Inflammation and Perioperative Cardiovascular Events
Abstract
1. Introduction
2. Pathophysiology of Surgical Inflammation
2.1. Activation and Accumulation of Inflammatory Cells
2.2. Damage to Endothelial Cells
2.3. Release of Inflammatory Mediators
3. Time Course of Circulating Inflammatory Markers After Surgical Procedure
4. Perioperative Systemic Inflammation and Cardiovascular Events
4.1. Preoperative Inflammatory Disease and CV Events
4.2. Surgically Provoked Inflammation and CV Events
4.3. Relationship Between Intensity of Perioperative Inflammatory Response and CV Events
5. Risk Factors for Postoperative Inflammatory Response and the Influence of the Type of Surgical Procedure
5.1. Type of Surgical Procedure and Inflammatory Response
5.2. Perioperative Inflammation and Cancer Cell Seeding
6. Prevention of Perioperative Inflammatory Response and Cardiovascular Events
7. Discussion and Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
CRP | C-reactive protein |
CV | Cardiovascular |
DAMPs | Damage-associated molecular patterns |
ECMO | Extracorporeal membrane oxygenation |
HF | Heart failure |
hsCRP | High sensitivity C-reactive protein |
ICAM-1 | Intracellular adhesion molecule |
IL-1β | Interleukin-1β |
IL-6 | Interleukin-6 |
IL-8 | Interleukin-8 |
MACE | Major adverse cardiovascular events |
mGPS | Modified Glasgow prognostic score |
MI | Myocardial infarction |
MIF | Macrophage migration inhibitory factor |
MIP-2 | Macrophage inflammatory protein-2 |
MPO | Myeloperoxidase |
NLR | Neutrophil/lymphocyte ratio |
PLR | Platelet/lymphocyte ratio |
NT-proBNP | Neaktivna oblika natriuretičnega peptida tipa B |
ROS | Reactive oxygen species |
SIRS | Systemic inflammatory reaction syndrome |
TGF | Transforming growth factor |
TNF-α | Tumor necrosis factor alpha |
VEGF | Vascular endothelial growth factor |
References
- Chen, L.; Deng, H.; Cui, H.; Fang, J.; Zuo, Z.; Deng, J.; Li, Y.; Wang, X.; Zhao, L. Inflammatory Responses and Inflammation-Associated Diseases in Organs. Oncotarget 2018, 9, 7204–7218. [Google Scholar] [CrossRef]
- Gao, M.; Guo, H.; Dong, X.; Wang, Z.; Yang, Z.; Shang, Q.; Wang, Q. Regulation of Inflammation during Wound Healing: The Function of Mesenchymal Stem Cells and Strategies for Therapeutic Enhancement. Front. Pharmacol. 2024, 15, 1345779. [Google Scholar] [CrossRef] [PubMed]
- Alazawi, W.; Pirmadjid, N.; Lahiri, R.; Bhattacharya, S. Inflammatory and Immune Responses to Surgery and Their Clinical Impact. Ann. Surg. 2016, 264, 73–80. [Google Scholar] [CrossRef]
- Devereaux, P.J.; Sessler, D.I. Cardiac Complications in Patients Undergoing Major Noncardiac Surgery. N. Engl. J. Med. 2015, 373, 2258–2269. [Google Scholar] [CrossRef]
- Margraf, A.; Ludwig, N.; Zarbock, A.; Rossaint, J. Systemic Inflammatory Response Syndrome After Surgery: Mechanisms and Protection. Anesth. Analg. 2020, 131, 1693–1707. [Google Scholar] [CrossRef]
- Chan, J.K.; Roth, J.; Oppenheim, J.J.; Tracey, K.J.; Vogl, T.; Feldmann, M.; Horwood, N.; Nanchahal, J. Alarmins: Awaiting a Clinical Response. J. Clin. Investig. 2012, 122, 2711–2719. [Google Scholar] [CrossRef]
- Balk, R.A. Systemic Inflammatory Response Syndrome (SIRS): Where Did It Come from and Is It Still Relevant Today? Virulence 2014, 5, 20–26. [Google Scholar] [CrossRef] [PubMed]
- Owens, C.D.; Stoessel, K. Surgical Site Infections: Epidemiology, Microbiology and Prevention. J. Hosp. Infect. 2008, 70 (Suppl. S2), 3–10. [Google Scholar] [CrossRef]
- Klinke, A.; Nussbaum, C.; Kubala, L.; Friedrichs, K.; Rudolph, T.K.; Rudolph, V.; Paust, H.-J.; Schröder, C.; Benten, D.; Lau, D.; et al. Myeloperoxidase Attracts Neutrophils by Physical Forces. Blood 2011, 117, 1350–1358. [Google Scholar] [CrossRef]
- Krzyszczyk, P.; Schloss, R.; Palmer, A.; Berthiaume, F. The Role of Macrophages in Acute and Chronic Wound Healing and Interventions to Promote Pro-Wound Healing Phenotypes. Front. Physiol. 2018, 9, 419. [Google Scholar] [CrossRef]
- Margraf, A.; Zarbock, A. Platelets in Inflammation and Resolution. J. Immunol. 2019, 203, 2357–2367. [Google Scholar] [CrossRef]
- Gao, C.; Wang, H.; Wang, T.; Luo, C.; Wang, Z.; Zhang, M.; Chen, X.; Tao, L. Platelet Regulates Neuroinflammation and Restores Blood-Brain Barrier Integrity in a Mouse Model of Traumatic Brain Injury. J. Neurochem. 2020, 154, 190–204. [Google Scholar] [CrossRef]
- Yang, X.; Chang, Y.; Wei, W. Endothelial Dysfunction and Inflammation: Immunity in Rheumatoid Arthritis. Mediat. Inflamm. 2016, 2016, 6813016. [Google Scholar] [CrossRef]
- Pillinger, N.L.; Kam, P. Endothelial Glycocalyx: Basic Science and Clinical Implications. Anaesth. Intensive Care 2017, 45, 295–307. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.-H.; Curry, F.-R.E.; Simon, S.I. Dynamics of Neutrophil Extravasation and Vascular Permeability Are Uncoupled during Aseptic Cutaneous Wounding. Am. J. Physiol. Cell Physiol. 2009, 296, C848–C856. [Google Scholar] [CrossRef] [PubMed]
- Hotamisligil, G.S.; Shargill, N.S.; Spiegelman, B.M. Adipose Expression of Tumor Necrosis Factor-Alpha: Direct Role in Obesity-Linked Insulin Resistance. Science 1993, 259, 87–91. [Google Scholar] [CrossRef]
- Larsen, R.; Gozzelino, R.; Jeney, V.; Tokaji, L.; Bozza, F.A.; Japiassú, A.M.; Bonaparte, D.; Cavalcante, M.M.; Chora, A.; Ferreira, A.; et al. A Central Role for Free Heme in the Pathogenesis of Severe Sepsis. Sci. Transl. Med. 2010, 2, 51ra71. [Google Scholar] [CrossRef]
- Bonventre, J.V.; Yang, L. Cellular Pathophysiology of Ischemic Acute Kidney Injury. J. Clin. Investig. 2011, 121, 4210–4221. [Google Scholar] [CrossRef]
- Okholm, C.; Goetze, J.P.; Svendsen, L.B.; Achiam, M.P. Inflammatory Response in Laparoscopic vs. Open Surgery for Gastric Cancer. Scand. J. Gastroenterol. 2014, 49, 1027–1034. [Google Scholar] [CrossRef]
- Endlich, B.; Armstrong, D.; Brodsky, J.; Novotny, M.; Hamilton, T.A. Distinct Temporal Patterns of Macrophage-Inflammatory Protein-2 and KC Chemokine Gene Expression in Surgical Injury. J. Immunol. 2002, 168, 3586–3594. [Google Scholar] [CrossRef] [PubMed]
- Lenz, A.; Franklin, G.A.; Cheadle, W.G. Systemic Inflammation after Trauma. Injury 2007, 38, 1336–1345. [Google Scholar] [CrossRef]
- Saggini, R.; Pellegrino, R. MAPK Is Implicated in Sepsis, Immunity, and Inflammation. Int. J. Infect. 2024, 8, 100–104. [Google Scholar]
- Avivar-Valderas, A. Inhibition of PI3Kβ and MTOR Influence the Immune Response and the Defense Mechanism against Pathogens. Int. J. Infect. 2023, 7, 46–49. [Google Scholar]
- He, X.; Li, Y.; Deng, B.; Lin, A.; Zhang, G.; Ma, M.; Wang, Y.; Yang, Y.; Kang, X. The PI3K/AKT Signalling Pathway in Inflammation, Cell Death and Glial Scar Formation after Traumatic Spinal Cord Injury: Mechanisms and Therapeutic Opportunities. Cell Prolif. 2022, 55, e13275. [Google Scholar] [CrossRef] [PubMed]
- Turner, M.D.; Nedjai, B.; Hurst, T.; Pennington, D.J. Cytokines and Chemokines: At the Crossroads of Cell Signalling and Inflammatory Disease. Biochim. Biophys. Acta 2014, 1843, 2563–2582. [Google Scholar] [CrossRef] [PubMed]
- Roth-Isigkeit, A.; Hasselbach, L.; Ocklitz, E.; Brückner, S.; Ros, A.; Gehring, H.; Schmucker, P.; Rink, L.; Seyfarth, M. Inter-Individual Differences in Cytokine Release in Patients Undergoing Cardiac Surgery with Cardiopulmonary Bypass. Clin. Exp. Immunol. 2001, 125, 80–88. [Google Scholar] [CrossRef]
- Santonocito, C.; De Loecker, I.; Donadello, K.; Moussa, M.D.; Markowicz, S.; Gullo, A.; Vincent, J.-L. C-Reactive Protein Kinetics after Major Surgery. Anesth. Analg. 2014, 119, 624–629. [Google Scholar] [CrossRef]
- Sereda, A.P.; Rukina, A.N.; Trusova, Y.V.; Dzhavadov, A.A.; Cherny, A.A.; Bozhkova, S.A.; Shubnyakov, I.I.; Tikhilov, R.M. Dynamics of C-Reactive Protein Level after Orthopedic Surgeries. J. Orthop. 2024, 47, 1–7. [Google Scholar] [CrossRef]
- Poredos, P.; Poredos, P.; Jezovnik, M.K.; Mavric, A.; Leben, L.; Mijovski, M.B.; Maia, P.; Haddad, S.; Fareed, J. Time Course of Inflammatory and Procoagulant Markers in the Early Period After Total Hip Replacement. Clin. Appl. Thromb. Hemost. 2021, 27, 1076029620985941. [Google Scholar] [CrossRef]
- Qian, B.; Zheng, Y.; Jia, H.; Zheng, X.; Gao, R.; Li, W. Neutrophil-Lymphocyte Ratio as a Predictive Marker for Postoperative Infectious Complications: A Systematic Review and Meta-Analysis. Heliyon 2023, 9, e15586. [Google Scholar] [CrossRef]
- Dhir, S.; Dhir, A. Cardiovascular Risk Assessment for Noncardiac Surgery: Are We Ready for Biomarkers? J. Cardiothorac. Vasc. Anesth. 2020, 34, 1914–1924. [Google Scholar] [CrossRef] [PubMed]
- Puelacher, C.; Lurati Buse, G.; Seeberger, D.; Sazgary, L.; Marbot, S.; Lampart, A.; Espinola, J.; Kindler, C.; Hammerer, A.; Seeberger, E.; et al. Perioperative Myocardial Injury After Noncardiac Surgery: Incidence, Mortality, and Characterization. Circulation 2018, 137, 1221–1232. [Google Scholar] [CrossRef] [PubMed]
- Smilowitz, N.R.; Gupta, N.; Ramakrishna, H.; Guo, Y.; Berger, J.S.; Bangalore, S. Perioperative Major Adverse Cardiovascular and Cerebrovascular Events Associated With Noncardiac Surgery. JAMA Cardiol. 2017, 2, 181–187. [Google Scholar] [CrossRef]
- Devereaux, P.J.; Goldman, L.; Cook, D.J.; Gilbert, K.; Leslie, K.; Guyatt, G.H. Perioperative Cardiac Events in Patients Undergoing Noncardiac Surgery: A Review of the Magnitude of the Problem, the Pathophysiology of the Events and Methods to Estimate and Communicate Risk. Can. Med. Assoc. J. 2005, 173, 627–634. [Google Scholar] [CrossRef]
- Czubkowski, P.; Osiecki, M.; Szymańska, E.; Kierkuś, J. The Risk of Cardiovascular Complications in Inflammatory Bowel Disease. Clin. Exp. Med. 2020, 20, 481–491. [Google Scholar] [CrossRef]
- Ackland, G.L.; Abbott, T.E.F.; Cain, D.; Edwards, M.R.; Sultan, P.; Karmali, S.N.; Fowler, A.J.; Whittle, J.R.; MacDonald, N.J.; Reyes, A.; et al. Preoperative Systemic Inflammation and Perioperative Myocardial Injury: Prospective Observational Multicentre Cohort Study of Patients Undergoing Non-Cardiac Surgery. Br. J. Anaesth. 2019, 122, 180–187. [Google Scholar] [CrossRef]
- Guthrie, G.J.K.; Charles, K.A.; Roxburgh, C.S.D.; Horgan, P.G.; McMillan, D.C.; Clarke, S.J. The Systemic Inflammation-Based Neutrophil-Lymphocyte Ratio: Experience in Patients with Cancer. Crit. Rev. Oncol. Hematol. 2013, 88, 218–230. [Google Scholar] [CrossRef]
- D’Agostino, D.; Cappabianca, G.; Rotunno, C.; Castellaneta, F.; Quagliara, T.; Carrozzo, A.; Mastro, F.; Charitos, I.A.; Beghi, C. The Preoperative Inflammatory Status Affects the Clinical Outcome in Cardiac Surgery. Antibiotics 2019, 8, 176. [Google Scholar] [CrossRef]
- Pichler, A.; Kurz, A.; Eichlseder, M.; Graf, A.; Eichinger, M.; Taschner, A.; Kabon, B.; Fleischmann, E.; Reiterer, C. PerIoperative INflammatory ReSponse Assessment In HiGH-Risk PatienTs Undergoing Non-Cardiac Surgery (INSIGHT): Study Protocol of a Prospective Non-Interventional Observational Study. BMJ Open 2023, 13, e065469. [Google Scholar] [CrossRef]
- Duceppe, E.; Patel, A.; Chan, M.T.V.; Berwanger, O.; Ackland, G.; Kavsak, P.A.; Rodseth, R.; Biccard, B.; Chow, C.K.; Borges, F.K.; et al. Preoperative N-Terminal Pro-B-Type Natriuretic Peptide and Cardiovascular Events After Noncardiac Surgery: A Cohort Study. Ann. Intern. Med. 2020, 172, 96–104. [Google Scholar] [CrossRef]
- Devereaux, P.J.; Biccard, B.M.; Sigamani, A.; Xavier, D.; Chan, M.T.V.; Srinathan, S.K.; Walsh, M.; Abraham, V.; Pearse, R.; Wang, C.Y.; et al. Association of Postoperative High-Sensitivity Troponin Levels With Myocardial Injury and 30-Day Mortality Among Patients Undergoing Noncardiac Surgery. JAMA 2017, 317, 1642–1651. [Google Scholar] [CrossRef]
- Devereaux, P.J.; Chan, M.T.V.; Alonso-Coello, P.; Walsh, M.; Berwanger, O.; Villar, J.C.; Wang, C.Y.; Garutti, R.I.; Jacka, M.J.; Sigamani, A.; et al. Association between Postoperative Troponin Levels and 30-Day Mortality among Patients Undergoing Noncardiac Surgery. JAMA 2012, 307, 2295–2304. [Google Scholar] [CrossRef] [PubMed]
- Squiccimarro, E.; Labriola, C.; Malvindi, P.G.; Margari, V.; Guida, P.; Visicchio, G.; Kounakis, G.; Favale, A.; Dambruoso, P.; Mastrototaro, G.; et al. Prevalence and Clinical Impact of Systemic Inflammatory Reaction After Cardiac Surgery. J. Cardiothorac. Vasc. Anesth. 2019, 33, 1682–1690. [Google Scholar] [CrossRef] [PubMed]
- Viikinkoski, E.; Aittokallio, J.; Lehto, J.; Ollila, H.; Relander, A.; Vasankari, T.; Jalkanen, J.; Gunn, J.; Jalkanen, S.; Airaksinen, J.; et al. Prolonged Systemic Inflammatory Response Syndrome After Cardiac Surgery. J. Cardiothorac. Vasc. Anesth. 2024, 38, 709–716. [Google Scholar] [CrossRef]
- Talmor, M.; Hydo, L.; Barie, P.S. Relationship of Systemic Inflammatory Response Syndrome to Organ Dysfunction, Length of Stay, and Mortality in Critical Surgical Illness: Effect of Intensive Care Unit Resuscitation. Arch. Surg. 1999, 134, 81–87. [Google Scholar] [CrossRef] [PubMed]
- Heo, R.H.; Wang, M.K.; Meyre, P.B.; Birchenough, L.; Park, L.; Vuong, K.; Devereaux, P.J.; Blum, S.; Lindahl, B.; Stone, G.; et al. Associations of Inflammatory Biomarkers With the Risk of Morbidity and Mortality After Cardiac Surgery: A Systematic Review and Meta-Analysis. Can. J. Cardiol. 2023, 39, 1686–1694. [Google Scholar] [CrossRef]
- Baskaran, G.; Heo, R.H.; Wang, M.K.; Meyre, P.B.; Park, L.; Blum, S.; Devereaux, P.J.; Conen, D. Associations of Inflammatory Biomarkers with Morbidity and Mortality after Noncardiac Surgery: A Systematic Review and Meta-Analysis. J. Clin. Anesth. 2024, 97, 111540. [Google Scholar] [CrossRef]
- Reniers, T.; Rettig, T.; van Zeggeren, L.; Dijkstra, I.; Prinsze, K.; Molenaar, I.; van Santvoort, H.; Cremer, O.; Vernooij, L.; Noordzij, P. Is Chronic Inflammation a Risk Factor for Perioperative Myocardial Injury or Heart Failure in Pancreatic Surgery Patients? BJA open 2025, 14, 100417. [Google Scholar] [CrossRef]
- Lincoff, A.M.; Nicholls, S.J.; Riesmeyer, J.S.; Barter, P.J.; Brewer, H.B.; Fox, K.A.A.; Gibson, C.M.; Granger, C.; Menon, V.; Montalescot, G.; et al. Evacetrapib and Cardiovascular Outcomes in High-Risk Vascular Disease. N. Engl. J. Med. 2017, 376, 1933–1942. [Google Scholar] [CrossRef]
- Park, J.H.; Watt, D.G.; Roxburgh, C.S.D.; Horgan, P.G.; McMillan, D.C. Colorectal Cancer, Systemic Inflammation, and Outcome: Staging the Tumor and Staging the Host. Ann. Surg. 2016, 263, 326–336. [Google Scholar] [CrossRef]
- Mehta, N.N.; deGoma, E.; Shapiro, M.D. IL-6 and Cardiovascular Risk: A Narrative Review. Curr. Atheroscler. Rep. 2024, 27, 12. [Google Scholar] [CrossRef]
- Altieri, C.; Pisano, C.; Vincenzo, L.; Ferrante, M.S.; Pellerito, V.; Nardi, P.; Bassano, C.; Buioni, D.; Greco, E.; Ruvolo, G.; et al. Circulating Levels of Ferritin, RDW, PTLs as Predictive Biomarkers of Postoperative Atrial Fibrillation Risk after Cardiac Surgery in Extracorporeal Circulation. Int. J. Mol. Sci. 2022, 23, 4800. [Google Scholar] [CrossRef]
- MacCallum, N.S.; Finney, S.J.; Gordon, S.E.; Quinlan, G.J.; Evans, T.W. Modified Criteria for the Systemic Inflammatory Response Syndrome Improves Their Utility Following Cardiac Surgery. Chest 2014, 145, 1197–1203. [Google Scholar] [CrossRef]
- Becher, R.D.; Hoth, J.J.; Miller, P.R.; Meredith, J.W.; Chang, M.C. Systemic Inflammation Worsens Outcomes in Emergency Surgical Patients. J. Trauma Acute Care Surg. 2012, 72, 1140–1149. [Google Scholar] [CrossRef] [PubMed]
- Dieleman, J.M.; Peelen, L.M.; Coulson, T.G.; Tran, L.; Reid, C.M.; Smith, J.A.; Myles, P.S.; Pilcher, D. Age and Other Perioperative Risk Factors for Postoperative Systemic Inflammatory Response Syndrome after Cardiac Surgery. Br. J. Anaesth. 2017, 119, 637–644. [Google Scholar] [CrossRef]
- Watt, D.G.; Horgan, P.G.; McMillan, D.C. Routine Clinical Markers of the Magnitude of the Systemic Inflammatory Response after Elective Operation: A Systematic Review. Surgery 2015, 157, 362–380. [Google Scholar] [CrossRef]
- Rossaint, J.; Zarbock, A. Perioperative Inflammation and Its Modulation by Anesthetics. Anesth. Analg. 2018, 126, 1058–1067. [Google Scholar] [CrossRef]
- Sido, B.; Teklote, J.-R.; Hartel, M.; Friess, H.; Büchler, M.W. Inflammatory Response after Abdominal Surgery. Best Pract. Res. Clin. Anaesthesiol. 2004, 18, 439–454. [Google Scholar] [CrossRef] [PubMed]
- Hildebrandt, U.; Kessler, K.; Plusczyk, T.; Pistorius, G.; Vollmar, B.; Menger, M.D. Comparison of Surgical Stress between Laparoscopic and Open Colonic Resections. Surg. Endosc. 2003, 17, 242–246. [Google Scholar] [CrossRef]
- Valorenzos, A.; Nielsen, K.A.; Kaiser, K.; Petersen, S.R.; Helligsø, P.; Dorfelt, A.; Lambertsen, K.L.; Ellebæk, M.B.; Nielsen, M.F. Inflammatory Response and Short-Term Outcomes after Laparoscopic versus Robotic Transabdominal Preperitoneal Inguinal Hernia Repair: Randomized Clinical Trial (ROLAIS). Br. J. Surg. 2025, 112, znaf074. [Google Scholar] [CrossRef] [PubMed]
- van Hilst, J.; Brinkman, D.J.; de Rooij, T.; van Dieren, S.; Gerhards, M.F.; de Hingh, I.H.; Luyer, M.D.; Marsman, H.A.; Karsten, T.M.; Busch, O.R.; et al. The Inflammatory Response after Laparoscopic and Open Pancreatoduodenectomy and the Association with Complications in a Multicenter Randomized Controlled Trial. HPB Off. J. Int. Hepato Pancreato Biliary Assoc. 2019, 21, 1453–1461. [Google Scholar] [CrossRef]
- Bohne, A.; Grundler, E.; Knüttel, H.; Völkel, V.; Fürst, A. Impact of Laparoscopic versus Open Surgery on Humoral Immunity in Patients with Colorectal Cancer: A Systematic Review and Meta-Analysis. Surg. Endosc. 2024, 38, 540–553. [Google Scholar] [CrossRef] [PubMed]
- Cuk, P.; Tiskus, M.; Möller, S.; Lambertsen, K.L.; Backer Mogensen, C.; Festersen Nielsen, M.; Helligsø, P.; Gögenur, I.; Bremholm Ellebæk, M. Surgical Stress Response in Robot-Assisted versus Laparoscopic Surgery for Colon Cancer (SIRIRALS): Randomized Clinical Trial. Br. J. Surg. 2024, 111, znae049. [Google Scholar] [CrossRef]
- Choi, H.; Hwang, W. Perioperative Inflammatory Response and Cancer Recurrence in Lung Cancer Surgery: A Narrative Review. Front. Surg. 2022, 9, 888630. [Google Scholar] [CrossRef]
- Zhang, L.-B.; Wang, B.; Wang, X.-Y.; Zhang, L. Influence of Video-Assisted Thoracoscopic Lobectomy on Immunological Functions in Non-Small Cell Lung Cancer Patients. Med. Oncol. 2015, 32, 201. [Google Scholar] [CrossRef]
- Sugi, K.; Kaneda, Y.; Esato, K. Video-Assisted Thoracoscopic Lobectomy Reduces Cytokine Production More than Conventional Open Lobectomy. Jpn. J. Thorac. Cardiovasc. Surg. Off. Publ. Jpn. Assoc. Thorac. Surg. = Nihon Kyobu Geka Gakkai Zasshi 2000, 48, 161–165. [Google Scholar] [CrossRef]
- Smilowitz, N.R.; Berger, J.S. Perioperative Management to Reduce Cardiovascular Events. Circulation 2016, 133, 1125–1130. [Google Scholar] [CrossRef] [PubMed]
- Alattar, R.; Ibrahim, T.B.H.; Shaar, S.H.; Abdalla, S.; Shukri, K.; Daghfal, J.N.; Khatib, M.Y.; Aboukamar, M.; Abukhattab, M.; Alsoub, H.A.; et al. Tocilizumab for the Treatment of Severe Coronavirus Disease 2019. J. Med. Virol. 2020, 92, 2042–2049. [Google Scholar] [CrossRef] [PubMed]
- Gibbison, B.; López-López, J.A.; Higgins, J.P.T.; Miller, T.; Angelini, G.D.; Lightman, S.L.; Annane, D. Corticosteroids in Septic Shock: A Systematic Review and Network Meta-Analysis. Crit. Care 2017, 21, 78. [Google Scholar] [CrossRef]
- Kiyan, Y.; Tkachuk, S.; Kurselis, K.; Shushakova, N.; Stahl, K.; Dawodu, D.; Kiyan, R.; Chichkov, B.; Haller, H. Heparanase-2 Protects from LPS-Mediated Endothelial Injury by Inhibiting TLR4 Signalling. Sci. Rep. 2019, 9, 13591. [Google Scholar] [CrossRef]
- Devereaux, P.J.; Mrkobrada, M.; Sessler, D.I.; Leslie, K.; Alonso-Coello, P.; Kurz, A.; Villar, J.C.; Sigamani, A.; Biccard, B.M.; Meyhoff, C.S.; et al. Aspirin in Patients Undergoing Noncardiac Surgery. N. Engl. J. Med. 2014, 370, 1494–1503. [Google Scholar] [CrossRef] [PubMed]
- Alunno, A.; Carubbi, F.; Ferri, C. Colchicine and Cardiovascular Prevention. Eur. J. Intern. Med. 2024, 121, 30–34. [Google Scholar] [CrossRef] [PubMed]
- Ridker, P.M.; Libby, P.; MacFadyen, J.G.; Thuren, T.; Ballantyne, C.; Fonseca, F.; Koenig, W.; Shimokawa, H.; Everett, B.M.; Glynn, R.J. Modulation of the Interleukin-6 Signalling Pathway and Incidence Rates of Atherosclerotic Events and All-Cause Mortality: Analyses from the Canakinumab Anti-Inflammatory Thrombosis Outcomes Study (CANTOS). Eur. Heart J. 2018, 39, 3499–3507. [Google Scholar] [CrossRef]
- Ridker, P.M.; MacFadyen, J.G.; Everett, B.M.; Libby, P.; Thuren, T.; Glynn, R.J. Relationship of C-Reactive Protein Reduction to Cardiovascular Event Reduction Following Treatment with Canakinumab: A Secondary Analysis from the CANTOS Randomised Controlled Trial. Lancet 2018, 391, 319–328. [Google Scholar] [CrossRef]
- Diamantis, E.; Kyriakos, G.; Quiles-Sanchez, L.V.; Farmaki, P.; Troupis, T. The Anti-Inflammatory Effects of Statins on Coronary Artery Disease: An Updated Review of the Literature. Curr. Cardiol. Rev. 2017, 13, 209–216. [Google Scholar] [CrossRef]
- Lindenauer, P.K.; Pekow, P.; Wang, K.; Gutierrez, B.; Benjamin, E.M. Lipid-Lowering Therapy and in-Hospital Mortality Following Major Noncardiac Surgery. JAMA 2004, 291, 2092–2099. [Google Scholar] [CrossRef]
- Antoniou, G.A.; Hajibandeh, S.; Hajibandeh, S.; Vallabhaneni, S.R.; Brennan, J.A.; Torella, F. Meta-Analysis of the Effects of Statins on Perioperative Outcomes in Vascular and Endovascular Surgery. J. Vasc. Surg. 2015, 61, 519–532.e1. [Google Scholar] [CrossRef] [PubMed]
- Sanders, R.D.; Nicholson, A.; Lewis, S.R.; Smith, A.F.; Alderson, P. Perioperative Statin Therapy for Improving Outcomes during and after Noncardiac Vascular Surgery. Cochrane Database Syst. Rev. 2013, 2013, CD009971. [Google Scholar] [CrossRef] [PubMed]
- Fleisher, L.A.; Fleischmann, K.E.; Auerbach, A.D.; Barnason, S.A.; Beckman, J.A.; Bozkurt, B.; Davila-Roman, V.G.; Gerhard-Herman, M.D.; Holly, T.A.; Kane, G.C.; et al. 2014 ACC/AHA Guideline on Perioperative Cardiovascular Evaluation and Management of Patients Undergoing Noncardiac Surgery: A Report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. Circulation 2014, 130, e278–e333. [Google Scholar] [CrossRef] [PubMed]
- Koutsogiannaki, S.; Hou, L.; Babazada, H.; Okuno, T.; Blazon-Brown, N.; Soriano, S.G.; Yokomizo, T.; Yuki, K. The Volatile Anesthetic Sevoflurane Reduces Neutrophil Apoptosis via Fas Death Domain-Fas-Associated Death Domain Interaction. FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol. 2019, 33, 12668–12679. [Google Scholar] [CrossRef]
- Mikawa, K.; Akamatsu, H.; Nishina, K.; Shiga, M.; Maekawa, N.; Obara, H.; Niwa, Y. Propofol Inhibits Human Neutrophil Functions. Anesth. Analg. 1998, 87, 695–700. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.-H.; Cho, D.K.; Song, Y.-B.; Hahn, J.-Y.; Choi, S.; Gwon, H.-C.; Kim, D.-K.; Lee, S.H.; Oh, J.K.; Jeon, E.-S. Preoperative NT-ProBNP and CRP Predict Perioperative Major Cardiovascular Events in Non-Cardiac Surgery. Heart 2010, 96, 56–62. [Google Scholar] [CrossRef] [PubMed]
Inflammatory Marker | Clinical Relevance |
---|---|
hsCRP |
|
IL-6 | |
NLR | Preoperative NLR > 4 presents a higher risk for perioperative myocardial injury [36] |
mGPS | mGPS could be a useful risk assessment tool for perioperative CV events in patients with preoperative inflammation, but is not yet sufficiently studied [50] |
Ferritin | Ferritin values ≥ 141 ng/mL might be used as a predictive postoperative atrial fibrillation biomarker in cardiac surgery [52] |
Drug | Study/Ref | Findings |
---|---|---|
IL-6 antibody
| Tocilizumab in the treatment of severe coronavirus disease [68] | Tocilizumab provoked a significant decline in inflammatory markers and reduced ventilatory insufficiency |
Aspirin | Perioperative Ischemic Evaluation (POISE-2) trial—10,010 pts. with noncardiac surgery [71] | In 30 days after surgery, no effects on perioperative CV events |
Colchicine | Meta-analysis of 10 studies including patients undergoing cardiac surgery [72] | Colchicine significantly reduced postoperative atrial fibrillation and postpericardiotomy syndrome |
Statins | Retrospective analysis of 204,885 pts. undergoing noncardiac surgery [76] | Significantly reduced in-hospital mortality |
Meta-analysis—DECREASE III study—perioperative treatment with fluvastatin of pts. undergoing major vascular surgery [77] | 53% reduction in death or myocardial infarction | |
Anesthetic drugs
| In vitro study investigating effects of propofol on neutrophil function [81] | Propofol impaired neutrophil function |
Comparison of effects of propofol and sevoflurane on perioperative inflammatory response [80] | Propofol compared to sevoflurane significantly reduced perioperative inflammatory response in pts. undergoing lung cancer resection |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Poredos, P.; Komadina, R. Inflammation and Perioperative Cardiovascular Events. Cells 2025, 14, 1362. https://doi.org/10.3390/cells14171362
Poredos P, Komadina R. Inflammation and Perioperative Cardiovascular Events. Cells. 2025; 14(17):1362. https://doi.org/10.3390/cells14171362
Chicago/Turabian StylePoredos, Peter, and Radko Komadina. 2025. "Inflammation and Perioperative Cardiovascular Events" Cells 14, no. 17: 1362. https://doi.org/10.3390/cells14171362
APA StylePoredos, P., & Komadina, R. (2025). Inflammation and Perioperative Cardiovascular Events. Cells, 14(17), 1362. https://doi.org/10.3390/cells14171362