Molecular Aspects of Geriatric Pharmacotherapy
Abstract
1. Introduction
2. Pharmacokinetic Changes at the Molecular Level
2.1. Absorption
2.2. Distribution: Changes in Body Composition and Protein Binding
2.3. Hepatic Drug Metabolism
2.4. Drug Transporters: Changes During the Aging
2.5. Renal Excretion
3. Biological Barriers in the Aging Organism: The Blood–Brain Barrier (BBB)
3.1. The Neurovascular Unit: Structure and Age-Related Dysfunction
3.2. Molecular Integrity of the Barrier: Tight Junctions
3.3. The Role of P-Glycoprotein at the Blood–Brain Barrier
4. Pharmacodynamic Changes: Receptors and Signaling Pathways
4.1. General Principles of Altered Drug Sensitivity
- -
- Changes in receptor density: The number of receptors for a given neurotransmitter or drug on the cell surface may decrease (down-regulation) or increase (up-regulation) with age.
- -
- Changes in receptor affinity: The binding strength of a drug to a receptor (Kd) may be modified.
- -
- Changes in post-receptor response: Even with proper drug binding to the receptor, subsequent steps in the intracellular signaling cascade (e.g., production of second messengers, kinase activation) may be impaired.
4.2. Quantitative Changes of Key Receptor Systems
4.3. Clinical Consequences
5. Molecular Basis of Drug Interactions in Geriatrics
5.1. Mechanisms of Pharmacokinetic Interactions
5.2. Mechanisms of Pharmacodynamic Interactions
6. The Role of Microbiome and Epigenetics
6.1. The Gut Microbiome as a Regulator of Pharmacokinetics
6.2. Pharmacoepigenetics: Epigenetic Regulation of Pharmacogenes in Aging
7. Clinical Implications
Pharmacogenomics in Geriatric Practice
8. Future of Geriatric Pharmacotherapy Development
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Homs-Corbera, A.; Fiz, J.A.; Morera, J.; Jané, R. Time-frequency detection and analysis of wheezes during forced exhalation. IEEE Trans. Biomed. Eng. 2004, 51, 182–186. [Google Scholar] [CrossRef]
- Andres, T.M.; McGrane, T.; McEvoy, M.D.; Allen, B.F.S. Geriatric Pharmacology: An Update. Anesthesiol. Clin. 2019, 37, 475–492. [Google Scholar] [CrossRef] [PubMed]
- Dovjak, P. Polypharmacy in elderly people. Wien Med. Wochenschr. 2022, 172, 109–113. [Google Scholar] [CrossRef] [PubMed]
- Davies, L.E.; Spiers, G.; Kingston, A.; Todd, A.; Adamson, J.; Hanratty, B. Adverse outcomes of polypharmacy in older people: Systematic review of reviews. J. Am. Med. Dir. Assoc. 2020, 21, 181–187. [Google Scholar] [CrossRef] [PubMed]
- Brahma, D.K.; Wahlang, J.; Marak, M.D.; Sangma, M.C. Adverse drug reactions in the elderly. J. Pharmacol. Pharmacother. 2013, 4, 91–94. [Google Scholar] [CrossRef]
- Błeszyńska-Marunowska, E.; Jagiełło, K.; Grodzicki, T.; Wierucki, Ł.; Sznitowska, M.; Kalarus, Z.; Renke, M.; Mitręga, K.; Rewiuk, K.; Zdrojewski, T. Polypharmacy among elderly patients in Poland: Prevalence, predisposing factors, and management strategies. Pol. Arch. Intern. Med. 2022, 132, 16347. [Google Scholar]
- Farrell, B.; Galley, E.; Jeffs, L.; Howell, P.; McCarthy, L.M. “Kind of blurry”: Deciphering clues to prevent, investigate and manage prescribing cascades. PLoS ONE 2022, 17, e0272418. [Google Scholar] [CrossRef]
- Preston, R.A.; Harvey, P.; Herfert, O.; Dykstra, G.; Jukema, J.W.; Sun, F.; Gillen, D. A randomized, placebo-controlled trial to evaluate the efficacy, safety, and pharmacodynamic interaction of coadministered amlodipine and atorvastatin in 1660 patients with concomitant hypertension and dyslipidemia: The respond trial. J. Clin. Pharmacol. 2007, 47, 1555–1569. [Google Scholar] [CrossRef]
- Adrien, O.; Mohammad, A.K.; Hugtenburg, J.G.; McCarthy, L.M.; Priester-Vink, S.; Visscher, R.; van den Bemt, P.M.L.; Denig, P.; Karapinar-Carkıt, F. Prescribing Cascades with Recommendations to Prevent or Reverse Them: A Systematic Review. Drugs Aging 2023, 40, 1085–1100. [Google Scholar] [CrossRef]
- Shin, H.W.; Chung, S.J. Drug-induced parkinsonism. J. Clin. Neurol. 2012, 8, 15–21. [Google Scholar] [CrossRef]
- Knol, W.; van Marum, R.J.; Jansen, P.A.F.; Egberts, T.C.G.; Schobben, A.F.A.M. Parkinsonism in elderly users of haloperidol: Associated with dose, plasma concentration, and duration of use. J. Clin. Psychopharmacol. 2012, 32, 688–693. [Google Scholar] [CrossRef] [PubMed]
- Cooper, L.D.; Marquez-Cedillo, L.; Singh, J.; Sturbaum, A.K.; Zhang, S.; Edwards, V.; Johnson, K.; Kleinhofs, A.; Rangel, S.; Carollo, V.; et al. Mapping Ds insertions in barley using a sequence-based approach. Mol. Genet. Genom. 2004, 272, 181–193. [Google Scholar] [CrossRef]
- Delafuente, J.C. Pharmacokinetic and pharmacodynamic alterations in the geriatric patient. Consult. Pharm. 2008, 23, 324–334. [Google Scholar] [CrossRef]
- Ngcobo, N.N. Influence of Ageing on the Pharmacodynamics and Pharmacokinetics of Chronically Administered Medicines in Geriatric Patients: A Review. Clin. Pharmacokinet. 2025, 64, 335–367. [Google Scholar] [CrossRef]
- Ferrucci, L.; Wilson, D.M., 3rd; Donega, S.; Montano, M. Enabling translational geroscience by broadening the scope of geriatric care. Aging Cell 2024, 23, e14034. [Google Scholar] [CrossRef]
- Yabluchanskiy, A.; Ungvari, Z.; Csiszar, A.; Tarantini, S. Advances and challenges in geroscience research: An update. Physiol. Int. 2018, 105, 298–308. [Google Scholar] [CrossRef]
- López Otín, C.; Blasco, M.A.; Partridge, L.; Serrano, M.; Kroemer, G. The hallmarks of aging. Cell 2013, 153, 1194–1217. [Google Scholar] [CrossRef]
- Ungvari, Z.; Fazekas-Pongor, V.; Csiszar, A.; Kunutsor, S.K. The multifaceted benefits of walking for healthy aging: From Blue Zones to molecular mechanisms. Geroscience 2023, 45, 3211–3239. [Google Scholar] [CrossRef] [PubMed]
- Sonntag, W.E.; Ungvari, Z. GeroScience: Understanding the interaction of processes of aging and chronic diseases. Age 2016, 38, 377–378. [Google Scholar] [CrossRef]
- Kaeberlein, M. Translational geroscience: A new paradigm for 21st century medicine. Transl. Med. Aging. 2017, 1, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Salminen, A.; Ojala, J.; Kaarniranta, K.; Kauppinen, A. Mitochondrial dysfunction and oxidative stress activate inflammasomes: Impact on the aging process and age-related diseases. Cell Mol. Life Sci. 2012, 69, 2999–3013. [Google Scholar] [CrossRef] [PubMed]
- El Desoky, E.S. Pharmacokinetic-pharmacodynamic crisis in the elderly. Am. J. Ther. 2007, 14, 488–498. [Google Scholar] [CrossRef] [PubMed]
- Pardridge, W.M. Blood-brain barrier delivery. Drug Discov. Today 2007, 12, 54–61. [Google Scholar] [CrossRef]
- Guo, J.; Huang, X.; Dou, L.; Yan, M.; Shen, T.; Tang, W.; Li, J. Aging and aging-related diseases: From molecular mechanisms to interventions and treatments. Signal Transduct. Target. Ther. 2022, 7, 391. [Google Scholar] [CrossRef]
- Erdő, F.; Krajcsi, P. Age-Related Functional and Expressional Changes in Efflux Pathways at the Blood-Brain Barrier. Front. Aging Neurosci. 2019, 11, 196. [Google Scholar] [CrossRef]
- Wilkinson, J.E.; Burmeister, L.; Brooks, S.V.; Chan, C.-C.; Friedline, S.; Harrison, D.E.; Hejtmancik, J.F.; Nadon, N.; Strong, R.; Wood, L.K.; et al. Rapamycin slows aging in mice. Aging Cell 2012, 11, 675–682. [Google Scholar] [CrossRef]
- Szőke, K.; Bódi, B.; Hendrik, Z.; Czompa, A.; Gyöngyösi, A.; Haines, D.D.; Papp, Z.; Tósaki, A.; Lekli, I. Rapamycin treatment increases survival, autophagy biomarkers and expression of the anti-aging klotho protein in elderly mice. Pharmacol. Res. Perspect. 2023, 11, e01091. [Google Scholar] [CrossRef]
- Turnheim, K. When drug therapy gets old: Pharmacokinetics and pharmacodynamics in the elderly. Exp. Gerontol. 2003, 38, 843–853. [Google Scholar] [CrossRef]
- Moor, M.J.; Steiner, S.; Jachertz, G.; Bickel, M.H. Adipose tissue distribution and chemical structure of basic lipophilic drugs: Desipramine, N-acetyl desipramine, and haloperidol. Pharmacol. Toxicol. 1992, 70, 121–124. [Google Scholar] [CrossRef]
- Mansoor, A.; Mahabadi, N. Volume of Distribution. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2023. [Google Scholar]
- Gom, I.; Fukushima, H.; Shiraki, M.; Miwa, Y.; Ando, T.; Takai, K.; Moriwaki, H. Relationship between serum albumin level and aging in community—dwelling elderly persons. J. Nutr. Sci. Vitaminol 2005, 53, 37–43. [Google Scholar] [CrossRef] [PubMed]
- Hughes, S.G. Prescribing for the elderly patient: Why do we need to exercise caution? Br. J. Clin. Pharmacol. 1998, 46, 531–533. [Google Scholar] [CrossRef]
- Rowland, M.; Tozer, T.N. Clinical Pharmacokinetics and Pharmacodynamics: Concepts and Applications, 4th ed.; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2010. [Google Scholar]
- Schmucker, D.L. Age-related changes in liver structure and function: Implications for disease? Exp. Gerontol. 2005, 40, 650–659. [Google Scholar] [CrossRef]
- Zanger, U.M.; Schwab, M. Cytochrome P450 enzymes in drug metabolism: Regulation of gene expression, enzyme activities, and impact of genetic variation. Pharmacol. Ther. 2013, 138, 103–141. [Google Scholar] [CrossRef]
- Board, P.G.; Menon, D. Glutathione transferases, regulators of cellular metabolism and physiology. Biochim. Biophys. Acta 2013, 1830, 3267–3288. [Google Scholar] [CrossRef]
- Hilmer, S.N.; Shenfield, G.M.; Le Couteur, D.G. Clinical implications of changes in hepatic drug metabolism in older people. Ther. Clin. Risk Manag. 2005, 1, 151–156. [Google Scholar] [CrossRef] [PubMed]
- Hilmer, S.N.; McLachlan, A.J.; Le Couteur, D.G. Clinical pharmacology in the older person. Fundam. Clin. Pharmacol. 2007, 21, 217–230. [Google Scholar] [CrossRef] [PubMed]
- Sirvent-von Bueltzingsloewen, A.; Gratecos, N.; Legros, L.; Fuzibet, J.G.; Cassuto, J.P. Antithymocyte-associated reticulonodular pneumonitis during a conditioning regimen of reduced intensity for genoidentical bone marrow transplantation. Bone Marrow Transplant. 2001, 27, 891–892. [Google Scholar] [CrossRef]
- Clegg, A.; Young, J.; Iliffe, S.; Rikkert, M.O.; Rockwood, K. Frailty in elderly people. Lancet 2013, 381, 752–762. [Google Scholar] [CrossRef]
- Endo, K. The role of radiologists in hospitals. Nihon Igaku Hoshasen Gakkai Zasshi. 2001, 61, 462–464. [Google Scholar]
- Sotaniemi, E.A.; Arranto, A.J.; Pelkonen, O.; Pasanen, M. Age and cytochrome P450-linked drug metabolism in humans: An analysis of 226 subjects with equal histopathologic conditions. Clin. Pharmacol. Ther. 1997, 61, 331–339. [Google Scholar] [CrossRef] [PubMed]
- Zhou, S.F. Polymorphism of human cytochrome P450 enzymes and its clinical impact. Drug Metab. Rev. 2009, 41, 289–295. [Google Scholar] [CrossRef]
- Morgan, E.T. Impact of infectious and inflammatory disease on cytochrome P450-mediated drug metabolism and pharmacokinetics. Clin. Pharmacol. Ther. 2009, 85, 434–438. [Google Scholar] [CrossRef]
- Waxman, D.J.; Holloway, M.G. Sex differences in the expression of hepatic drug metabolizing enzymes. Mol. Pharmacol. 2009, 76, 215–228. [Google Scholar] [CrossRef]
- Sim, S.C.; Ingelman-Sundberg, M. The human cytochrome P450 (CYP) allele nomenclature website: A peer-reviewed database of CYP variants and their associated effects. Hum. Genom. 2010, 4, 278–281. [Google Scholar] [CrossRef] [PubMed]
- Desta, Z.; Zhao, X.; Shin, J.G.; Flockhart, D.A. Clinical significance of the cytochrome P450 2D6 genetic polymorphism. Clin. Pharmacokinet. 2002, 41, 913–958. [Google Scholar] [CrossRef]
- Zhou, S.F. Drugs behave as substrates, inhibitors and inducers of human cytochrome P450 3A4. Curr. Drug Metab. 2008, 9, 310–322. [Google Scholar] [CrossRef]
- Kinirons, M.T.; O’Mahony, M.S. Drug metabolism and ageing. Br. J. Clin. Pharmacol. 2004, 57, 540–544. [Google Scholar] [CrossRef]
- Mangoni, A.A.; Jackson, S.H.D. Age-related changes in pharmacokinetics and pharmacodynamics: Basic principles and practical applications. Br. J. Clin. Pharmacol. 2004, 57, 6–10. [Google Scholar] [CrossRef] [PubMed]
- Harvey, A.T.; Preskorn, S.H. Fluoxetine pharmacokinetics and effect on CYP2C19 in young and elderly volunteers. J. Clin. Psychopharmacol. 2001, 21, 161–166. [Google Scholar] [CrossRef]
- Wauthier, V.; Verbeeck, R.K.; Buc Calderon, P. The Effect of Ageing on Cytochrome P450 Enzymes: Consequences for Drug Biotransformation in the Elderly. Curr. Med. Chem. 2007, 14, 745–757. [Google Scholar] [CrossRef] [PubMed]
- Jacobson, S. Effects of Pharmacokinetic and Pharmacodynamic Changes in the Elderly. Psychiatr. Times 2013, 29, 1. [Google Scholar]
- Giacomini, K.M.; Huang, S.M.; Tweedie, D.J.; Brouwer, K.L.; Chu, X.; Dahlin, A.; Evers, R.; Fischer, V.; Hillgren, K.M.; Hoffmaster, K.A.; et al. Membrane transporters in drug development. Nat. Rev. Drug Discov. 2010, 9, 215–236. [Google Scholar] [CrossRef] [PubMed]
- Fromm, M.F. Importance of P-glycoprotein at blood-tissue barriers. Trends Pharmacol. Sci. 2004, 25, 423–429. [Google Scholar] [CrossRef] [PubMed]
- Higgins, C.F. ABC transporters: From microorganisms to man. Annu. Rev. Cell. Biol. 1992, 8, 67–113. [Google Scholar] [CrossRef]
- Gottesman, M.M.; Ambudkar, S.V. Overview: ABC transporters and human disease. J. Bioenerg. Biomembr. 2001, 33, 453–458. [Google Scholar] [CrossRef]
- Hediger, M.A.; Clemencon, B.; Burrier, R.; Bruford, E.A. The ABCs of membrane transporters in health and disease (SLC series): Introduction. Mol. Aspects Med. 2013, 34, 95–107. [Google Scholar] [CrossRef]
- Morrissey, K.M.; Stocker, S.L.; Wittwer, M.B.; Xu, L.; Giacomini, K.M. Renal transporters in drug development. Annu. Rev. Pharmacol. Toxicol. 2013, 53, 503–529. [Google Scholar] [CrossRef]
- Toornvliet, R.; van Berckel, B.N.; Luurtsema, G.; Lubberink, M.; Windhorst, A.D.; Franssen, E.; Lammertsma, A.A.; Breimer, D.D. Effect of age on functional P-glycoprotein in the blood–brain barrier measured by (R)-[11C]verapamil PET. Clin. Pharmacol. Ther. 2006, 79, 540–548. [Google Scholar] [CrossRef] [PubMed]
- Nolin, T.D.; Naud, J.; Leblond, F.A.; Pichette, V. Emerging evidence of the impact of kidney disease on drug metabolism and transport. Clin. Pharmacol. Ther. 2008, 83, 898–903. [Google Scholar] [CrossRef]
- Grogan, S.; Preuss, C.V. Pharmacokinetics. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2023. [Google Scholar]
- Robey, R.W.; Pluchino, K.M.; Hall, M.D.; Fojo, A.T.; Bates, S.E.; Gottesman, M.M. Revisiting the role of ABC transporters in multidrug-resistant cancer. Nat. Rev. Cancer 2018, 18, 452–464. [Google Scholar] [CrossRef]
- Sparreboom, A.; Loos, W.J.; Burger, H.; Sissung, T.M.; Verweij, J.; Figg, W.D.; Nooter, K.; Gelderblom, H. Effect of ABCG2 genotype on the oral bioavailability of topotecan. Cancer Biol. Ther. 2005, 4, 650–658. [Google Scholar] [CrossRef] [PubMed]
- Nigam, S.K. What do drug transporters really do? Nat. Rev. Drug Discov. 2015, 14, 29–44. [Google Scholar] [CrossRef]
- Dresser, G.K.; Spence, J.D.; Bailey, D.G. Pharmacokinetic–pharmacodynamic consequences and clinical relevance of age-related changes in drug transporters. Clin. Pharmacokinet. 2000, 38, 409–452. [Google Scholar] [CrossRef]
- Nigam, S.K. The SLC22 transporter family: A paradigm for the impact of drug transporters on metabolic and signaling pathways, and disease. Annu. Rev. Pharmacol. Toxicol. 2018, 58, 663–687. [Google Scholar] [CrossRef]
- Nguyen, T.; Nguyen, H.; Dang, A. Determinants of patient satisfaction: Lessons from large-scale inpatient interviews in Vietnam. PLoS ONE 2020, 15, e0239306. [Google Scholar] [CrossRef]
- Wada, Y.; Inoko, M.; Ishihara, K.; Fukumoto, K.; Tsurudome, Y.; Horiguchi, M.; Fujimura, A.; Ushijima, K. Aging reduces ATP-binding cassette transporter expression in brain microvessels of mice. Pharmaceuticals 2025, 18, 191. [Google Scholar] [CrossRef] [PubMed]
- Labbadia, J.; Morimoto, R.I. The biology of proteostasis in aging and disease. Annu. Rev. Biochem. 2015, 84, 435–464. [Google Scholar] [CrossRef]
- Hipp, M.S.; Kasturi, P.; Hartl, F.U. The proteostasis network and its decline in ageing. Nat. Rev. Mol. Cell Biol. 2019, 20, 421–435. [Google Scholar] [CrossRef]
- Bhatnagar, V.; Richard, E.L.; Wu, W.; Nievergelt, C.M.; Lipkowitz, M.S.; Jeff, J.; Maihofer, A.X.; Nigam, S.K. Analysis of ABCG2 and other urate transporters in uric acid homeostasis in chronic kidney disease: Potential role of remote sensing and signaling. Clin. Kidney J. 2016, 9, 444–453. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.; Dnyanmote, A.V.; Nigam, S.K. Remote communication through solute carriers and ATP binding cassette drug transporter pathways: An update on the remote sensing and signaling hypothesis. Mol. Pharmacol. 2011, 79, 795–805. [Google Scholar] [CrossRef]
- Granados, J.C.; Nigam, S.K. Organic anion transporters in remote sensing and organ crosstalk. Pharmacol. Ther. 2024, 263, 108723. [Google Scholar] [CrossRef]
- Denic, A.; Glassock, R.J.; Rule, A.D. Structural and functional changes with the aging kidney. Adv. Chronic Kidney Dis. 2016, 23, 19–28. [Google Scholar] [CrossRef]
- Waas, T.; Schulz, A.; Lotz, J.; Rossmann, H.; Pfeiffer, N.; Beutel, M.E.; Schmidtmann, I.; Münzel, T.; Wild, P.S.; Lackner, K.J. Distribution of estimated glomerular filtration rate and determinants of its age-dependent loss in a German population-based study. Sci. Rep. 2021, 11, 10165. [Google Scholar] [CrossRef]
- O’Sullivan, E.D.; Hughes, J.; Ferenbach, D.A. Renal aging: Causes and consequences. J. Am. Soc. Nephrol. 2017, 28, 407–420. [Google Scholar] [CrossRef]
- Katzung, B.G. Basic & Clinical Pharmacology, 14th ed.; McGraw-Hill Education: New York, NY, USA, 2018. [Google Scholar]
- Brunton, L.L. (Ed.) Goodman & Gilman’s The Pharmacological Basis of Therapeutics, 13th ed.; McGraw-Hill Education: New York, NY, USA, 2018. [Google Scholar]
- Nigam, S.K.; Bush, K.T.; Martovetsky, G.; Ahn, S.Y.; Liu, H.C.; Richard, E.; Bhatnagar, V.; Wu, W. The organic anion transporter (OAT) family: A systems biology perspective. Physiol. Rev. 2015, 95, 83–123. [Google Scholar] [CrossRef] [PubMed]
- Cheung, K.W.K.; van Groen, B.D.; Spaans, E.; van Borselen, M.D.; de Bruijn, A.C.J.M.; Simons-Oosterhuis, Y.; Tibboel, D.; Samsom, J.N.; Verdijk, R.M.; Smeets, B.; et al. A Comprehensive Analysis of Ontogeny of Renal Drug Transporters: mRNA Analyses, Quantitative Proteomics, and Localization. Clin. Pharmacol. Ther. 2019, 106, 1083–1092. [Google Scholar] [CrossRef] [PubMed]
- Zou, W.; Shi, B.; Zeng, T.; Zhang, Y.; Huang, B.; Ouyang, B.; Cai, Z.; Liu, M. Drug Transporters in the Kidney: Perspectives on Species Differences, Disease Status, and Molecular Docking. Front. Pharmacol. 2021, 12, 746208. [Google Scholar] [CrossRef] [PubMed]
- Levey, A.S.; Stevens, L.A.; Schmid, C.H.; Zhang, Y.L.; Castro, A.F., 3rd; Feldman, H.I.; Kusek, J.W.; Eggers, P.; Van Lente, F.; Greene, T.; et al. A new equation to estimate glomerular filtration rate. Ann. Intern. Med. 2009, 150, 604–662. [Google Scholar] [CrossRef]
- Stevens, L.A.; Levey, A.S. Measured GFR as a confirmatory test for estimated GFR. J. Am. Soc. Nephrol. 2009, 20, 2305–2313. [Google Scholar] [CrossRef]
- Chenglong, L.; Ma, Y.; Yang, C.; Xie, W.; Zhang, L. Association of cystatin C kidney function measures with long-term frailty trajectories and physical function decline: A cohort study. JAMA Netw Open 2022, 5, e2234208. [Google Scholar]
- Stevens, L.A.; Levey, A.S. Measurement of kidney function. Med. Clin. North. Am. 2005, 89, 457–473. [Google Scholar] [CrossRef]
- Drenth-van Maanen, C.; Jansen, P.A.F.; Proost, J.H.; Egberts, T.C.; van Zuilen, A.D.; van der Stap, D.; van Marum, R.J. Renal function assessment in older adults. Br. J. Clin. Pharmacol. 2013, 76, 534–541. [Google Scholar] [CrossRef]
- van Assema, D.M.; Lubberink, M.; Bauer, M.; van der Flier, W.M.; Schuit, R.C.; Windhorst, A.D.; Windhorst, A.D.; Comans, E.F.; Hoetjes, N.J.; Tolboom, N.; et al. Blood–brain barrier P glycoprotein function in Alzheimer’s disease. Brain 2012, 135 Pt 1, 181–189. [Google Scholar] [CrossRef]
- Raman, M.; Middleton, R.J.; Kalra, P.A.; Green, D. Estimating renal function in old people: An in-depth review. Int. Urol. Nephrol. 2017, 49, 1979–1988. [Google Scholar] [CrossRef]
- Szymala-Pędzik, M.; Żórawska, J.; Ciach, J. Drugs Dosing in Geriatric Patients Depending on Kidney Function Estimated by MDRD and Cockroft-Gault Formulas. Clin. Interv. Aging 2021, 16, 2057–2067. [Google Scholar] [CrossRef] [PubMed]
- Wu, B.; Ueno, M.; Onodera, M.; Kusaka, T.; Huang, C.-l.; Hosomi, N.; Kanenishi, K.; Sakamoto, H. Age-related changes in P-glycoprotein expression in senescence-accelerated mouse. Curr. Aging Sci. 2009, 2, 187–192. [Google Scholar] [CrossRef]
- Prasad, B.; Gaedigk, A.; Vrana, M.; Gaedigk, R.; Leeder, J.S.; Salphati, L.; Chu, X.; Xiao, G.; Hop, C.; Evers, R.; et al. Ontogeny of hepatic drug transporters as quantified by LC-MS/MS proteomics. Clin. Pharmacol. Ther. 2016, 100, 362–370. [Google Scholar] [CrossRef] [PubMed]
- Ramsey, L.B.; Johnson, S.G.; Caudle, K.; Haidar, C.E.; Voora, D.; Wilke, R.; Maxwell, W.D.; McLeod, H.L.; Krauss, R.M.; Roden, D.M.; et al. The clinical pharmacogenetics implementation consortium guideline for SLCO1B1 and simvastatin-induced myopathy: 2014 update. Clin. Pharmacol. Ther. 2014, 96, 423–428. [Google Scholar] [CrossRef] [PubMed]
- van Groen, B.D.; Allegaert, K.; Tibboel, D.; de Wildt, S.N. Innovative approaches and recent advances in the study of ontogeny of drug metabolism and transport. Br. J. Clin. Pharmacol. 2022, 88, 4285–4296. [Google Scholar] [CrossRef]
- Chapron, B.D.; Chapron, A.; Leeder, J.S. Recent advances in the ontogeny of drug disposition. Br. J. Clin. Pharmacol. 2022, 88, 4267–4284. [Google Scholar] [CrossRef]
- Sweeney, M.D.; Sagare, A.P.; Zlokovic, B.V. Blood–brain barrier breakdown in Alzheimer disease and other neurodegenerative disorders. Nat. Rev. Neurol. 2018, 14, 133–150. [Google Scholar] [CrossRef] [PubMed]
- Montagne, A.; Zhao, Z.; Zlokovic, B.V. Alzheimer’s disease: A matter of blood–brain barrier dysfunction? J. Exp. Med. 2017, 214, 3151–3169. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Nelson, A.R.; Betsholtz, C.; Zlokovic, B.V. Establishment and dysfunction of the brain vasculature. Cell 2015, 163, 1064–1078. [Google Scholar] [CrossRef]
- Lee, R.-L.; Funk, K.E. Imaging blood-brain barrier disruption in neuroinflammation and Alzheimer’s disease. Front. Aging Neurosci. 2023, 15, 1144036. [Google Scholar] [CrossRef]
- Iadecola, C. The neurovascular unit coming of age: A journey through neurovascular coupling in health and disease. Neuron 2017, 96, 17–42. [Google Scholar] [CrossRef]
- Banks, W.A. From blood–brain barrier to blood–brain interface: New opportunities for CNS drug delivery. Nat. Rev. Drug Discov. 2016, 15, 275–292. [Google Scholar] [CrossRef]
- Nikolakopoulou, A.M.; Montagne, A.; Kisler, K.; Dai, Z.; Wang, Y.; Huuskonen, M.T.; Sagare, A.P.; Lazic, D.; Sweeney, M.D.; Kong, P.; et al. Pericyte loss leads to circulatory failure and neurodegeneration in aging. Nat. Neurosci. 2019, 22, 1089–1098. [Google Scholar] [CrossRef]
- Wang, Y.I.; Abaci, H.E.; Shuler, M.L. Microfluidic blood–brain barrier model provides in vivo-like barrier properties for drug permeability screening. Biotechnol. Bioeng. 2017, 114, 184–194. [Google Scholar] [CrossRef]
- Escartin, C.; Galea, E.; Lakatos, A.; O’Callaghan, J.P.; Petzold, G.C.; Serrano-Pozo, A.; Steinhäuser, C.; Volterra, A.; Carmignoto, G.; Agarwal, A.; et al. Reactive astrocyte nomenclature, definitions, and future directions. Nat. Neurosci. 2021, 24, 312–325. [Google Scholar] [CrossRef] [PubMed]
- Liddelow, S.A.; Barres, B.A. Reactive astrocytes: Production, function, and therapeutic potential. Immunity 2017, 46, 957–967. [Google Scholar] [CrossRef]
- Calsolaro, V.; Edison, P. Neuroinflammation in Alzheimer’s disease: Current evidence and future directions. Alzheimers Dement. 2016, 12, 719–732. [Google Scholar] [CrossRef]
- Thomsen, M.S.; Routhe, L.J.; Moos, T. The vascular basement membrane in the healthy and pathological brain. J. Cereb. Blood Flow Metab. 2017, 37, 3300–3317. [Google Scholar] [CrossRef] [PubMed]
- Salminen, A.; Kaarniranta, K.; Kauppinen, A. Inflammaging: Disturbed interplay between autophagy and inflammasomes. Aging 2012, 4, 166–175. [Google Scholar] [CrossRef] [PubMed]
- Meng, H.; Chen, W.; Chen, X.; Chen, H.; Chen, Z. Cellular senescence: A new target for neurodegenerative diseases. J. Alzheimer’s Dis. 2020, 16, 246–249. [Google Scholar]
- Abbott, N.J.; Patabendige, A.A.; Dolman, D.E.; Yusof, S.; Begley, D.J. Structure and function of the blood–brain barrier. Neurobiol. Dis. 2010, 37, 13–25. [Google Scholar] [CrossRef]
- Liebner, S.; Dijkhuizen, R.M.; Reiss, Y.; Plate, K.H.; Agalliu, D.; Constantin, G. Functional morphology of the blood-brain barrier in health and disease. Acta Neuropathol. 2018, 135, 311–336. [Google Scholar] [CrossRef]
- Tietz, S.; Engelhardt, B. Brain barriers: Crosstalk between complex tight junctions and adherens junctions. J. Cell Biol. 2015, 209, 493–506. [Google Scholar] [CrossRef]
- Hawkins, B.T.; Davis, T.P. The blood–brain barrier/neurovascular unit in health and disease. Pharmacol. Rev. 2005, 57, 173–185. [Google Scholar] [CrossRef]
- Stamatovic, S.M.; Keep, R.F.; Andjelkovic, A.V. Brain endothelial cell-cell junctions: How to “open” the blood brain barrier. Curr. Neuropharmacol. 2008, 6, 179–192. [Google Scholar] [CrossRef]
- Elahy, M.; King, E.M.; Donnachie, E.; O’Ryan, F.; Loosemore, M.P.; Allan, S.M.; Lawrence, C.B. Aged mice show reduced tight junction protein expression (occludin, ZO-1) in brain capillaries and increased BBB permeability. Immun. Ageing 2015, 12, 21. [Google Scholar]
- Farrall, A.J.; Wardlaw, J.M. Blood–brain barrier: Ageing and microvascular disease—Systematic review and meta-analysis. Neurobiol. Aging 2009, 30, 337–352. [Google Scholar] [CrossRef]
- Park, L.; Zhou, J.; Zhou, P.; Pistick, R.; El Jamal, S.; Younkin, L.; Pierce, J.; Arreguin, A.; Anrather, J.; Younkin, S.G.; et al. Innate immunity receptor CD36 promotes cerebral amyloid angiopathy. Proc. Natl. Acad. Sci. USA 2013, 110, 3089–3094. [Google Scholar] [CrossRef]
- Nation, D.A.; Sweeney, M.D.; Montagne, A.; Sagare, A.P.; D’Orazio, L.M.; Pachicano, M.; Sepehrband, F.; Nelson, A.R.; Buennagel, D.P.; Harrington, M.G.; et al. Blood–brain barrier breakdown is an early biomarker of human cognitive dysfunction. Nat. Med. 2019, 25, 270–276. [Google Scholar] [CrossRef] [PubMed]
- Yang, A.C.; Vest, R.T.; Kern, F.; Lee, D.P.; Agam, M.; Maat, C.A.; Losada, P.M.; Chen, M.B.; Schaum, N.; Khoury, N.; et al. A human brain vascular atlas reveals diverse mediators of Alzheimer’s risk. Nature 2022, 603, 885–892. [Google Scholar] [CrossRef] [PubMed]
- Dithmer, S.; Blasig, I.E.; Fraser, P.A.; Qin, Z.; Haseloff, R.F. The Basic Requirement of Tight Junction Proteins in Blood-Brain Barrier Function and Their Role in Pathologies. Int. J. Mol. Sci. 2024, 25, 5601. [Google Scholar] [CrossRef]
- Liu, J.; Jin, X.; Liu, K.J.; Liu, W. Matrix Metalloproteinase-2-Mediated Occludin Degradation and Caveolin-1-Mediated Claudin-5 Redistribution Contribute to Blood–Brain Barrier Damage in Early Ischemic Stroke Stage. J. Neurosci. 2012, 32, 3044–3055. [Google Scholar] [CrossRef] [PubMed]
- Schinkel, A.H.; Jonker, J.W. Mammalian drug efflux transporters of the ATP binding cassette (ABC) family: An overview. Adv. Drug Deliv. Rev. 2003, 55, 3–29. [Google Scholar] [CrossRef]
- Ishwarya, R.; Jayanthi, S.; Muthulakshmi, P.; Anjugam, M.; Jayakumar, R.; Khudus Nazar, A.; Vaseeharan, B. Immune indices and identical functions of two prophenoloxidases from the haemolymph of green tiger shrimp Penaeus semisulcatus and its antibiofilm activity. Fish Shellfish Immunol. 2016, 51, 220–228. [Google Scholar] [CrossRef]
- Bauer, M.; Karch, R.; Neumann, F.; Abrahim, A.; Wagner, C.C.; Kletter, K.; Müller, M.; Zeitlinger, M.; Langer, O. Age dependency of cerebral P-gp function measured with (R)-[11C]verapamil and PET. Eur. J. Clin. Pharmacol. 2009, 65, 941–946. [Google Scholar] [CrossRef]
- van Assema, D.M.E.; Lubberink, M.; Boellaard, R.; Schuit, R.C.; Windhorst, A.D.; Scheltens, P.; Lammertsma, A.A.; van Berckel, B.N. P-glycoprotein function at the blood-brain barrier: Effects of age and gender. Mol. Imaging. Biol. 2012, 14, 771–776. [Google Scholar] [CrossRef]
- Chin, K.V.; Liu, B. Regulation of the multidrug resistance (MDR1) gene expression. In Vivo 1994, 8, 835–841. [Google Scholar]
- Miller, D.S. Regulation of ABC transporters at the blood-brain barrier. Clin. Pharmacol. Ther. 2015, 97, 395–403. [Google Scholar] [CrossRef]
- Chai, A.B.; Callaghan, R.; Gelissen, I.C. Regulation of P-Glycoprotein in the Brain. Int. J. Mol. Sci. 2022, 23, 14667. [Google Scholar] [CrossRef]
- Bauer, B.; Hartz, A.M.S.; Fricker, G.; Miller, D.S. Modulation of p-glycoprotein transport function at the blood-brain barrier. Exp. Biol. Med. 2005, 230, 118–127. [Google Scholar] [CrossRef] [PubMed]
- Shchulkin, A.V.; Abalenikhina, Y.V.; Kosmachevskaya, O.V.; Topunov, A.F.; Yakusheva, E.N. Regulation of P-Glycoprotein during Oxidative Stress. Antioxidants 2024, 13, 215. [Google Scholar] [CrossRef]
- Lamy, P.P. Physiological changes due to age. Pharmacodynamic changes of drug action and implications for therapy. Drugs Aging 1991, 1, 385–404. [Google Scholar] [CrossRef] [PubMed]
- Roberts, J.; Tumer, N. Pharmacodynamic basis for altered drug action in the elderly. Clin. Geriatr. Med. 1988, 4, 127–149. [Google Scholar] [CrossRef] [PubMed]
- Bowie, M.W.; Slattum, P.W. Pharmacodynamics in older adults: A review. Am. J. Geriatr. Pharmacother. 2007, 5, 263–303. [Google Scholar] [CrossRef]
- Crooks, J. Aging and drug disposition--pharmacodynamics. J. Chronic Dis. 1983, 36, 85–90. [Google Scholar] [CrossRef]
- Swift, C.G. Pharmacodynamics: Changes in homeostatic mechanisms, receptor and target organ sensitivity in the elderly. Br. Med. Bull. 1990, 46, 36–52. [Google Scholar] [CrossRef]
- Trifirò, G.; Spina, E. Age-related changes in pharmacodynamics: Focus on drugs acting on central nervous and cardiovascular systems. Curr. Drug Metab. 2011, 12, 611–620. [Google Scholar] [CrossRef]
- Kaasinen, V.; Rinne, J.O. Functional imaging studies of dopamine system and cognition in normal aging and Parkinson’s disease. Neurosci. Biobehav. Rev. 2002, 26, 785–793. [Google Scholar] [CrossRef] [PubMed]
- Mecca, A.P.; Rogers, K.; Jacobs, Z.; McDonald, J.W.; Michalak, H.R.; DellaGioia, N.; Zhao, W.; Hillmer, A.T.; Nabulsi, N.; Lim, K.; et al. Effect of age on brain metabotropic glutamate receptor subtype 5 measured with [18F]FPEB PET. Neuroimage 2021, 238, 118217. [Google Scholar] [CrossRef] [PubMed]
- Tsujimoto, G.; Lee, C.H.; Hoffman, B.B. Age-related decrease in beta adrenergic receptor–mediated vascular smooth muscle relaxation. J. Pharmacol. Exp. Ther. 1986, 239, 411–415. [Google Scholar] [CrossRef]
- Donato, A.J.; Eskurza, I.; Silver, A.E.; Levy, A.S.; Pierce, G.L.; Gates, P.E.; Seals, D.R. Direct evidence of endothelial oxidative stress with aging in humans: Relation to impaired endothelium-dependent dilation and upregulation of nuclear factor-κB. Circ. Res. 2007, 100, 1659–1666. [Google Scholar] [CrossRef] [PubMed]
- Sternberg, E.M. Neural regulation of innate immunity: A coordinated nonspecific host response to pathogens. Nat. Rev. Immunol. 2006, 6, 318–328. [Google Scholar] [CrossRef]
- Scarpace, P.J.; Tumer, N.; Mader, S.L. Beta-adrenergic function in aging. Basic mechanisms and clinical implications. Drugs Aging 1991, 1, 116–129. [Google Scholar]
- Rinne, J.O.; Hietala, J.; Ruotsalainen, U.; Säkö, E.; Laihinen, A.; Någren, K.; Lehikoinen, P.; Oikonen, V.; Syvälahti, E. Decrease in human striatal dopamine D2 receptor density with age: A PET study with [11C]raclopride. J. Cereb. Blood Flow Metab. 1993, 13, 310–314. [Google Scholar] [CrossRef] [PubMed]
- Freyberg, Z.; McCarthy, M.J. Dopamine D2 receptors and the circadian clock reciprocally mediate antipsychotic drug-induced metabolic disturbances. NPJ Schizophr. 2017, 3, 17. [Google Scholar] [CrossRef]
- Tyllinen, M.; Kaipio, J.; Lääveri, T.; Nieminen, M. End-Users’ Voice in EHR Selection: Development of a Usability Questionnaire for Demonstrations in Procurement (DPUQ). Stud. Health Technol. Inform. 2017, 234, 346–351. [Google Scholar]
- Moses-Kolko, E.L.; Price, J.C.; Shah, N.; Berga, S.; Sereika, S.M.; Fisher, P.M.; Coleman, R.; Becker, C.; Mason, N.S.; Loucks, T.; et al. Age, sex, and reproductive hormone effects on brain serotonin-1A and serotonin-2A receptor binding in a healthy population. Neuropsychopharmacol 2011, 36, 2729–2740. [Google Scholar] [CrossRef]
- Yamamoto, M.; Suhara, T.; Okubo, Y.; Ichimiya, T.; Sudo, Y.; Inoue, M.; Takano, A.; Yasuno, F.; Yoshikawa, K.; Tanada, S. Age-related decline of serotonin transporters in living human brain of healthy males. Life Sci. 2002, 71, 751–757. [Google Scholar] [CrossRef]
- Karrer, T.M.; McLaughlin, C.L.; Guaglianone, C.P.; Samanez-Larkin, G.R. Reduced serotonin receptors and transporters in normal aging adults: A meta-analysis of PET and SPECT imaging studies. Neurobiol. Aging 2019, 80, 1–10. [Google Scholar] [CrossRef]
- Strahler, J.; Skoluda, N.; Rohleder, N.; Nater, U.M. Dysregulated stress signal sensitivity and inflammatory disinhibition as a pathophysiological mechanism of stress-related chronic fatigue. Neurosci. Biobehav. Rev. 2016, 68, 298–318. [Google Scholar] [CrossRef]
- Ichise, M.; Liow, J.S.; Lu, J.Q.; Takano, A.; Model, K.; Toyama, H.; Suhara, T.; Suzuki, K.; Innis, R.B.; Carson, R.E. Linearized reference tissue parametric imaging methods: Application to [11C]DASB positron emission tomography studies of the serotonin transporter in human brain. J. Cereb. Blood Flow Metab. 2003, 23, 1096–1112. [Google Scholar] [CrossRef] [PubMed]
- Carhart-Harris, R.L.; Nutt, D.J. Serotonin and brain function: A tale of two receptors. J. Psychopharmacol. 2017, 31, 1093–1120. [Google Scholar] [CrossRef] [PubMed]
- Selkoe, D.J. Alzheimer’s Disease: Genes, Proteins, and Therapy. Phys. Rev. 2001, 81, 741–766. [Google Scholar] [CrossRef]
- Byrnes, E.M.; Bridges, R.S.; Scanlan, V.F.; Babb, J.A.; Byrnes, J.J. Sensorimotor Gating and Dopamine Function in Postpartum Rats. Neuropsychopharmacol 2007, 32, 1021–1031. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Savitz, J.; Lucki, I.; Drevets, W.C. 5-HT1A receptor function in major depressive disorder. Prog. Neurobiol. 2009, 88, 90–101. [Google Scholar] [CrossRef]
- Ornstein, A. Survival and recovery: Psychoanalytic reflections. Harv. Rev. Psychiatry 2001, 9, 13–22. [Google Scholar] [CrossRef]
- Shimizu, K.; Watanabe, M.; Kodama, Y.; Hagino, Y.; Ogasawara, T.; Nomura, S. Effect of ATP-sensitive K+ channel blocker (quinine) on the dopamine decrease induced by selective D3 agonist (7-OH-DPAT) in the rat striatum. Nihon Shinkei Seishin Yakurigaku Zasshi 2001, 21, 145–156. [Google Scholar]
- Upadhaya, A.R.; Lungrin, I.; Yamaguchi, H.; Fändrich, M.; Thal, D.R. High-molecular weight Aβ oligomers and protofibrils are the predominant Aβ species in the native soluble protein fraction of the AD brain. J. Cell Mol. Med. 2012, 16, 287–295. [Google Scholar] [CrossRef]
- Josselin, L.; Mahr, A.; Cohen, P.; Pagnoux, C.; Guaydier-Souquières, G.; Hayem, G.; Job-Deslandre, C.; Liferman, F.; Pourrat, J.; Guillevin, L. Infliximab efficacy and safety against refractory systemic necrotising vasculitides: Long-term follow-up of 15 patients. Ann. Rheum. Dis. 2008, 67, 1343–1346. [Google Scholar] [CrossRef]
- Drachman, D.A.; Leavitt, J. Human memory and the cholinergic system: A relationship to aging? Arch. Neurol. 1974, 30, 113–121. [Google Scholar] [CrossRef]
- Risacher, S.L.; Saykin, A.J. Neuroimaging and other biomarkers for Alzheimer’s disease: The changing landscape of early detection. Annu. Rev. Clin. Psychol. 2013, 9, 621–648. [Google Scholar] [CrossRef]
- Rudolph, J.L.; Salow, M.J.; Angelini, M.C.; McGlinchey, R.E. The anticholinergic risk scale and anticholinergic adverse effects in older persons. Arch. Intern. Med. 2008, 168, 508–513. [Google Scholar] [CrossRef] [PubMed]
- Goldfarb, D.; Narasimhulu, K.V.; Carmieli, R. Dynamics and structure in the Mn2+ site of concanavalin A as determined by high-field EPR and ENDOR spectroscopy. Magn. Reson. Chem. 2005, 43, S40–S50. [Google Scholar] [CrossRef] [PubMed]
- Hilmer, S.N.; Gnjidic, D. The effects of polypharmacy in older adults. Clin. Pharmacol. Ther. 2009, 85, 86–88. [Google Scholar] [CrossRef]
- Corsonello, A.; Pedone, C.; Incalzi, R.A. Age-related pharmacokinetic and pharmacodynamic changes and related risk of adverse drug reactions. Curr. Med. Chem. 2010, 17, 571–584. [Google Scholar] [CrossRef] [PubMed]
- Kerr, M.E.; Sereika, S.M.; Orndoff, P.; Weber, B.; Rudy, E.B.; Marion, D.; Stone, K.; Turner, B. Effect of neuromuscular blockers and opiates on the cerebrovascular response to endotracheal suctioning in adults with severe head injuries. Am. J. Crit. Care. 1998, 7, 205–217. [Google Scholar] [CrossRef]
- Ikarashi, Y.; Kaniwa, M.A.; Tsuchiya, T. Examination related to revised test method for determination of formaldehyde, regulated by the law for the control of household products containing harmful substances. Kokuritsu Iyakuhin Shokuhin Eisei Kenkyusho Hokoku 2003, 121, 16–24. [Google Scholar]
- Lin, J.H.; Lu, A.Y. Role of pharmacokinetics and metabolism in drug discovery and development. Pharmacol. Rev. 1997, 9, 403–449. [Google Scholar] [CrossRef]
- Iwata, H.; Manabe, I.; Nagai, R. Lineage of bone marrow-derived cells in atherosclerosis. Circ. Res. 2013, 112, 1634–1647. [Google Scholar] [CrossRef]
- Wiggins, B.S.; Saseen, J.J.; Page, R., 2nd; Reed, B.N.; Sneed, K.; Kostis, J.B.; Lanfear, D.; Virani, S.; Morris, P.B. Recommendations for management of clinically significant drug-drug interactions with statins and select agents used in patients with cardiovascular disease: A scientific statement from the American Heart Association. Circulation 2016, 134, e468-95. [Google Scholar] [PubMed]
- Jaradat, S.A.; Ko, M.S.; Grossman, L.I. Tissue-specific expression and mapping of the Cox7ah gene in mouse. Genomics 1998, 49, 363–370. [Google Scholar] [CrossRef]
- Bensman, A. Les infections urinaires de l’enfant. Rev Prat. 2004, 54, 237–243. [Google Scholar] [PubMed]
- Ishikawa, K.; Nagura, H.; Yokota, T.; Yamanouchi, H. Signal loss in the motor cortex on magnetic resonance images in amyotrophic lateral sclerosis. Ann. Neurol. 1993, 33, 218–222. [Google Scholar] [CrossRef] [PubMed]
- Löscher, W.; Potschka, H. Role of drug efflux transporters in the brain for drug disposition and treatment of brain diseases. Prog. Neurobiol. 2005, 76, 22–76. [Google Scholar] [CrossRef]
- Koepsell, H. Organic cation transporters in health and disease. Pharmacol. Rev. 2020, 72, 253–319. [Google Scholar] [CrossRef]
- Starbeck-Miller, G.R.; Xue, H.H.; Harty, J.T. IL-12 and type I interferon prolong the division of activated CD8 T cells by maintaining high-affinity IL-2 signaling in vivo. J. Exp. Med. 2014, 211, 105–120. [Google Scholar] [CrossRef]
- Tune, L.E. Anticholinergic effects of medication in elderly patients. J. Clin. Psychiatry 2001, 62 (Suppl. S21), 11–14. [Google Scholar]
- Beakley, B.D.; Kaye, A.M.; Kaye, A.D. Tramadol, Pharmacology, Side Effects, and Serotonin Syndrome: A Review. Pain Physician 2015, 18, 395–400. [Google Scholar] [CrossRef]
- Spies, P.E.; Pot, J.L.W.; Willems, R.P.J.; Bos, J.M.; Kramers, C. Interaction between tramadol and selective serotonin reuptake inhibitors: Are doctors aware of potential risks in their prescription practice? Eur. J. Hosp. Pharm. 2020, 24, 124–127. [Google Scholar] [CrossRef]
- Tannenbaum, C.; Sheehan, N.L. Understanding and preventing drug–drug and drug–gene interactions. Expert Rev. Clin. Pharmacol. 2014, 7, 533–544. [Google Scholar] [CrossRef]
- Hajjar, E.R.; Cafiero, A.C.; Hanlon, J.T. Polypharmacy in elderly patients. Am. J. Geriatr. Pharmacother. 2007, 5, 345–351. [Google Scholar] [CrossRef] [PubMed]
- Katzung, B.G.; Trevor, A.J. Basic and Clinical Pharmacology, 15th ed.; McGraw-Hill Education: New York, NY, USA, 2021. [Google Scholar]
- Mangiola, F.; Ianiro, G.; Franceschi, F.; Fagiuoli, S.; Gasbarrini, A.; Gasbarrini, G. Gut microbiota in autism and mood disorders. World J. Gastroenterol. 2016, 22, 361–368. [Google Scholar] [CrossRef] [PubMed]
- Yu, L.; Pan, J.; Guo, M.; Duan, H.; Zhang, H.; Narbad, A.; Zhai, Q.; Tian, F.; Chen, W. Gut microbiota and anti-aging: Focusing on spermidine. Crit. Rev. Food Sci. Nutr. 2024, 64, 10419–10437. [Google Scholar] [CrossRef]
- Lynch, S.V.; Pedersen, O. The human intestinal microbiome in health and disease. N. Engl. J. Med. 2016, 375, 2369–2379. [Google Scholar] [CrossRef] [PubMed]
- Claesson, M.J.; Jeffery, I.B.; Conde, S.; Power, S.E.; O’Connor, E.M.; Cusack, S.; Harris, H.M.; Coakley, M.; Lakshminarayanan, B.; O’Sullivan, O.; et al. Gut microbiota composition correlates with diet and health in the elderly. Nature 2012, 488, 178–184. [Google Scholar] [CrossRef]
- Biagi, E.; Candela, M.; Fairweather-Tait, S.; Franceschi, C.; Brigidi, P. Ageing of the human metaorganism: The microbial counterpart. Age 2012, 34, 247–267. [Google Scholar] [CrossRef]
- Foley, S.E.; Dente, M.J.; Lei, X.; Sallis, B.F.; Loew, E.B.; Meza-Segura, M.; Fitzgerald, K.A.; McCormick, B.A. Microbial metabolites orchestrate a distinct multi-tiered regulatory network in the intestinal epithelium that directs P-glycoprotein expression. mBio 2022, 13, e01993-22. [Google Scholar] [CrossRef]
- Wilson, I.D.; Nicholson, J.K. Gut microbiome interactions with drug metabolism, efficacy, and toxicity. Transl. Res. 2017, 179, 204–222. [Google Scholar] [CrossRef]
- Spanogiannopoulos, P.; Bess, E.N.; Carmody, R.N.; Turnbaugh, P.J. The microbial pharmacists within us: A metagenomic view of xenobiotic metabolism. Nat. Rev. Microbiol. 2016, 14, 273–287. [Google Scholar] [CrossRef]
- Biagi, E.; Candela, M.; Turroni, S.; Garagnani, P.; Franceschi, C.; Brigidi, P. Aging and gut microbes: Perspectives for health maintenance and longevity. Pharmacol. Res. 2013, 69, 11–20. [Google Scholar] [CrossRef]
- Vázquez-Baeza, Y.; Hyde, E.R.; Suchodolski, J.S.; Knight, R. Dog and human inflammatory bowel disease rely on overlapping yet distict dysbiosis networks. Nat. Microbiol. 2016, 1, 16177. [Google Scholar] [CrossRef]
- Willing, B.P.; Russell, S.L. Finlay BB. Shifting the balance: Antibiotic effects on host-microbiota mutualism. Nat. Rev. Microbiol. 2011, 9, 233–243. [Google Scholar] [CrossRef]
- Fielding, J.E.; Grant, K.A.; Tran, T.; Kelly, H.A. Moderate influenza vaccine effectiveness in Victoria, Australia, 2011. Euro. Surveill. 2012, 17, 20115. [Google Scholar] [CrossRef] [PubMed]
- Markowiak, P.; Śliżewska, K. Effects of probiotics, prebiotics, and synbiotics on human health. Nutrients 2017, 9, 1021. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Yin, F.F.; Chang, Z. An efficient calculation method for pharmacokinetic parameters in brain permeability study using dynamic contrast-enhanced MRI. Magn. Reson. Med. 2016, 75, 739–749. [Google Scholar] [CrossRef] [PubMed]
- Seldin, M.F. The genetics of human autoimmune disease: A perspective on progress in the field and future directions. J. Autoimmun. 2015, 64, 1–12. [Google Scholar] [CrossRef]
- Xia, D.Z.; Zhang, P.H.; Fu, Y.; Yu, W.F.; Ju, M.T. Hepatoprotective activity of puerarin against carbon tetrachloride-induced injuries in rats: A randomized controlled trial. Food Chem. Toxicol. 2013, 59, 90–95. [Google Scholar] [CrossRef]
- Peng, L.; Zhong, X. Epigenetic regulation of drug metabolism and transport. Acta Pharm. Sin. B 2015, 5, 106–112. [Google Scholar] [CrossRef]
- Dixon, L. Planned home birth: The professional responsibility response--a midwifery response. Am. J. Obstet. Gynecol. 2013, 209, 280–281. [Google Scholar] [CrossRef]
- Czamara, D.; Eraslan, G.; Page, C.M.; Lahti, J.; Lahti-Pulkkinen, M.; Hämäläinen, E.; Kajantie, E.; Laivuori, H.; Villa, P.M.; Reynolds, R.M.; et al. Integrated analysis of environmental and genetic influences on cord blood DNA methylation in new-borns. Nat. Commun. 2019, 10, 2548. [Google Scholar] [CrossRef]
- Michieletto, D.; Turner, M.S. A topologically driven glass in ring polymers. Proc. Natl. Acad. Sci. USA 2016, 113, 5195–5200. [Google Scholar] [CrossRef] [PubMed]
- Labenz, C.; Schattenberg, J.M. Animal-Naming-Test—Tiere als diagnostischer Ausweg? Z. Gastroenterol. 2018, 56, 168–169. [Google Scholar] [CrossRef] [PubMed]
- Hannum, G.; Guinney, J.; Zhao, L.; Zhang, L.; Hughes, G.; Sadda, S.; Klotzle, B.; Bibikova, M.; Fan, J.B.; Gao, Y.; et al. Genome-wide methylation profiles reveal quantitative views of human aging rates. Mol. Cell. 2013, 49, 359–367. [Google Scholar] [CrossRef]
- Hu, Y.H.; Chen, Y.L. Mining association rules with multiple minimum supports: A new mining algorithm and a support tuning mechanism. Decis. Support. Syst. 2006, 42, 1–24. [Google Scholar] [CrossRef]
- Ge, Y.; Fan, F.; Didion, S.P.; Roman, R.J. Impaired myogenic response of the afferent arteriole contributes to the increased susceptibility to renal disease in Milan normotensive rats. Physiol. Rep. 2017, 5, e13089. [Google Scholar] [CrossRef] [PubMed]
- Walker, R.A.; Wright, K.M.; Jhou, T.C.; McDannald, M.A. The ventrolateral periaqueductal grey updates fear via positive prediction error. Eur. J. Neurosci. 2020, 51, 866–880. [Google Scholar] [CrossRef]
- Watanabe, E.; Miyamoto, C.; Tanaka, A.; Iizuka, K.; Iwatsuki, S.; Inamo, M.; Takagi, H.D.; Ishihara, K. Relative kinetic reactivity of boronic acid and boronate ion towards Tiron, 2,2’-biphenol, and propylene glycol. Dalton Trans. 2013, 42, 8446–8453. [Google Scholar] [CrossRef]
- Delgado-Baquerizo, M.; Oliverio, A.M.; Brewer, T.E.; Benavent-González, A.; Eldridge, D.J.; Bardgett, R.D.; Maestre, F.T.; Singh, B.K.; Fierer, N. A global atlas of the dominant bacteria found in soil. Science 2018, 359, 320–325. [Google Scholar] [CrossRef]
- Levine, M.E.; Lu, A.T.; Quach, A.; Chen, B.H.; Assimes, T.L.; Bandinelli, S.; Hou, L.; Baccarelli, A.A.; Stewart, J.D.; Li, Y.; et al. An epigenetic biomarker of aging for lifespan and healthspan. Aging 2018, 10, 573–591. [Google Scholar] [CrossRef] [PubMed]
- Belsky, D.W.; Moffitt, T.; Cohen, A.A.; Corcoran, D.L.; Levine, M.E.; Prinz, J.A.; Schaefer, J.; Sugden, K.; Williams, B.; Poulton, R.; et al. Eleven telomere, epigenetic clock, and biomarker-composite quantifications of biological aging: Do they measure the same thing? Am. J. Epidemiol. 2018, 187, 1220–1230. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.R.; Luzum, J.A.; Sangkuhl, K.; Gammal, R.S.; Sabatine, M.S.; Stein, C.M.; Kisor, D.F.; Limdi, N.A.; Lee, Y.M.; Scott, S.A.; et al. Clinical Pharmacogenetics Implementation Consortium Guideline for CYP2C19 Genotype and Clopidogrel Therapy: 2022 Update. Clin. Pharmacol. Ther. 2022, 112, 959–967. [Google Scholar] [CrossRef]
- Crews, K.R.; Monte, A.A.; Huddart, R.; Caudle, K.E.; Kharasch, E.D.; Gaedigk, A.; Dunnenberger, H.M.; Leeder, J.S.; Callaghan, J.T.; Samer, C.F.; et al. Clinical Pharmacogenetics Implementation Consortium Guideline for CYP2D6, OPRM1, and COMT Genotypes and Select Opioid Therapy. Clin. Pharmacol. Ther. 2021, 110, 888–896. [Google Scholar] [CrossRef]
- Johnson, J.A.; Caudle, K.E.; Gong, L.; Whirl-Carrillo, M.; Stein, C.M.; Scott, S.A.; Lee, M.T.M.; Gage, B.F.; Kimmel, S.E.; Perera, M.A.; et al. Clinical Pharmacogenetics Implementation Consortium (CPIC) Guideline for Pharmacogenetics-Guided Warfarin Dosing: 2017 Update. Clin. Pharmacol. Ther. 2017, 102, 397–404. [Google Scholar] [CrossRef] [PubMed]
- Van Driest, S.L.; Shi, Y.; Bowton, E.A.; Schildcrout, J.S.; Peterson, J.; Pulley, J.; Denny, J.C.; Roden, D.M. Clinically actionable genotypes among 10,000 patients with preemptive pharmacogenomic testing. Clin. Pharmacol. Ther. 2014, 95, 423–431. [Google Scholar] [CrossRef]
- Samwald, M.; Xu, H.; Blagec, K.; Empey, P.E.; Malone, D.C.; Ahmed, S.M.; Hofer, S.; Boyce, R.D. Incidence of exposure of patients in the United States to multiple drugs for which pharmacogenomic guidelines are available. PLoS ONE 2016, 11, e0164972. [Google Scholar] [CrossRef]
- Gibson, P.; Tong, Y.; Robinson, G.; Thompson, M.C.; Currle, D.S.; Eden, C.; Kranenburg, T.A.; Hogg, T.; Poppleton, H.; Martin, J.; et al. Subtypes of medulloblastoma have distinct developmental origins. Nature 2010, 468, 1095–1099. [Google Scholar] [CrossRef] [PubMed]
- Hicks, J.K.; Swen, J.J.; Thorn, C.F.; Müller, D.J.; Ji, Y.; Leckband, S.G.; Leeder, J.S.; Graham, R.L.; Chiulli, D.L.; LLerena, A.; et al. Clinical Pharmacogenetics Implementation Consortium guideline (CPIC) for CYP2D6 and CYP2C19 genotypes and dosing of selective serotonin reuptake inhibitors. Clin. Pharmacol. Ther. 2015, 98, 127–134. [Google Scholar] [CrossRef]
- Scott, S.A.; Sangkuhl, K.; Stein, C.M.; Hulot, J.S.; Mega, J.L.; Roden, D.M.; Klein, T.E.; Sabatine, M.S.; Johnson, J.A.; Shuldiner, A.R. Clinical Pharmacogenetics Implementation Consortium Guidelines for CYP2C19 Genotype and Clopidogrel Therapy: 2013 Update. Clin. Pharmacol. Ther. 2013, 94, 317–323. [Google Scholar] [CrossRef]
- Crews, K.R.; Gaedigk, A.; Dunnenberger, H.M.; Leeder, J.S.; Klein, T.E.; Caudle, K.E.; Haidar, C.E.; Shen, D.D.; Callaghan, J.T.; Sadhasivam, S.; et al. Clinical Pharmacogenetics Implementation Consortium Guidelines for CYP2D6 Genotype and Codeine Therapy: 2014 Update. Clin. Pharmacol. Ther. 2014, 95, 376–382. [Google Scholar] [CrossRef]
- Johnson, J.A.; Gong, L.; Whirl-Carrillo, M.; Gage, B.F.; Scott, S.A.; Stein, C.M.; Anderson, J.L.; Kimmel, S.E.; Lee, M.T.; Pirmohamed, M.; et al. Clinical Pharmacogenetics Implementation Consortium Guidelines for CYP2C9 and VKORC1 Genotypes and Warfarin Dosing. Clin. Pharmacol. Ther. 2011, 90, 625–629. [Google Scholar] [CrossRef]
- Luzum, J.A.; Pakyz, R.E.; Elsey, A.R.; Haidar, C.E.; Peterson, J.F.; Whirl-Carrillo, M.; Handelman, S.K.; Palmer, K.; Pulley, J.M.; Beller, M.; et al. The Pharmacogenomics Research Network Translational Pharmacogenetics Program: Outcomes and metrics of pharmacogenetic implementations across diverse healthcare systems. Clin. Pharmacol. Ther. 2017, 102, 502–510. [Google Scholar] [CrossRef] [PubMed]
- Inuzuka, H.; Liu, J.; Wei, W.; Rezaeian, A.H. PROTACs technology for treatment of Alzheimer’s disease: Advances and perspectives. Acta Mater. Med. 2022, 1, 24–41. [Google Scholar] [CrossRef] [PubMed]
- Tremblay, G.; Tomaras, D.; Strati, E.; Forsythe, A. Comparative Effectiveness of Remestemcel-L-rknd versus Ruxolitinib in Pediatric Patients with Steroid-Refractory Acute Graft-Versus-Host Disease using Simulated Treatment Comparisons. J. Health Econ. Outcomes Res. 2021, 8, 10–17. [Google Scholar] [CrossRef] [PubMed]
- Relling, M.V.; Evans, W.E. Pharmacogenomics in the clinic. Nature 2015, 526, 343–350. [Google Scholar] [CrossRef]
- Horvath, S. DNA methylation age of human tissues and cell types. Genome Biol. 2013, 14, R115. [Google Scholar] [CrossRef]
- Zierer, J.; Menni, C.; Kastenmüller, G.; Spector, T.D. Integration of ‘omics’ data in aging research: From biomarkers to systems biology. Aging Cell 2015, 14, 933–944. [Google Scholar] [CrossRef]
- Dehghani, H.; Sun, Y.; Cubrich, L.; Oleynikov, D.; Farritor, S.; Terry, B. An Optimization-Based Algorithm for Trajectory Planning of an Under-Actuated Robotic Arm to Perform Autonomous Suturing. IEEE Trans. Biomed. Eng. 2021, 68, 1262–1272. [Google Scholar] [CrossRef] [PubMed]
- Chojnacki, M.; Banks, M.E.; Fenton, L.K.; Urso, A.C. Boundary condition controls on the high-sand-flux regions of Mars. Geology 2019, 47, 427–430. [Google Scholar] [CrossRef] [PubMed]
- Horvath, S.; Raj, K. DNA methylation-based biomarkers and the epigenetic clock theory of ageing. Nat. Rev. Genet. 2018, 19, 371–384. [Google Scholar] [CrossRef]
- Justice, J.N.; Nambiar, A.M.; Tchkonia, T.; LeBrasseur, N.K.; Pascual, R.; Hashmi, S.K.; Prata, L.; Masternak, M.M.; Kritchevsky, S.B.; Musi, N.; et al. Senolytics in idiopathic pulmonary fibrosis: Results from a first-in-human, open-label, pilot study. EBioMedicine 2019, 40, 554–563. [Google Scholar] [CrossRef] [PubMed]
Isoform | Age-Related Changes | Example Substrates | Clinical Information |
---|---|---|---|
CYP1A2 | ↓ Activity | Theophylline, caffeine, clozapine, imipramine | Increased theophylline concentration and risk of toxicity; intensified adverse effects of clozapine |
CYP3A4 | ↓ Activity (by approx. 30–40%), ↓ First-pass effect | Statins (atorvastatin, simvastatin), calcium channel blockers (amlodipine, verapamil), benzodiazepines (alprazolam), macrolides, amiodarone | Increased drug concentration; risk of myopathy (statins), hypotension (calcium channel blockers), excessive sedation (benzodiazepines) |
CYP2D6 | ↓ Activity (by approx. 20%) | Antidepressants (SSRIs, TCAs), antipsychotics (risperidone), β-blockers (metoprolol), opioids (codeine, tramadol) | Increased risk of adverse effects (e.g., serotonin syndrome, extrapyramidal symptoms); weakened analgesia (codeine, tramadol—prodrugs) |
CYP2C19 | ↓ Activity | Proton pump inhibitors (omeprazole), clopidogrel, diazepam, antidepressants (citalopram) | Increased risk of ADRs; weakened effect of clopidogrel (prodrug), increased risk of cardiovascular events |
CYP2C9 | ↓ Activity | NSAIDs (ibuprofen, diclofenac), warfarin, sulfonylurea derivatives | Increased risk of bleeding (warfarin, NSAIDs), hypoglycemia (sulfonylurea derivatives), toxicity (phenytoin) |
Transporter | Location | Age-Related Change | Example Substrates/Clinical Implications |
---|---|---|---|
OATP1B1 (SLCO1B1) | Liver (basolateral membrane) | ↓ Expression/Function | Substrates: Statins (atorvastatin, pravastatin), methotrexate ↓ Hepatic uptake of drugs, ↑ plasma concentration, ↑ risk of myopathy (statins) |
P-gp (ABCB1) | Intestine, liver, kidney, BBB | ↓ Expression/Function | Substrates: Digoxin, dabigatran, anticancer drugs, loperamide; Inhibitors: Verapamil, amiodarone ↓ Drug elimination, ↑ CNS exposure, ↑ bioavailability of some drugs |
BCRP (ABCG2) | Intestine, liver, kidney, BBB | ↓ Expression/Function | Substrates: Statins (rosuvastatin), sulfasalazine, methotrexate, ↑ Statin concentration, ↑ risk of myopathy, altered pharmacokinetics |
OAT1/OAT3 (SLC22A6/8) | Kidney | ↓ Expression/Function | Substrates: NSAIDs, loop diuretics, penicillins, methotrexate ↓ Tubular secretion and renal clearance of anionic drugs, ↑ risk of toxicity |
OCT2 (SLC22A2) | Kidney | ↓ Expression/Function | Substrates: Metformin, cisplatin, procainamide ↓ Tubular secretion and renal clearance of cationic drugs, ↑ risk of lactic acidosis (metformin) |
Receptor System | Molecular Target | Brain Region | Quantitative Change (Decline per Decade) |
---|---|---|---|
Serotonergic | 5-HT2A Receptor | Cerebral cortex (globally) | 7.0% |
5-HT Transporter (SERT) | Thalamus | 3.0% | |
5-HT1A Receptor | Parietal cortex | 1.5% | |
Dopaminergic | D2-like Receptor | Striatum | approx. 2–8% (depending on study) |
Adrenergic | β-adrenergic Receptor | Brain (cortex, hippocampus) | Increased density |
Drug 1/Victim | Drug 2/Perpetrator | Molecular Mechanism | Potential Clinical Consequence in Geriatrics |
---|---|---|---|
Any drug with anticholinergic effects | Other drugs with anticholinergic effects (e.g., TCAs, drugs for overactive bladder, hydroxyzine) | Additive pharmacodynamic effect on muscarinic receptors | Intensified symptoms of confusion, delirium, dry mouth, constipation, urinary retention (additive anticholinergic burden) |
Antidepressants (SSRIs) | Tramadol | Pharmacodynamic synergism (serotonergic effect) | Increased risk of serotonin syndrome, especially in patients with CYP2D6 polymorphism |
Statins (simvastatin, atorvastatin) | Amiodarone, Verapamil | Inhibition of CYP3A4 | Significant increase in statin concentration, increased risk of myopathy and rhabdomyolysis |
Warfarin | Amiodarone, NSAIDs | Inhibition of CYP2C9 (amiodarone); displacement from albumin binding (NSAIDs) | Increase in concentration and free fraction of warfarin, sharp increase in INR, high risk of bleeding |
Digoxin | Verapamil, Amiodarone | Inhibition of P-glycoprotein (P-gp) in the kidneys and intestines | Reduced renal clearance and increased absorption of digoxin, risk of toxicity (bradycardia, heart blocks) |
Dabigatran | Verapamil, Dronedarone | Inhibition of P-glycoprotein (P-gp) | Significant increase in dabigatran concentration, high risk of serious bleeding |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rzeczycki, P.; Pęciak, O.; Plust, M.; Droździk, M. Molecular Aspects of Geriatric Pharmacotherapy. Cells 2025, 14, 1363. https://doi.org/10.3390/cells14171363
Rzeczycki P, Pęciak O, Plust M, Droździk M. Molecular Aspects of Geriatric Pharmacotherapy. Cells. 2025; 14(17):1363. https://doi.org/10.3390/cells14171363
Chicago/Turabian StyleRzeczycki, Patryk, Oliwia Pęciak, Martyna Plust, and Marek Droździk. 2025. "Molecular Aspects of Geriatric Pharmacotherapy" Cells 14, no. 17: 1363. https://doi.org/10.3390/cells14171363
APA StyleRzeczycki, P., Pęciak, O., Plust, M., & Droździk, M. (2025). Molecular Aspects of Geriatric Pharmacotherapy. Cells, 14(17), 1363. https://doi.org/10.3390/cells14171363