmol. 2018, 11, 1999–2003. [Google Scholar] [CrossRef]
- Hodges, E.D.; Chrystal, P.W.; Footz, T.; Doucette, L.P.; Noel, N.C.L.; Li, Z.; Walter, M.A.; Allison, W.T. Disrupting the Repeat Domain of Premelanosome Protein (PMEL) Produces Dysamyloidosis and Dystrophic Ocular Pigment Reflective of Pigmentary Glaucoma. Int. J. Mol. Sci. 2023, 24, 14423. [Google Scholar] [CrossRef]
- Ma, W.; Wong, W.T. Aging Changes in Retinal Microglia and their Relevance to Age-related Retinal Disease. Adv. Exp. Med. Biol. 2016, 854, 73–78. [Google Scholar] [CrossRef]
- Cicinelli, M.V.; Chatziralli, I.; Touhami, S.; Smaoui, A.; Tombolini, B.; Nassisi, M.; Theodossiadis, P.; Lattanzio, R.; Bandello, F. Epiretinal Membrane Peeling in Eyes with Retinal Vein Occlusion: Visual and Morphologic Outcomes. Ophthalmol. Ther. 2022, 11, 661–675. [Google Scholar] [CrossRef] [PubMed]
- Jiang, B.; Wu, T.; Liu, W.; Liu, G.; Lu, P. Changing Trends in the Global Burden of Cataract Over the Past 30 Years: Retrospective Data Analysis of the Global Burden of Disease Study 2019. JMIR Public Health Surveill. 2023, 9, e47349. [Google Scholar] [CrossRef]
- Allyn, M.M.; Luo, R.H.; Hellwarth, E.B.; Swindle-Reilly, K.E. Considerations for Polymers Used in Ocular Drug Delivery. Front. Med. 2022, 8, 787644. [Google Scholar] [CrossRef]
- Ashique, S.; Mishra, N.; Mohanto, S.; Gowda, B.H.J.; Kumar, S.; Raikar, A.S.; Masand, P.; Garg, A.; Goswami, P.; Kahwa, I. Overview of processed excipients in ocular drug delivery: Opportunities so far and bottlenecks. Heliyon 2023, 10, e23810. [Google Scholar] [CrossRef] [PubMed]
- Ail, D.; Perron, M. Retinal Degeneration and Regeneration-Lessons From Fishes and Amphibians. Curr. Pathobiol. Rep. 2017, 5, 67–78. [Google Scholar] [CrossRef]
- Uribe-Salazar, J.M.; Kaya, G.; Sekar, A.; Weyenberg, K.; Ingamells, C.; Dennis, M.Y. Evaluation of CRISPR gene-editing tools in zebrafish. BMC Genom. 2022, 23, 12. [Google Scholar] [CrossRef]
- Stella, S.L., Jr.; Geathers, J.S.; Weber, S.R.; Grillo, M.A.; Barber, A.J.; Sundstrom, J.M.; Grillo, S.L. Neurodegeneration, Neuroprotection and Regeneration in the Zebrafish Retina. Cells 2021, 10, 633. [Google Scholar] [CrossRef]
- Dutta Majumder, P.; Khetan, V.; Biswas, J. Masquerade syndrome: A review of uveitic imposters. Asia-Pac. J. Ophthalmol. 2024, 13, 100054. [Google Scholar] [CrossRef]
- Noel, N.C.L.; MacDonald, I.M.; Allison, W.T. Zebrafish Models of Photoreceptor Dysfunction and Degeneration. Biomolecules 2021, 11, 78. [Google Scholar] [CrossRef]
- Cutrupi, F.; De Luca, A.; Di Zazzo, A.; Micera, A.; Coassin, M.; Bonini, S. Real Life Impact of Dry Eye Disease. Semin. Ophthalmol. 2023, 38, 690–702. [Google Scholar] [CrossRef] [PubMed]
- Baino, F.; Kargozar, S. Regulation of the Ocular Cell/Tissue Response by Implantable Biomaterials and Drug Delivery Systems. Bioengineering 2020, 7, 65. [Google Scholar] [CrossRef] [PubMed]
- Yan, Y.; Yan, W.; Wu, S.; Zhao, H.; Chen, Q.; Wang, J. Oral Patch/Film for Drug Delivery-Current Status and Future Prospects. Biopolymers 2024, 115, e23625. [Google Scholar] [CrossRef]
- De Schutter, J.D.; Zhang, A.; Serneels, P.J.; Moons, L.; Masin, L.; Bergmans, S. Differential retinal ganglion cell resilience to optic nerve injury across vertebrate species. Front. Neurosci. 2025, 19, 1596464. [Google Scholar] [CrossRef]
- Armitage, W.J.; Goodchild, C.; Griffin, M.D.; Gunn, D.J.; Hjortdal, J.; Lohan, P.; Murphy, C.C.; Pleyer, U.; Ritter, T.; Tole, D.M.; et al. High-risk Corneal Transplantation: Recent Developments and Future Possibilities. Transplantation 2019, 103, 2468–2478. [Google Scholar] [CrossRef]
- Asgari, R.; Mehran, Y.Z.; Weber, H.M.; Weber, M.; Golestanha, S.A.; Hosseini Kazerouni, S.M.; Panahi, F.; Mohammadi, P.; Mansouri, K. Management of oxidative stress for cell therapy through combinational approaches of stem cells, antioxidants, and photobiomodulation. Eur. J. Pharm. Sci. Off. J. Eur. Fed. Pharm. Sci. 2024, 196, 106715. [Google Scholar] [CrossRef]
- Hushmandi, K.; Lam, H.Y.; Wong, W.M.; Tan, W.; Daryabari, S.H.; Reiter, R.J.; Farahani, N.; Kumar, A.P. Gene therapy for age-related macular degeneration: A promising frontier in vision preservation. Cell Commun. Signal. CCS 2025, 23, 233. [Google Scholar] [CrossRef] [PubMed]
- Gote, V.; Sikder, S.; Sicotte, J.; Pal, D. Ocular Drug Delivery: Present Innovations and Future Challenges. J. Pharmacol. Exp. Ther. 2019, 370, 602–624. [Google Scholar] [CrossRef]
- Clift, M.J.D.; Doak, S.H. Advanced In vitro Models for Replacement of Animal Experiments. Small 2021, 17, e2101474. [Google Scholar] [CrossRef] [PubMed]
- Dosmar, E.; Walsh, J.; Doyel, M.; Bussett, K.; Oladipupo, A.; Amer, S.; Goebel, K. Targeting Ocular Drug Delivery: An Examination of Local Anatomy and Current Approaches. Bioengineering 2022, 9, 41. [Google Scholar] [CrossRef]
- Gaballa, S.A.; Kompella, U.B.; Elgarhy, O.; Alqahtani, A.M.; Pierscionek, B.; Alany, R.G.; Abdelkader, H. Corticosteroids in ophthalmology: Drug delivery innovations, pharmacology, clinical applications, and future perspectives. Drug Deliv. Transl. Res. 2021, 11, 866–893. [Google Scholar] [CrossRef]
- Varela-Fernández, R.; Díaz-Tomé, V.; Luaces-Rodríguez, A.; Conde-Penedo, A.; García-Otero, X.; Luzardo-Álvarez, A.; Fernández-Ferreiro, A.; Otero-Espinar, F.J. Drug Delivery to the Posterior Segment of the Eye: Biopharmaceutic and Pharmacokinetic Considerations. Pharmaceutics 2020, 12, 269. [Google Scholar] [CrossRef]
- Hubrecht, R.C.; Carter, E. The 3Rs and Humane Experimental Technique: Implementing Change. Animals 2019, 9, 754. [Google Scholar] [CrossRef]
- Zhao, H.; Yan, F. Retinal Organoids: A Next-Generation Platform for High-Throughput Drug Discovery. Stem Cell Rev. Rep. 2024, 20, 495–508. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Chen, Y.; Ouyang, S.; Ma, J.; Sun, H.; Luo, L.; Chen, S.; Liu, Y. Generation and Staging of Human Retinal Organoids Based on Self-Formed Ectodermal Autonomous Multi-Zone System. Front. Cell Dev. Biol. 2021, 9, 732382. [Google Scholar] [CrossRef] [PubMed]
- Klintworth, G.K. Corneal dystrophies. Orphanet J. Rare Dis. 2009, 4, 7. [Google Scholar] [CrossRef]
- Dietrich, K.; Fiedler, I.A.; Kurzyukova, A.; López-Delgado, A.C.; McGowan, L.M.; Geurtzen, K.; Hammond, C.L.; Busse, B.; Knopf, F. Skeletal Biology and Disease Modeling in Zebrafish. J. Bone Miner. Res. Off. J. Am. Soc. Bone Miner. Res. 2021, 36, 436–458. [Google Scholar] [CrossRef]
- Urciuolo, F.; Imparato, G.; Netti, P.A. In vitro strategies for mimicking dynamic cell-ECM reciprocity in 3D culture models. Front. Bioeng. Biotechnol. 2023, 11, 1197075. [Google Scholar] [CrossRef]
- Gensheimer, T.; Veerman, D.; van Oosten, E.M.; Segerink, L.; Garanto, A.; van der Meer, A.D. Retina-on-chip: Engineering functional in vitro models of the human retina using organ-on-chip technology. Lab A Chip 2025, 25, 996–1014. [Google Scholar] [CrossRef]
- Prieto-López, L.; Pereiro, X.; Vecino, E. The mechanics of the retina: Müller glia role on retinal extracellular matrix and modelling. Front. Med. 2024, 11, 1393057. [Google Scholar] [CrossRef] [PubMed]
- Sharma, P.; Ramachandran, R. Retina regeneration: Lessons from vertebrates. Oxf. Open Neurosci. 2022, 1, kvac012. [Google Scholar] [CrossRef]
- Powell, C.; Grant, A.R.; Cornblath, E.; Goldman, D. Analysis of DNA methylation reveals a partial reprogramming of the Müller glia genome during retina regeneration. Proc. Natl. Acad. Sci. USA 2013, 110, 19814–19819. [Google Scholar] [CrossRef]
- Ramachandran, H.; Yakulov, T.A.; Engel, C.; Müller, B.; Walz, G. The C175R mutation alters nuclear localization and transcriptional activity of the nephronophthisis NPHP7 gene product. Eur. J. Hum. Genet. EJHG 2016, 24, 774–778. [Google Scholar] [CrossRef]
- Salman, A.; Bolinches-Amorós, A.; Storm, T.; Moralli, D.; Bryika, P.; Russell, A.J.; Davies, S.G.; Barnard, A.R.; MacLaren, R.E. Spontaneously Immortalised Nonhuman Primate Müller Glia Cell Lines as Source to Explore Retinal Reprogramming Mechanisms for Cell Therapies. J. Cell. Physiol. 2025, 240, e31482. [Google Scholar] [CrossRef] [PubMed]
- Reichenbach, A.; Bringmann, A. Glia of the human retina. Glia 2020, 68, 768–796. [Google Scholar] [CrossRef]
- Balzamino, B.O.; Cacciamani, A.; Dinice, L.; Cecere, M.; Pesci, F.R.; Ripandelli, G.; Micera, A. Retinal Inflammation and Reactive Müller Cells: Neurotrophins’ Release and Neuroprotective Strategies. Biology 2024, 13, 1030. [Google Scholar] [CrossRef] [PubMed]
- García-García, D.; Vidal-Gil, L.; Parain, K.; Lun, J.; Audic, Y.; Chesneau, A.; Siron, L.; Van Westendorp, D.; Lourdel, S.; Sánchez-Sáez, X.; et al. Neuroinflammation as a cause of differential Müller cell regenerative responses to retinal injury. Sci. Adv. 2024, 10, eadp7916. [Google Scholar] [CrossRef] [PubMed]
- Hadjikhani, N.; Tootell, R.B. Projection of rods and cones within human visual cortex. Hum. Brain Mapp. 2000, 9, 55–63. [Google Scholar] [CrossRef]
- Santhanam, A.; Shihabeddin, E.; Atkinson, J.A.; Nguyen, D.; Lin, Y.P.; O’Brien, J. A Zebrafish Model of Retinitis Pigmentosa Shows Continuous Degeneration and Regeneration of Rod Photoreceptors. Cells 2020, 9, 2242. [Google Scholar] [CrossRef]
- Yoshimatsu, T.; Schröder, C.; Nevala, N.E.; Berens, P.; Baden, T. Fovea-like Photoreceptor Specializations Underlie Single UV Cone Driven Prey-Capture Behavior in Zebrafish. Neuron 2020, 107, 320–337.e6. [Google Scholar] [CrossRef]
- Selzer, E.B.; Blain, D.; Hufnagel, R.B.; Lupo, P.J.; Mitchell, L.E.; Brooks, B.P. Review of evidence for environmental causes of uveal coloboma. Surv. Ophthalmol. 2022, 67, 1031–1047. [Google Scholar] [CrossRef]
- Hawkins, M.R.; Wingert, R.A. Zebrafish as a Model to Study Retinoic Acid Signaling in Development and Disease. Biomedicines 2023, 11, 1180. [Google Scholar] [CrossRef]
- Makrides, N.; Wang, Q.; Tao, C.; Schwartz, S.; Zhang, X. Jack of all trades, master of each: The diversity of fibroblast growth factor signalling in eye development. Open Biol. 2022, 12, 210265. [Google Scholar] [CrossRef]
- Hong, Y.; Luo, Y. Zebrafish Model in Ophthalmology to Study Disease Mechanism and Drug Discovery. Pharmaceuticals 2021, 14, 716. [Google Scholar] [CrossRef] [PubMed]
- Unal Eroglu, A.; Mulligan, T.S.; Zhang, L.; White, D.T.; Sengupta, S.; Nie, C.; Lu, N.Y.; Qian, J.; Xu, L.; Pei, W.; et al. Multiplexed CRISPR/Cas9 Targeting of Genes Implicated in Retinal Regeneration and Degeneration. Front. Cell Dev. Biol. 2018, 6, 88. [Google Scholar] [CrossRef]
- La Pietra, A.; Bianchi, A.R.; Capriello, T.; Mobilio, T.; Guagliardi, A.; De Maio, A.; Ferrandino, I. Regeneration of zebrafish retina following toxic injury. Environ. Toxicol. Pharmacol. 2024, 112, 104582. [Google Scholar] [CrossRef] [PubMed]
- Lopez Soriano, V.; Dueñas Rey, A.; Mukherjee, R.; Genomics England Research Consortium; Coppieters, F.; Bauwens, M.; Willaert, A.; De Baere, E. Multi-omics analysis in human retina uncovers ultraconserved cis-regulatory elements at rare eye disease loci. Nat. Commun. 2024, 15, 1600. [Google Scholar] [CrossRef]
- Liang, Q.; Cheng, X.; Wang, J.; Owen, L.; Shakoor, A.; Lillvis, J.L.; Zhang, C.; Farkas, M.; Kim, I.K.; Li, Y.; et al. A multi-omics atlas of the human retina at single-cell resolution. Cell Genom. 2023, 3, 100298. [Google Scholar] [CrossRef]
- Hu, Y.; Shen, F.; Yang, X.; Han, T.; Long, Z.; Wen, J.; Huang, J.; Shen, J.; Guo, Q. Single-cell sequencing technology applied to epigenetics for the study of tumor heterogeneity. Clin. Epigenetics 2023, 15, 161. [Google Scholar] [CrossRef]
- Jaroszynska, N.; Harding, P.; Moosajee, M. Metabolism in the Zebrafish Retina. J. Dev. Biol. 2021, 9, 10. [Google Scholar] [CrossRef]
- Tallafuss, A.; Stednitz, S.J.; Voeun, M.; Levichev, A.; Larsch, J.; Eisen, J.; Washbourne, P. Egr1 Is Necessary for Forebrain Dopaminergic Signaling during Social Behavior. eNeuro 2022, 9, ENEURO.0035-22.2022. [Google Scholar] [CrossRef] [PubMed]
- Kölsch, Y.; Hahn, J.; Sappington, A.; Stemmer, M.; Fernandes, A.M.; Helmbrecht, T.O.; Lele, S.; Butrus, S.; Laurell, E.; Arnold-Ammer, I.; et al. Molecular classification of zebrafish retinal ganglion cells links genes to cell types to behavior. Neuron 2021, 109, 645–662.e9. [Google Scholar] [CrossRef] [PubMed]
- Doszyn, O.; Dulski, T.; Zmorzynska, J. Diving into the zebrafish brain: Exploring neuroscience frontiers with genetic tools, imaging techniques, and behavioral insights. Front. Mol. Neurosci. 2024, 17, 1358844. [Google Scholar] [CrossRef]
- Mukherjee, S.; Mohanty, A.K.; Chinnadurai, R.K.; Barman, D.D.; Poddar, A. Zebrafish: A Cost-Effective Model for Enhanced Forensic Toxicology Capabilities in Low- and Middle-Income Countries. Cureus 2024, 16, e76223. [Google Scholar] [CrossRef]
- Giacich, M.; Marchese, M.; Damiani, D.; Santorelli, F.M.; Naef, V. Eyes Wide Open: Assessing Early Visual Behavior in Zebrafish Larvae. Biology 2025, 14, 934. [Google Scholar] [CrossRef]
- Labusch, M.; Mancini, L.; Morizet, D.; Bally-Cuif, L. Conserved and Divergent Features of Adult Neurogenesis in Zebrafish. Front. Cell Dev. Biol. 2020, 8, 525. [Google Scholar] [CrossRef]
- Pavlou, M.; Probst, M.; Blasdel, N.; Prieve, A.R.; Reh, T.A. The impact of timing and injury mode on induced neurogenesis in the adult mammalian retina. Stem Cell Rep. 2024, 19, 239–253. [Google Scholar] [CrossRef]
- Raymond, P.A.; Barthel, L.K.; Bernardos, R.L.; Perkowski, J.J. Molecular characterization of retinal stem cells and their niches in adult zebrafish. BMC Dev. Biol. 2006, 6, 36. [Google Scholar] [CrossRef]
- Murenu, E.; Gerhardt, M.J.; Biel, M.; Michalakis, S. More than meets the eye: The role of microglia in healthy and diseased retina. Front. Immunol. 2022, 13, 1006897. [Google Scholar] [CrossRef]
- Song, P.; Parsana, D.; Singh, R.; Pollock, L.M.; Anand-Apte, B.; Perkins, B.D. Photoreceptor regeneration occurs normally in microglia-deficient irf8 mutant zebrafish following acute retinal damage. Sci. Rep. 2024, 14, 20146. [Google Scholar] [CrossRef] [PubMed]
- Rowthorn-Apel, N.; Vridhachalam, N.; Connor, K.M.; Bonilla, G.M.; Sadreyev, R.; Singh, C.; Gnanaguru, G. Microglial depletion decreases Müller cell maturation and inner retinal vascular density. Cell Commun. Signal. CCS 2025, 23, 90. [Google Scholar] [CrossRef] [PubMed]
- Hattori, Y. The multifaceted roles of embryonic microglia in the developing brain. Front. Cell. Neurosci. 2023, 17, 988952. [Google Scholar] [CrossRef] [PubMed]
- Angom, R.S.; Nakka, N.M.R. Zebrafish as a Model for Cardiovascular and Metabolic Disease: The Future of Precision Medicine. Biomedicines 2024, 12, 693. [Google Scholar] [CrossRef]
- Adhish, M.; Manjubala, I. Effectiveness of zebrafish models in understanding human diseases-A review of models. Heliyon 2023, 9, e14557. [Google Scholar] [CrossRef]
- Suleman, N. Current understanding on Retinitis Pigmentosa: A literature review. Front. Ophthalmol. 2025, 5, 1600283. [Google Scholar] [CrossRef]
- Yang, C.; Georgiou, M.; Atkinson, R.; Collin, J.; Al-Aama, J.; Nagaraja-Grellscheid, S.; Johnson, C.; Ali, R.; Armstrong, L.; Mozaffari-Jovin, S.; et al. Pre-mRNA Processing Factors and Retinitis Pigmentosa: RNA Splicing and Beyond. Front. Cell Dev. Biol. 2021, 9, 700276. [Google Scholar] [CrossRef]
- Collery, R.F.; Volberding, P.J.; Bostrom, J.R.; Link, B.A.; Besharse, J.C. Loss of Zebrafish Mfrp Causes Nanophthalmia, Hyperopia, and Accumulation of Subretinal Macrophages. Investig. Ophthalmol. Vis. Sci. 2016, 57, 6805–6814. [Google Scholar] [CrossRef]
- Lin, R.C.; Ferreira, B.T.; Yuan, Y.W. The molecular basis of phenotypic evolution: Beyond the usual suspects. Trends Genet. TIG 2024, 40, 668–680. [Google Scholar] [CrossRef] [PubMed]
- Ragge, N.K.; Brown, A.G.; Poloschek, C.M.; Lorenz, B.; Henderson, R.A.; Clarke, M.P.; Russell-Eggitt, I.; Fielder, A.; Gerrelli, D.; Martinez-Barbera, J.P.; et al. Heterozygous mutations of OTX2 cause severe ocular malformations. Am. J. Hum. Genet. 2005, 76, 1008–1022. [Google Scholar] [CrossRef]
- Alkozi, H.A.; Franco, R.; Pintor, J.J. Epigenetics in the Eye: An Overview of the Most Relevant Ocular Diseases. Front. Genet. 2017, 8, 144. [Google Scholar] [CrossRef] [PubMed]
- Hassan, A.; Mir, Y.R.; Kuchay, R.A.H. Ocular findings and genomics of X-linked recessive disorders: A review. Indian J. Ophthalmol. 2022, 70, 2386–2396. [Google Scholar] [CrossRef]
- Dubucs, C.; Plaisancié, J.; Courtade-Saidi, M.; Damase-Michel, C. The first review on prenatal drug exposure and ocular malformation occurrence. Front. Pediatr. 2024, 12, 1379875. [Google Scholar] [CrossRef] [PubMed]
- Mohanty, B.; Mohan, M.; Nanjappa, D.P.; Shenoy, R.D.; Hosmane, G.B.; Chakraborty, G.; Chakraborty, A. Biomedical Models: Use of Zebrafish as a Multi-Utility In vivo Tool Box. WIREs Mech. Dis. 2025, 17, e70002. [Google Scholar] [CrossRef] [PubMed]
- Westphal, M.; Sant, P.; Hauser, A.T.; Jung, M.; Driever, W. Chemical Genetics Screen Identifies Epigenetic Mechanisms Involved in Dopaminergic and Noradrenergic Neurogenesis in Zebrafish. Front. Genet. 2020, 11, 80. [Google Scholar] [CrossRef]
- Borgonovo, J.; Ahumada-Galleguillos, P.; Oñate-Ponce, A.; Allende-Castro, C.; Henny, P.; Concha, M.L. Organization of the Catecholaminergic System in the Short-Lived Fish Nothobranchius furzeri. Front. Neuroanat. 2021, 15, 728720. [Google Scholar] [CrossRef]
- Albadri, S.; Naso, F.; Thauvin, M.; Gauron, C.; Parolin, C.; Duroure, K.; Vougny, J.; Fiori, J.; Boga, C.; Vriz, S.; et al. Redox Signaling via Lipid Peroxidation Regulates Retinal Progenitor Cell Differentiation. Dev. Cell 2019, 50, 73–89.e6. [Google Scholar] [CrossRef]
- Zhang, L.Y.; Zhang, S.Y.; Wen, R.; Zhang, T.N.; Yang, N. Role of histone deacetylases and their inhibitors in neurological diseases. Pharmacol. Res. 2024, 208, 107410. [Google Scholar] [CrossRef]
- Saha, A.; Tiwari, S.; Dharmarajan, S.; Otteson, D.C.; Belecky-Adams, T.L. Class I histone deacetylases in retinal progenitors and differentiating ganglion cells. Gene Expr. Patterns GEP 2018, 30, 37–48. [Google Scholar] [CrossRef]
- Yamaguchi, M.; Tonou-Fujimori, N.; Komori, A.; Maeda, R.; Nojima, Y.; Li, H.; Okamoto, H.; Masai, I. Histone deacetylase 1 regulates retinal neurogenesis in zebrafish by suppressing Wnt and Notch signaling pathways. Development 2005, 132, 3027–3043. [Google Scholar] [CrossRef]
- Pérez-Campo, F.M.; Riancho, J.A. Epigenetic Mechanisms Regulating Mesenchymal Stem Cell Differentiation. Curr. Genom. 2015, 16, 368–383. [Google Scholar] [CrossRef] [PubMed]
- Seritrakul, P.; Gross, J.M. Genetic and epigenetic control of retinal development in zebrafish. Curr. Opin. Neurobiol. 2019, 59, 120–127. [Google Scholar] [CrossRef]
- Fang, L.; Wuptra, K.; Chen, D.; Li, H.; Huang, S.K.; Jin, C.; Yokoyama, K.K. Environmental-stress-induced Chromatin Regulation and its Heritability. J. Carcinog. Mutagen. 2014, 5, 22058. [Google Scholar] [CrossRef]
- Mehta, I.; Verma, M.; Quasmi, M.N.; Kumar, D.; Jangra, A. Emerging roles of histone modifications in environmental toxicants-induced neurotoxicity. Toxicology 2025, 515, 154164. [Google Scholar] [CrossRef] [PubMed]
- Catalani, E.; Cherubini, A.; Del Quondam, S.; Cervia, D. Regenerative Strategies for Retinal Neurons: Novel Insights in Non-Mammalian Model Organisms. Int. J. Mol. Sci. 2022, 23, 8180. [Google Scholar] [CrossRef]
- Noel, N.C.L.; Allison, W.T.; MacDonald, I.M.; Hocking, J.C. Zebrafish and inherited photoreceptor disease: Models and insights. Prog. Retin. Eye Res. 2022, 91, 101096. [Google Scholar] [CrossRef]
- Yi, Z.; Ouyang, J.; Sun, W.; Li, S.; Xiao, X.; Zhang, Q. Comparative exome sequencing reveals novel candidate genes for retinitis pigmentosa. eBioMedicine 2020, 56, 102792. [Google Scholar] [CrossRef]
- Grigoryan, E.N. Self-Organization of the Retina during Eye Development, Retinal Regeneration In vivo, and in Retinal 3D Organoids In vitro. Biomedicines 2022, 10, 1458. [Google Scholar] [CrossRef]
- Casey, M.A.; Hill, J.T.; Hoshijima, K.; Bryan, C.D.; Gribble, S.L.; Brown, J.T.; Chien, C.B.; Yost, H.J.; Kwan, K.M. Shutdown corner, a large deletion mutant isolated from a haploid mutagenesis screen in zebrafish. G3 2022, 12, jkab442. [Google Scholar] [CrossRef]
- Kobar, K.; Collett, K.; Prykhozhij, S.V.; Berman, J.N. Zebrafish Cancer Predisposition Models. Front. Cell Dev. Biol. 2021, 9, 660069. [Google Scholar] [CrossRef]
- Kalluri, R.; LeBleu, V.S. The biology, function, and biomedical applications of exosomes. Science 2020, 367, eaau6977. [Google Scholar] [CrossRef] [PubMed]
- Verdi, V.; Bécot, A.; van Niel, G.; Verweij, F.J. In vivo imaging of EVs in zebrafish: New perspectives from “the waterside”. FASEB Bioadv. 2021, 3, 918–929. [Google Scholar] [CrossRef] [PubMed]
Retinal Disease | Zebrafish Contribution | Significance | References |
---|---|---|---|
Retinitis Pigmentosa (RP) | Generation of transgenic zebrafish lines with mutations in rhodopsin, PDE6, and other phototransduction genes. | Enables investigation of photoreceptor degeneration and potential gene therapy approaches. | [15] |
Leber Congenital Amaurosis (LCA) | CRISPR/Cas9-induced mutations in genes such as CEP290 and AIPL1. | Provides insights into early-onset retinal dystrophy and validates targets for gene replacement strategies. | [16] |
Age-Related Macular Degeneration (AMD) | Oxidative stress and light-damage models used to study retinal pigment epithelium (RPE) dysfunction. | Facilitates understanding of molecular pathways in RPE degeneration and screening of antioxidant compounds. | [10] |
Diabetic Retinopathy (DR) | Hyperglycaemia-induced zebrafish models mimic vascular changes and neuronal dysfunction. | Allows study of early vascular pathology and high-throughput drug screening. | [17] |
Glaucoma | Genetic models affecting intraocular pressure regulation (e.g., mutations in myocilin). | Provides a platform for studying optic nerve degeneration and neuroprotective strategies. | [9] |
Cone–Rod Dystrophy | Mutant lines targeting cone photoreceptor genes (e.g., CNGB3). | Useful for exploring cone photoreceptor survival and regeneration potential. | [18] |
Usher Syndrome | Knockdown and knockout models of usherin and harmonin genes. | Helps dissect mechanisms of photoreceptor–synaptic dysfunction and sensory cilia abnormalities. | [19] |
Model | Advantages | Disadvantages/Limits | References |
---|---|---|---|
In vitro monolayer | Monolayers are single layers of cells cultured on a flat surface, often used for studying cell behaviour, interactions, and drug permeability. | Simple to culture, easy to manipulate, and allows for high-throughput screening. May not accurately reflect the complexity of in vivo tissues, such as the three-dimensional structure and cell–cell interactions. | [33] |
In vitro organoids | Organoids are 3D cell cultures derived from stem cells or progenitor cells that can self-organize into structures resembling organs. | More closely mimic the in vivo environment than monolayers, allowing for the study of tissue-specific functions and responses to stimuli. Can be more complex to establish and maintain than monolayers, and may still lack some of the complexities of in vivo tissues, such as the full range of cell types and interactions. | [34] |
In vivo | In vivo models involve studying biological processes in living organisms, such as animals or humans. | Provide the most realistic representation of biological processes, allowing for the study of complex interactions between different tissues and organs. Can be more complex, costly, and ethically challenging to study, and may involve ethical considerations related to animal welfare. | [32] |
Feature/Benefits | Zebrafish (Danio rerio) | Other Animal Models (Mouse, Rat, Rabbit, and Primate) | References |
---|---|---|---|
Genetic Manipulation | Highly open to genetic editing (CRISPR/Cas9, transgenesis); transparent embryos allow direct visualization of gene expression. | Genetic tools available (especially in mice), but less accessible in larger animals; visualization of early development is limited. | [16] |
Developmental Transparency | Embryos and larvae are optically transparent, enabling non-invasive imaging of ocular structures. | Most mammalian embryos develop in utero, limiting in vivo visualization during early stages. | [50] |
Ocular Anatomy | Retina shares conserved cell types and layered structure with humans. However, it lacks macula and fovea. | Mammals (e.g., primates) possess a macula/fovea, providing a closer anatomical resemblance to the human eye. | [40] |
Regenerative Capacity | Robust retinal regeneration after injury, useful for studying repair mechanisms. | Limited or absent regenerative capacity in mammals, more representative of human pathology. | [40] |
High-Throughput Screening | Small size, rapid reproduction, and low maintenance cost allow large-scale drug and genetic screens. | Larger animals are costly, time-consuming, and less practical for high-throughput studies. | [49] |
Ethical Considerations | Generally considered less ethically constrained compared to higher vertebrates. | Ethical concerns are greater, especially for primates; strict regulations apply. | [32] |
Translational Relevance | Excellent for mechanistic and developmental studies but some limitations in modelling human-specific ocular diseases. | Mammals, particularly primates, provide higher translational relevance due to closer ocular physiology and anatomy. | [48] |
Cost and Maintenance | Low cost, minimal space, and straightforward husbandry. | Higher costs for housing, feeding, and care, especially in larger species. | [2,4] |
Gene/Mutation | Human Retinal Disease | Zebrafish Contribution | References |
---|---|---|---|
rhodopsin (rho) mutations | Retinitis Pigmentosa (RP) | Models photoreceptor degeneration and progression of RP; used to test gene therapy strategies. | [74,75] |
pde6c mutation | Cone Dystrophy/Achromatopsia | Provides a model for cone-specific degeneration; useful for drug and gene therapy screening. | [15] |
cep290 mutation | Leber Congenital Amaurosis (LCA) | Recapitulates ciliopathy-related retinal degeneration; enables study of early-onset blindness. | [16] |
aipl1b knockout | Leber Congenital Amaurosis (LCA) | Used to investigate protein stability in phototransduction and validate gene replacement therapies. | [16] |
cngb3 mutation | Cone–Rod Dystrophy/Achromatopsia | Mimics cone dysfunction and degeneration; enables exploration of cone survival mechanisms. | [19] |
mfrp mutation | Nanophthalmos/Retinal Degeneration | Provides insights into ocular size regulation and secondary retinal pathology. | [76] |
myocilin (myoc) mutation | Glaucoma | Used to study intraocular pressure dysregulation and optic nerve degeneration. | [9] |
usherin, harmonin mutations | Usher Syndrome | Helps dissect the role of ciliary and synaptic dysfunction in combined hearing and vision loss. | [19] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Balzamino, B.O.; Severino, M.; Cafiero, C.; Coassin, M.; Di Zazzo, A.; Micera, A. The Zebrafish as a Model for Ocular Translational Research: From Retinal Repair to Regeneration. Cells 2025, 14, 1405. https://doi.org/10.3390/cells14171405
Balzamino BO, Severino M, Cafiero C, Coassin M, Di Zazzo A, Micera A. The Zebrafish as a Model for Ocular Translational Research: From Retinal Repair to Regeneration. Cells. 2025; 14(17):1405. https://doi.org/10.3390/cells14171405
Chicago/Turabian StyleBalzamino, Bijorn Omar, Mariagrazia Severino, Concetta Cafiero, Marco Coassin, Antonio Di Zazzo, and Alessandra Micera. 2025. "The Zebrafish as a Model for Ocular Translational Research: From Retinal Repair to Regeneration" Cells 14, no. 17: 1405. https://doi.org/10.3390/cells14171405
APA StyleBalzamino, B. O., Severino, M., Cafiero, C., Coassin, M., Di Zazzo, A., & Micera, A. (2025). The Zebrafish as a Model for Ocular Translational Research: From Retinal Repair to Regeneration. Cells, 14(17), 1405. https://doi.org/10.3390/cells14171405