Correlation of Resistance Levels of Thrips flavus and Morphological Structures of Spring Soybean Varieties in Northeast China
Abstract
1. Introduction
2. Materials and Methods
2.1. Test Soybean Varieties
2.2. Design and Survey of the Experimental Plots
2.3. Leaf Indicators Measurement
2.4. Principal Component Analysis (PCA) of Morphological Structure in 41 Spring Soybean Varieties
2.5. Resistance Evaluation Methods
2.6. Statistical Analysis of Data
3. Results
3.1. Population Dynamics of T. flavus in 41 Spring Soybean Varieties
3.2. Correlation Analysis of Morphological Structure and T. flavus Population Dynamics in 41 Spring Soybean Varieties
3.3. PCA and Comprehensive Evaluation of Morphological Structure and T. flavus Population in 41 Spring Soybean Varieties
3.3.1. PCA of Leaf Length, Width, Thickness, Length-to-Width Ratio, Leaf Area, Trichome Length, and Trichome Density
3.3.2. PCA of Leaf SPAD Value, Nitrogen Content, Leaf Surface Humidity, and Leaf Surface Temperature
3.3.3. Comprehensive Evaluation of 32 Leaf Indicators for 41 Spring Soybean Varieties During Peak Flowering Stage
3.3.4. Comprehensive Evaluation of 16 Leaf Indicators for 41 Spring Soybean Varieties During Peak Flowering Stage
3.3.5. PCA of Morphological Structure Indicators for 41 Spring Soybean Varieties During the Podding Stage
3.4. Field Resistance Screening of 41 Spring Soybean Varieties Against T. flavus
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
HR | High resistance |
MR | Medium resistance |
LR | Low resistance |
LS | Low sensitivity |
MS | Medium sensitivity |
HS | High sensitivity |
PCA | Principal component analysis |
References
- dos Santos, J.L.; Sarmento, R.A.; Silvestre, P.P.; Noleto, L.R.; Reis, K.H.B.; Pires, W.S.; Peluzio, J.M.; Medeiros, J.G.; Santos, A.A.; Picanco, M.C. Assessing the temporal dynamics of Frankliniella schultzei (Thysanoptera: Thripidae) in commercial soybean crops in North Brazil. Agric. For. Entomol. 2022, 24, 97–103. [Google Scholar] [CrossRef]
- Warpechowski, L.F.; Steinhaus, E.A.; Moreira, R.P.; Godoy, D.N.; Preto, V.E.; Braga, L.E.; Wendt, A.d.F.; Reis, A.C.; Lima, E.F.B.; Farias, J.R.; et al. Why does identification matter? Thrips species (Thysanoptera: Thripidae) found in soybean in southern Brazil show great geographical and interspecific variation in susceptibility to insecticides. Crop Prot. 2024, 178, 106592. [Google Scholar] [CrossRef]
- Gao, Y.; Ding, N.; Wang, D.; Zhao, Y.J.; Cui, J.; Li, W.B.; Pei, T.H.; Shi, S.S. Effect of temperature on the development and reproduction of Thrips flavus (Thysanoptera: Thripidae). Agric. Forest Entomol. 2022, 24, 279–288. [Google Scholar] [CrossRef]
- Twardowski, J.; Gruss, I.; Cierpisz, M.; Twardowska, K.; Magiera-Dulewicz, J.; Kozak, M. Diversity of thrips species associated with soybean grown in different plant arrangements at various phenological stages. Agriculture 2024, 14, 1501. [Google Scholar] [CrossRef]
- Lagos-Kutz, D.M.; Pawlowski, M.L.; Han, J.; Clough, S.J.; Hartman, G.L. Reduction in productivity of soybean plants infested with Neohyadatothrips variabilis (Thysanoptera: Thripidae) with and without soybean vein necrosis virus. Phytoparasitica 2023, 51, 437–445. [Google Scholar] [CrossRef]
- Hameed, A.; Rosa, C.; Rajotte, E.G. The effect of species soybean vein necrosis orthotospovirus (SVNV) on life table parameters of its vector, soybean thrips (Neohydatothrips variabilis Thysanoptera: Thripidae). Insects 2022, 13, 632. [Google Scholar] [CrossRef]
- Gholami, Z.; Sadeghi, A. Management strategies for western flower thrips in vegetable greenhouses in Iran: A review. Plant Prot. Sci. 2016, 52, 87–98. [Google Scholar] [CrossRef]
- Zhang, K.; Yuan, J.; Wang, J.; Hua, D.; Zheng, X.; Tao, M.; Zhang, Z.; Wan, Y.; Wang, S.; Zhang, Y.; et al. Susceptibility levels of field populations of Frankliniella occidentalis (Thysanoptera: Thripidae) to seven insecticides in China. Crop Protect. 2022, 153, 105886. [Google Scholar] [CrossRef]
- Pei, T.; Wang, L.; Zhao, Y.; Shi, S.; Gao, Y. Toxicity and efficacy of thirty insecticides against Thrips flavus in Northeast China: Laboratory, semifield, and field trials. Insects 2025, 16, 405. [Google Scholar] [CrossRef]
- Pei, T.H.; Zhao, Y.J.; Wang, S.Y.; Li, X.F.; Sun, C.Q.; Shi, S.S.; Xu, M.L.; Gao, Y. Preliminary study on insecticidal potential and chemical composition of five Rutaceae essential oils against Thrips flavus (Thysanoptera: Thripidae). Molecules 2023, 28, 2998. [Google Scholar] [CrossRef]
- Pei, T.H.; Zhao, Y.J.; Huang, X.D.; Zhao, Y.Y.; Pan, L.D.; Wang, L.W.; Gao, H.X.; Xu, M.L.; Gao, Y. Chemical composition of five Lamiaceae essential oils and their insecticidal and phytotoxic activity. Plants 2024, 13, 2204. [Google Scholar] [CrossRef]
- Sun, Y.; Hu, C.; Chen, G.; Li, X.; Liu, J.; Xu, Z.; Zhou, Y.; Wu, D.; Zhang, X. Insecticide-mediated changes in the population and toxicity of the thrips species, Frankliniella occidentalis (Pergande) and Thrips flavus (Schrank) (Thysanoptera: Thripidae). J. Econ. Entomol. 2024, 117, 293–301. [Google Scholar] [CrossRef]
- Suhartina; Sari, K.P.; Purwantoro; Sulistyo, A.; Trustinah; Soehendi, R.; Suyamto; Sholihin; Mejaya, M.J. Correlation of pests resistance levels and seed chemical concentrations of soybean genotypes. Legume Res. 2022, 45, 1185–1189. [Google Scholar] [CrossRef]
- Tu, X.B.; Fan, Y.L.; Ji, M.S.; Liu, Z.K.; Xie, N.; Liu, Z.Y.; Zhang, Z.H. Improving a method for evaluating alfalfa cultivar resistance to thrips. J. Integr. Agric. 2016, 15, 600–607. [Google Scholar] [CrossRef]
- Zhou, J.; Johnson, D.T.; Tzanetakis, I.E. Assessing soybean genotypes for feeding damage by Neohydatothrips variabilis (Thysanoptera: Thripidae). Crop Prot. 2020, 128, 104983. [Google Scholar] [CrossRef]
- He, Y.; Gao, Y.; Chen, Q.; Shi, Z.; Hong, H.; Geng, J.; Zhou, Y.; Zhu, Z. Field identification of cowpea variety resistance against Megalurothrips usitatus and the metabolomics-based resistance mechanism. J. Integr. Agr. 2025; in press. [Google Scholar] [CrossRef]
- Lagos-Kutz, D.; Pawlowski, M.L.; Haudenshield, J.; Han, J.; Domier, L.L.; Hartman, G.L. Evaluation of soybean for resistance to Neohyadatothrips variabilis (Thysanoptera: Thripidae) noninfected and infected with soybean vein necrosis virus. J. Econ. Entomol. 2020, 113, 949–955. [Google Scholar] [CrossRef] [PubMed]
- Gu, Z.; Zhang, T.; Long, S.; Li, S.; Wang, C.; Chen, Q.; Chen, J.; Feng, Z.; Cao, Y. Responses of Thrips hawaiiensis and Thrips flavus populations to elevated CO2 concentrations. J. Econ. Entomol. 2023, 116, 416–425. [Google Scholar] [CrossRef] [PubMed]
- Nickle, D.A. Commonly intercepted thrips at US ports-of-entry from Africa, Europe, and the Mediterranean.: III.: The genus Thrips Linnaeus, 1758 (Thysanoptera: Thripidae). Proc. Entomol. Soc. Wash. 2008, 110, 165–185. [Google Scholar] [CrossRef]
- Zvaríková, M.; Masarovic, R.; Prokop, P.; Fedor, P. An updated checklist of thrips from Slovakia with emphasis on economic species. Plant Prot. Sci. 2020, 56, 292–304. [Google Scholar] [CrossRef]
- Tillekaratne, K.; Edirisinghe, J.P.; Gunatilleke, C.V.S.; Karunaratne, W.A.I.P. Survey of thrips in Sri Lanka: A checklist of thrips species, their distribution and host plants. Ceylon J. Sci. Biol. Sci. 2011, 40, 89–108. [Google Scholar] [CrossRef]
- Boonham, N.; Smith, P.; Walsh, K.; Tame, J.; Morris, J.; Spence, N.; Bennison, J.; Barker, I. The detection of tomato spotted wilt virus (TSWV) in individual thrips using real time fluorescent RT-PCR (TaqMan). J. Virol. Methods 2002, 101, 37–48. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Zhao, Y.J.; Wang, D.; Yang, J.; Ding, N.; Shi, S.S. Effect of different plants on the growth and reproduction of Thrips flavus (Thysanoptera: Thripidae). Insects 2021, 12, 502. [Google Scholar] [CrossRef]
- Yuan, Q.; Zhang, W. Research on resistance of alfalfa germplasm materials to thrips. Plant Prot. 2006, 85–87. [Google Scholar] [CrossRef]
- Qiu, L.J.; Chang, R.Z. Descriptors and Data Standard for Soybean (Glycine spp.); China Agriculture Press: Beijing, China, 2006. [Google Scholar]
- Gao, Y.; Hou, X.J.; Wang, D.; Li, X.C.; Xu, Z.; Shi, S.S. Identification of thrips and the population dynamics of Thrips flavus in Changchun soybean fields. Chin. J. Oil Crop Sci. 2019, 41, 261–266. [Google Scholar] [CrossRef]
- Zhang, Z.; Chen, Q.; Tan, Y.; Shuang, S.; Dai, R.; Jiang, X.; Temuer, B. Combined transcriptome and metabolome analysis of alfalfa response to thrips infection. Genes 2021, 12, 1967. [Google Scholar] [CrossRef] [PubMed]
- War, A.R.; Paulraj, M.G.; Ahmad, T.; Buhroo, A.A.; Hussain, B.; Ignacimuthu, S.; Sharma, H.C. Mechanisms of plant defense against insect herbivores. Plant Signal. Behavior. 2012, 7, 1306–1320. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Shen, C.; Meng, P.; Tan, G.; Lv, L. Analysis and review of trichomes in plants. BMC Plant Biol. 2021, 21, 70. [Google Scholar] [CrossRef]
- Poos, F.W.; Smith, F.F. A comparison of oviposition and nymphal development of Empoasca fabae Harris on different host plant. J. Econ. Entomol. 1931, 84, 361–371. [Google Scholar] [CrossRef]
- Gunasinghe, U.B.; Irwin, M.E.; Kampmeier, G.E. Soybean leaf pubescence affects aphid vector transmission and field spread soybean mosaic virus. Ann. Appl. Biol. 1988, 112, 259–272. [Google Scholar] [CrossRef]
- Lambert, A.L.; McPherson, R.M.; Espelie, K.E. Soybean host plant resistance mechanisms that alter abundance of whiteflies (Homoptera: Aleyrodidae). Environ. Entomol. 1995, 26, 1381–1386. [Google Scholar] [CrossRef]
- Gannon, A.J.; Bach, C.E. Effects of soybean trichome density of Mexican bean beetle (Coleoptera: Coccinellidae) development and feeding preference. Environ. Entomol. 1996, 25, 1077–1082. [Google Scholar] [CrossRef]
- Thakur, J.; Bhullar, M.B.; Jindal, S.K. Morphological basis of resistance to yellow mite, Polyphagotarsonemus latus and thrips, Scirtothrips dorsalis in chilli genotypes. Phytoparasitica 2024, 52, 46. [Google Scholar] [CrossRef]
- Rahman, S.M.; Vijayalakshmi, K.; Rani, C.V.D. Screening and physico-chemical bases of resistance in groundnut germplasm lines against thrips. Biol. Forum–Int. J. 2022, 14, 1241–1247. [Google Scholar]
- Usman, A.; Khan, A.; Shah, R.A.; Iqbal, T. Appraisal of different tomato genotypes against Scirtothrips dorsalis (Thysanoptera: Thripidae) infestation with reference to morphological plant characters. Sarhad J. Agric. 2020, 36, 375–382. [Google Scholar] [CrossRef]
- Zhao, G.; Wang, J.; Han, Y.P.; Teng, W.L.; Sun, G.L.; Li, W.B. Identification of QTL underlying the resistance of soybean to pod borer, Leguminivora glycinivorella (Mats.) Obraztsov, and correlations with plant, pod and seed traits. Euphytica 2008, 164, 275–282. [Google Scholar] [CrossRef]
- Ebrahimi, L. ‘Genotype by yield*trait’ (GYT) biplot approach to evaluate resistance of soybean cultivars to Helicoverpa armigera Hübner under natural infestation conditions. Phytoparasitica 2023, 51, 909–918. [Google Scholar] [CrossRef]
- Xu, R.; Zhang, L.F.; Wang, C.J.; Wang, J.L. Screening of soybean germplasm for Bemisia tabaci resistance and preliminary investigation of resistance mechanisms. J. Plant Genet. Resour. 2005, 6, 56–58. [Google Scholar] [CrossRef]
- Dibbad, S.H.; Hanumatharaya, L.; Hanumanthappa, M.; Suchithra Kumari, M.H. Screening of tomato cultivars against major insect pests. J. Appl. Entomol. 2022, 2, 5–10. [Google Scholar]
- Lee, Y.; Kogan, M.; Larsen, J., Jr. Attachment of the potato leafhopper to soybean plant surfaces as affected by morphology of the pretarsus. Entomol. Exp. Appl. 1986, 42, 101–107. [Google Scholar] [CrossRef]
- Lahiri, S.; Reisig, D.D.; Reay-Jones, F.P.F.; Greene, J.K.; Carter, T.E., Jr.; Mian, R.; Fallen, B.D. Soybean host plant resistance to Megacopta cribraria (Hemiptera: Plataspidae) and the potential role of leaf trichome density. Environ. Entomol. 2020, 49, 88–97. [Google Scholar] [CrossRef]
- Zhang, Z.; Chen, Q.; Sa, R.; Dai, R.; Shuang, S.; Jiang, X.; Liu, H.; Tan, Y.; Tang, F.; Temuer, B. Morphological and biochemical factors associated with constitutive defense to thrips in alfalfa. Agronomy 2022, 12, 1175. [Google Scholar] [CrossRef]
- Megharaj, K.; Ajjappalavara, P.S.; Revanappa, D.S.; Tatagar, M.H. Estimation of genetic variation, path analysis and thrips reaction studies for yield and yield attributing traits in chilli (Capsicum annuum L.). Plant Arch. 2017, 17, 353–361. [Google Scholar]
- Yadav, R.K.; Jayanthi, P.D.K.; Kumar, M.; Kumar, P.S.; Rao, V.K.; Reddy, K.M. Screening chilli genotypes for whitefly (Bemisia tabaci Genn.) resistance: A vector for chilli leaf curl virus. Int. J. Chem. Stud. 2020, 8, 971–979. [Google Scholar] [CrossRef]
- Rizwan, M.; Saifullah, A.B.R.O.; Muhammad, U.A.S.I.F.; Amjad, H.; Wajid, M.; Zaheer, A.D.E.H.O.; Mahboob Ali, S.I.A.L. Evaluation of cotton germplasm for morphological and biochemical host plant resistance traits against sucking insect pests complex. J. Cotton Res. 2021, 4, 18. [Google Scholar] [CrossRef]
- Pieterse, Z.; Buitenhuis, R.; Liu, J.; Fefer, M.; Teshler, I. Efficacy of oil and photosensitizer against Frankliniella occidentalis in greenhouse sweet pepper. Antibiotics 2023, 12, 495. [Google Scholar] [CrossRef]
- Netto, A.T.; Campostrini, E.; de Oliveira, J.G.; Bressan-Smith, R.E. Photosynthetic pigments, nitrogen, chlorophyll a fluorescence and SPAD-502 readings in coffee leaves. Sci. Hortic. 2005, 104, 199–209. [Google Scholar] [CrossRef]
- Ramanathan, S.S.; Gannon, T.W.; Everman, W.J.; Locke, A.M. Atrazine sensitivity varies among soybean cultivars. Agrosystems Geosci. Environ. 2025, 8, e70032. [Google Scholar] [CrossRef]
- Clément, A.; Verfaille, T.; Lormel, C.; Jaloux, B. A new colour vision system to quantify automatically foliar discolouration caused by insect pests feeding on leaf cells. Biosyst. Eng. 2015, 133, 128–140. [Google Scholar] [CrossRef]
- Debnath, R.; Das, S.; Kumbhakar, S.; Bhattacharyya, B.; Dutta, S.; Barik, A. Resistance of Trichosanthes anguina (L.) cultivars due to herbivory by caterpillars of Diaphania indica (Saunders) (Lepidoptera: Crambidae). Phytoparasitica 2025, 53, 48. [Google Scholar] [CrossRef]
- Ábrahám, R. Thrips species associated with soybean in Hungary. Acta Phytopathol. Entomol. Hung. 2008, 43, 211–218. [Google Scholar] [CrossRef]
- Pobozniak, M. The occurrence of thrips (Thysanoptera) on food legumes (Fabaceae). J. Plant Dis. Prot. 2011, 118, 185–193. [Google Scholar] [CrossRef]
Resistance Levels | Soybean Variety | Thrips Amount Ratio | Soybean Variety | Thrips Amount Ratio |
---|---|---|---|---|
High Resistance (HR) | No pod trichome | 0.2 | ||
Medium Resistance (MR) | Bei Dou 3 | 0.48 | Long Huang 1 | 0.57 |
Bei Dou 35 | 0.54 | Ken Dou 31 | 0.59 | |
Low Resistance (LR) | He Feng 49 | 0.63 | Ji Yu 47 | 0.84 |
Sui Nong 28 | 0.63 | Yuan Yu 20 | 0.84 | |
Ken Feng 15 | 0.64 | Ji Yu 90 | 0.91 | |
Ji Yu 82 | 0.65 | Ji Yu 202 | 0.93 | |
Ken Dou 33 | 0.65 | Ji Nong 30 | 0.95 | |
Ken Feng 32 | 0.67 | Ji Yu 203 | 0.96 | |
He Feng 53 | 0.71 | Jiu Qing Dou | 0.96 | |
Sui Nong 14 | 0.71 | Ji Yu 88 | 0.98 | |
Ken Feng 14 | 0.73 | Ji Nong 20 | 1 | |
Ji Nong 28 | 0.74 | Ji Yu 93 | 1.02 | |
Ji Nong 11 | 0.75 | Chang Nong 34 | 1.02 | |
Ji Yu 20 | 0.75 | Ji Yu 95 | 1.03 | |
Ji Yu 404 | 0.75 | Ji Yu 80 | 1.04 | |
Kang Xian Chong 12 | 0.76 | Ji Mi Dou 1 | 1.07 | |
Chang Nong 25 | 0.77 | Ji Nong 18 | 1.17 | |
Tong Nong 943 | 0.78 | Ji Nong 29 | 1.34 | |
Kang Xian Chong 6 | 0.83 | |||
Low Sensitivity (LS) | Ken Dou 31 | 0.67 | Yuan Yu 20 | 1.04 |
Bei Dou 35 | 0.71 | Ji Yu 90 | 1.06 | |
Ken Feng 32 | 0.81 | Ji Mi Dou 1 | 1.08 | |
Chang Nong 25 | 0.85 | He Feng 53 | 1.11 | |
Kang Xian Chong 12 | 0.88 | Ji Yu 93 | 1.11 | |
Chang Nong 27 | 0.89 | Kang Xian Chong 6 | 1.11 | |
Ji Yu 404 | 0.9 | Ji Nong 30 | 1.12 | |
Chang Nong 34 | 0.9 | Ji Nong 11 | 1.18 | |
Sui Nong 14 | 0.92 | Ji Yu 80 | 1.19 | |
He Feng 49 | 0.93 | Zajiao Dou 3 | 1.19 | |
Ji Nong 28 | 0.96 | Ji Nong 20 | 1.24 | |
Ji Yu 20 | 0.96 | Ji Yu 88 | 1.3 | |
Ken Feng 14 | 0.96 | Ji Yu 95 | 1.3 | |
Ji Nong 19 | 0.99 | Ji Yu 203 | 1.44 | |
Sui Nong 28 | 0.99 | Jiu Qing Dou | 1.45 | |
Tong Nong 943 | 1 | Ji Yu 202 | 1.51 | |
Ji Yu 47 | 1.03 | |||
Medium-Sensitive (MS) | Ji Nong 20 | 1.24 | Ji Yu 95 | 1.3 |
Ji Yu 88 | 1.3 | |||
Highly Sensitive (HS) | Ji Nong 18 | 1.53 | Ji Nong 29 | 1.53 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, Y.; Cui, X.; Pei, T.; Wang, H.; Ding, N.; Gao, Y. Correlation of Resistance Levels of Thrips flavus and Morphological Structures of Spring Soybean Varieties in Northeast China. Agronomy 2025, 15, 1513. https://doi.org/10.3390/agronomy15071513
Zhou Y, Cui X, Pei T, Wang H, Ding N, Gao Y. Correlation of Resistance Levels of Thrips flavus and Morphological Structures of Spring Soybean Varieties in Northeast China. Agronomy. 2025; 15(7):1513. https://doi.org/10.3390/agronomy15071513
Chicago/Turabian StyleZhou, Yuxin, Xueting Cui, Tianhao Pei, Hui Wang, Ning Ding, and Yu Gao. 2025. "Correlation of Resistance Levels of Thrips flavus and Morphological Structures of Spring Soybean Varieties in Northeast China" Agronomy 15, no. 7: 1513. https://doi.org/10.3390/agronomy15071513
APA StyleZhou, Y., Cui, X., Pei, T., Wang, H., Ding, N., & Gao, Y. (2025). Correlation of Resistance Levels of Thrips flavus and Morphological Structures of Spring Soybean Varieties in Northeast China. Agronomy, 15(7), 1513. https://doi.org/10.3390/agronomy15071513