Declining Lake Water Levels and Suitable Wind Conditions Promote Locust Outbreaks and Migration in the Kazakhstan–China Area
Abstract
1. Introduction
2. Materials and Methods
2.1. Data Collection and Processing
2.2. Multiple Linear Regression Analysis
2.3. Pearson Correlation Analyses
2.4. Wind Field Analyses
2.5. Windborne Migration Simulations
3. Results
3.1. Overall Lake Water Level Influenced the Locust Area in the Following Year
3.2. Locusts in Kazakhstan Under the Outbreak Stage
3.3. Wind Field Data Supports Locust’s Migration from Kazakhstan to Altay and Tacheng Regions in China
3.4. Modeling Windborne Migration Along the 2 Routes
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhang, L.; Lecoq, M.; Latchininsky, A.; Hunter, D. Locust and grasshopper management. Annu. Rev. Entomol. 2019, 64, 15–34. [Google Scholar] [CrossRef] [PubMed]
- Feng, S.Q.; Shi, S.; Ullah, F.; Zhang, X.; Yin, Y.T.; Li, S.; Nderitu, J.H.; Ali, A.; Dong, Y.Y.; Huang, W.J.; et al. Intercontinental Migration Facilitates Continuous Occurrence of the Desert Locust Schistocerca gregaria (Forsk., 1775) in Africa and Asia. Agronomy 2024, 14, 1567. [Google Scholar] [CrossRef]
- FAO. Locust Watch-Locusts in Caucasus and Central Asia; Food and Agriculture Organization of the United Nations (FAO): Rome, Italy, 2023; Available online: https://openknowledge.fao.org/server/api/core/bitstreams/1dfb3ecb-b160-4acc-a76f-63b1b8df95b6/content (accessed on 11 March 2025).
- Azhbenov, V.K.; Baibussenov, K.S.; Sarbaev, A.T.; Borisova, H.V. Preventive July approach of phytosanitary control of locust pests in Kazakhstan and adjacent areas. Ecol. Med. Sci. 2015, 4, 33–37. [Google Scholar] [CrossRef]
- Justin, B.; Moldir, A.; Troy, S. Seeing beyond negotiations: The impacts of the Belt and Road on Sino-Kazakh transboundary water management. Int. J. Water Resour. Dev. 2023, 39, 361–381. [Google Scholar] [CrossRef]
- Nasiyev, B.; Gabdulov, M.; Zhanatalapov, N.; Makanova, G.; Izbasova, G. Study of the Phenology, Abundance and Harmfulness of Locusts in the Semi-Desert Zone and the Organization of Locust Control Measures. Biosci. Biotechnol. Res. Asia 2015, 12, 2. [Google Scholar] [CrossRef]
- Toleubayev, K.; Jansen, K.; van Huis, A. Locust control in transition: The loss and reinvention of collective action in post-soviet Kazakhstan. Ecol. Soc. 2007, 12, 38. [Google Scholar] [CrossRef]
- Ramesh, S.; Alexandre, V.L. Mapping Locust Habitats in the Amudarya River Delta, Uzbekistan with Multi-Temporal MODIS imagery. Environ. Manag. 2007, 39, 876–886. [Google Scholar] [CrossRef]
- Veran, S.; Simpson, S.; Sword, G.; Deveson, E.; Piry, S.; Hines, J.; Berthier, K. Modeling spatiotemporal dynamics of outbreaking species: Influence of environment and migration in a locust. Ecology 2014, 96, 737–748. [Google Scholar] [CrossRef] [PubMed]
- Lesley, T.L.; Rachael, Y.D.; Pallavi, C.; Maren, W.; Erik, I.S.; Bengt, H. Gene expression under thermal stress varies across a geographical range expansion front. Mol. Ecol. 2016, 25, 1141–1156. [Google Scholar] [CrossRef]
- Thomson, L.J.; Macfadyen, S.; Hoffmann, A.A. Predicting the effects of climate change on natural enemies of agricultural pests. Biol. Control 2010, 52, 296–306. [Google Scholar] [CrossRef]
- GonzálezTokman, D.; Córdoba-Aguilar, A.; Dáttilo, W.; Lira-Noriega, A.; Sánchez-Guillén, R.A.; Villalobos, F. Insect responses to heat: Physiological mechanisms, evolution and ecological implications in a warming world. Biol. Rev. 2020, 95, 802–821. [Google Scholar] [CrossRef] [PubMed]
- Propastin, P. Patterns of the Balkhash Lake level change and its climatic correlates during the period 1992–2010. Lakes Reserv. Res. Manag. 2012, 17, 161–169. [Google Scholar] [CrossRef]
- Yu, D.S.; Ma, S.C. The choice of oviposition site and the hatching of eggs of the Oriental migratory locust in relation to salt content of soil. Acta Phytophylacica Sin. 1964, 3, 333–334. (In Chinese) [Google Scholar]
- Bellard, C.; Thuiller, W.; Leroy, B.; Genovesi, P.; Bakkenes, M.; Courchamp, F. Will climate change promote future invasions? Glob. Change Biol. 2013, 19, 3740–3748. [Google Scholar] [CrossRef] [PubMed]
- Stone, M. A Plague of Locusts Has Descended on East Africa. Climate Change May Be to Blame; National Geographic: Washington, DC, USA, 2020; Available online: https://www.nationalgeographic.com/science/article/locust-plague-climate-science-east-africa (accessed on 15 February 2020).
- Salih, A.A.; Baraibar, M.; Mwangi, K.K.; Artan, G. Climate change and locust outbreak in East Africa. Nat. Clim. Change 2020, 10, 584–585. [Google Scholar] [CrossRef]
- Ma, C.S.; Zhang, W.; Peng, Y.; Zhao, F.; Chang, X.Q.; Xing, K.; Zhu, L.; Ma, G.; Yang, H.P.; Rudolf, V.H.W. Climate warming promotes pesticide resistance through expanding overwintering range of a global pest. Nat. Commun. 2021, 12, 5351. [Google Scholar] [CrossRef]
- Ackonor, J.B. Laboratory studies on the effects of flood on egg development, survival and hatchling weight in Locusta migratoria migratorioides (Reiche and Fairmaire). Int. J. Trop. Insect Sci. 1989, 10, 485–490. [Google Scholar] [CrossRef]
- Latchininsky, A.; Sword, G.; Sergeev, M.; Cigliano, M.; Lecoq, M. Locusts and Grasshoppers: Behavior, Ecology, and Biogeography. Psyche 2011, 2011, 578327. [Google Scholar] [CrossRef]
- Despland, E.; Simpson, S.J. The role of food distribution and nutritional quality in behavioural phase change in the desert locust. Anim. Behav. 2000, 59, 643–652. [Google Scholar] [CrossRef]
- Cisse, S.; Ghaout, S.; Mazih, A.; Babah, O.; Benahi, A.; Piou, C. Effect of vegetation on density thresholds of adult desert locust gregarization from survey data in Mauritania. Entomol. Exp. Applicata 2013, 149, 159–165. [Google Scholar] [CrossRef]
- Zhao, L.; Li, H.; Huang, W.; Dong, Y.; Geng, Y.; Ma, H.; Chen, J. Outbreak Mechanism of Locust Plagues under Dynamic Drought and Flood Environments Based on Time Series Remote Sensing Data: Implication for Identifying Potential High-Risk Locust Areas. Remote Sens. 2023, 15, 5206. [Google Scholar] [CrossRef]
- Yu, B.; Mai, J.; Chen, X.; Xu, C.; Chen, Y.; Cao, K.; Xu, Y.; Roman, J.; Ji, R. Source Areas and Migratory Trajectories of Locusta migratoria migratoria (Orthoptera: Acrididae) in the Border Region of Tacheng, Xinjiang, China and Adjacent Regions. J. Entomol. Sci. 2020, 55, 46–57. [Google Scholar] [CrossRef]
- FAO. Locust Watch-Locusts in Caucasus and Central Asia; Food and Agriculture Organization of the United Nations (FAO): Rome, Italy, 2024; Available online: https://openknowledge.fao.org/server/api/core/bitstreams/6e488326-8dc0-4342-8ed9-a257325856aa/content (accessed on 11 March 2025).
- Cohen, J.; Cohen, P.; West, S.G.; Aiken, L.S. Applied multiple regression/correlation analysis for the behavioral sciences. J. R. Stat. Soc. Ser. D Stat. 2003, 52, 689–705. [Google Scholar] [CrossRef]
- Wu, Q.; Hu, G.; Hoang, A.T.; Chen, X.; Lu, M.H.; Zhai, B.P.; Chapman, J. Migration patterns and winter population dynamics of rice planthoppers in Indochina: New perspectives from field surveys and atmospheric trajectories. Agric. For. Meteorol. 2019, 265, 99–109. [Google Scholar] [CrossRef]
- Hu, G.; Stefanescu, C.; Oliver, T.; Roy, D.B.; Brereton, T.; Swaay, C.; Reynolds, D.; Chapman, J. Environmental drivers of annual population fluctuations in a trans-Saharan insect migrant. Proc. Natl. Acad. Sci. USA 2021, 118, e2102762118. [Google Scholar] [CrossRef] [PubMed]
- Zhanna, N. Kazakhstan to Deploy Drones to Fight Locust Invasion; “Kazinform” International News Agency: Nur-Sultan, Kazakhstan, 2024; Available online: https://en.inform.kz/news/kazakhstan-to-deploy-drones-to-fight-locust-invasion-2c4d96/ (accessed on 11 March 2025).
- Zha, X.D.; Yu, B.J.; Wang, S.Y.; Yang, J.; Liu, C.C.; Ji, R. Analysis of the weather process in the landing of migratory locusts in China-Kazakhstan border area: A case study for Tacheng in 1999. J. Plant Prot. 2021, 48, 221–227. (In Chinese) [Google Scholar]
- Propastin, P. Multisensor monitoring system for assessment of locust hazard risk in the Lake Balkhash drainage basin. Environ. Manag. 2012, 50, 1234–1246. [Google Scholar] [CrossRef]
- Liu, Q.; He, L.Z.; Zhang, Y.J.; Jashenko, R.; Ji, R. Ecological characteristics of locust’s breeding place and locality in China-Kazakhstan border. Environ. Entomol. 2017, 39, 365–371. [Google Scholar]
- Kurmet, S.B.; Amageldy, T.S.; Valery, K.A.; Vili, B.H. Environmental features of population dynamics of hazard non-gregarious locusts in northern Kazakhstan. Life Sci. 2014, 11, 277–281. [Google Scholar]
- Altizer, S.R.; Bartel, J.; Han, B.A. Animal migration and infectious disease risk. Science 2011, 331, 296–302. [Google Scholar] [CrossRef]
- Klein, I.; Woude, S.; Schwarzenbacher, F.; Muratova, N.; Slagter, B.; Malakhov, D.; Oppelt, N.; Kuenzer, C. Predicting suitable breeding areas for different locust species—A multi-scale approach accounting for environmental conditions and current land cover situation. Int. J. Appl. Earth Obs. Geoinf. 2022, 107, 102672. [Google Scholar] [CrossRef]
- Latchininsky, A.V. Moroccan locust Dociostaurus maroccanus (Thunberg, 1815): A faunistic rarity or an important economic pest? J. Insect Conserv. 1998, 2, 167–178. [Google Scholar] [CrossRef]
Analyses | Variables | β/Value | p |
---|---|---|---|
Variables’ influence on locust infestation area in the current year | Average annual precipitation | 2.36 × 10−6 | 0.822 |
Corrected Lake Water Level | 4.77 × 10−5 | 0.405 | |
Corrected River Water Level | −6.45 × 10−5 | 0.551 | |
Interception | 3.305 | <0.001 | |
Variables’ influence on locust infestation area in the following year | Average annual precipitation | −0.003 | 0.455 |
Corrected Lake Water Level | −0.0806 | 0.006 * | |
Corrected River Water Level | 0.0894 | 0.054 | |
Interception | 5.9614 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feng, S.; Chang, X.; Wu, J.; Li, Y.; Zhang, Z.; Zhao, L.; Tu, X. Declining Lake Water Levels and Suitable Wind Conditions Promote Locust Outbreaks and Migration in the Kazakhstan–China Area. Agronomy 2025, 15, 1514. https://doi.org/10.3390/agronomy15071514
Feng S, Chang X, Wu J, Li Y, Zhang Z, Zhao L, Tu X. Declining Lake Water Levels and Suitable Wind Conditions Promote Locust Outbreaks and Migration in the Kazakhstan–China Area. Agronomy. 2025; 15(7):1514. https://doi.org/10.3390/agronomy15071514
Chicago/Turabian StyleFeng, Shiqian, Xiao Chang, Jianguo Wu, Yun Li, Zehua Zhang, Li Zhao, and Xiongbing Tu. 2025. "Declining Lake Water Levels and Suitable Wind Conditions Promote Locust Outbreaks and Migration in the Kazakhstan–China Area" Agronomy 15, no. 7: 1514. https://doi.org/10.3390/agronomy15071514
APA StyleFeng, S., Chang, X., Wu, J., Li, Y., Zhang, Z., Zhao, L., & Tu, X. (2025). Declining Lake Water Levels and Suitable Wind Conditions Promote Locust Outbreaks and Migration in the Kazakhstan–China Area. Agronomy, 15(7), 1514. https://doi.org/10.3390/agronomy15071514