Effects of Elevated CO2 on Grain Yield and Quality in Different Wheat Cultivars
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Set-Up
2.2. Photosynthetic Index Determination
2.3. Yield-Related Trait Measurement
2.4. Determination of Grain Quality Traits
2.5. Data Analysis
3. Results
3.1. Leaf Gas Exchange
3.2. Grain Yield Components
3.3. C and N Concentrations in Grain
3.4. Grain Amino Acid Content
3.5. Grain Mineral Concentration
4. Discussion
4.1. Elevated CO2 Levels Changed Plant Gas Exchange and Improved Water Use Efficiency
4.2. Elevated CO2 Levels Increased the Hundred-Grain Weight (HGW) but Decreased Individual Plant Yield
4.3. Elevated CO2 Concentrations Negatively Affect Wheat Grain Quality, but These Impacts Exhibit Genotype-Dependent Variation
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Pachauri, R.K.; Allen, M.R.; Barros, V.R.; Broome, J.; Cramer, W.; Christ, R.; Church, J.A.; Clarke, L.; Dahe, Q.; Dasgupta, P.; et al. IPCC Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Core Writing Team, Pachauri, R.K., Meyer, L.A., Eds.; IPCC: Geneva, Switzerland, 2014; p. 151. [Google Scholar]
- Dakora, D.F.; Li, H.; Zhao, J. Exploring the impacts of elevated CO2 on food security: Nutrient assimilation, Plant Growth, and Crop Quality. Engineering 2025, 44, 234–244. [Google Scholar] [CrossRef]
- Thomey-Michell, L.; Slattery-Rebecca, A.; Köhler-Iris, H.; Bernacchi-Carl, J.; Ort, D.R. Yield response of field-grown soybean exposed to heat waves under current and elevated [CO2]. Glob. Change Biol. 2019, 25, 4352–4368. [Google Scholar] [CrossRef] [PubMed]
- Högy, P.; Fangmeier, A. Effects of elevated atmospheric CO2 on grain quality of wheat. J. Cereal Sci. 2008, 48, 580–591. [Google Scholar] [CrossRef]
- Ainsworth, E.A.; Long, S.P. 30 years of free-air carbon dioxide enrichment (FACE): What have we learned about future crop productivity and its potential for adaptation? Glob. Change Biol. 2021, 27, 27–49. [Google Scholar] [CrossRef] [PubMed]
- Shuai, J.; Hui, J. Interactive effects of elevated carbon dioxide and water on the growth and development of winter wheat. Chin. J. Agrometeorol. 2013, 34, 31–37. [Google Scholar]
- Long, S.P.; Ainsworth, E.A.; Leakey, A.D.B.; Nösberger, J.; Ort, D.R. Food for thought: Lower-than-expected crop yield stimulation with rising CO2 concentrations. Science 2006, 312, 1918–1921. [Google Scholar] [CrossRef]
- Parmar, R.; Gupta, S.C.; Kollah, B.; Agarwal, K.; Devi, M.H.; Mittal, I.; Chicham, S.; Trivedi, S.K.; Yadav, S.S.; Khambalkar, P.A.; et al. Influence of elevated CO2 and temperature on yield attributes of rice and wheat in central India. J. Exp. Agric. Int. 2024, 46, 374–395. [Google Scholar] [CrossRef]
- Tan, K.; Zhou, G.; Lv, X.; Guo, J.P.; Ren, S.X. Combined effects of elevated temperature and CO2 enhance threat from low temperature hazard to winter wheat growth in North China. Sci. Rep. 2018, 8, 4336. [Google Scholar] [CrossRef]
- Tcherkez, G.; Mariem, S.B.; Larraya, L.; García-Mina, J.M.; Zamarreño, A.M.; Paradela, A.; Cui, J.; Badeck, F.W.; Meza, D.; Rizza, F.; et al. Despite minimal effects on yield, elevated CO2 has concurrent effects on leaf and grain metabolism in wheat. J. Exp. Bot. 2020, 71, 5990–6003. [Google Scholar] [CrossRef]
- Högy, P.; Wieser, H.; Köhler, P.; Schwadorf, K.; Breuer, J.; Erbs, M.; Weber, S.; Fangmeier, A. Does elevated atmospheric CO2 allow for sufficient wheat grain quality in the future? J. Appl. Bot. Food Qual. 2009, 82, 114–121. [Google Scholar]
- Marcos-Barbero, E.L.; Pérez, P.; Martínez-Carrasco, R.; Arellano, J.B.; Morcuende, R. Genotypic variability on grain yield and grain nutritional quality characteristics of wheat grown under elevated CO2 and high temperature. Plants 2021, 10, 1043. [Google Scholar] [CrossRef] [PubMed]
- Högy, P.; Wieser, H.; Köhler, P.; Schwadorf, K.; Breuer, J.; Franzaring, J.; Muntifering, R.; Fangmeier, A. Effects of elevated CO2 on grain yield and quality of wheat, results from a 3-year free-air CO2 enrichment experiment. Plant Biol. 2009, 11, 60–69. [Google Scholar] [CrossRef] [PubMed]
- Loladze, I. Rising atmospheric CO2 and human nutrition, toward globally imbalanced plant stoichiometry? Trends Ecol. Evol. 2002, 17, 457–461. [Google Scholar] [CrossRef]
- Taub, D.R.; Wang, X.Z. Why are nitrogen concentrations in plant tissues lower under elevated CO2? A critical examination of the hypotheses. J. Integr. Plant Biol. 2008, 50, 1365–1374. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.Z.; Li, X.N.; Zhong, Y.Y.; Blennow, A.; Liang, K.H.; Liu, F.L. Effects of elevated CO2 on grain yield and quality in five wheat cultivars. J. Agron. Crop Sci. 2022, 208, 733–745. [Google Scholar] [CrossRef]
- Barnes, J.D.; Ollerenshaw, J.H.; Whitfield, C.P. Effects of elevated CO2 and/or O3 on growth, development and physiology of wheat (Triticum aestivum L.). Glob. Change Biol. 2010, 1, 129–142. [Google Scholar] [CrossRef]
- GB5009.124-2016; National Food Safety Standard—Determination of Amino Acids in Foods. China Standards Press: Beijing, China, 2016.
- Lv, D.; Xing, Q.J.; Wang, T.L.; Song, J.C.; Duan, R.N.; Hao, X.Y.; Zong, Y.Z.; Zhang, D.S.; Shi, X.R.; Zhao, Z.G.; et al. Elevated CO2 concentration enhances plant growth, photosynthesis, and ion homeostasis of soybean under salt-alkaline stress. Environ. Exp. Bot. 2024, 228, 106000. [Google Scholar] [CrossRef]
- Li, S.L.; Fang, L.; Hegelund, J.N.; Liu, F.L. Elevated CO2 modulates plant hydraulic conductance through regulation of PIPs under progressive soil drying in tomato plants. Front. Plant Sci. 2021, 12, 666066. [Google Scholar] [CrossRef]
- Du, B.; Shukla, M.K.; Du, T. A meta-analysis of crop leaf gas exchange responses to elevated CO2 and water deficits using optimal stomatal theory. Environ. Exp. Bot. 2025, 232, 106107. [Google Scholar] [CrossRef]
- Jablonski, L.M.; Wang, X.; Curtis, P.S. Plant reproduction under elevated CO2 conditions, a meta-analysis of reports on 79 crop and wild species. New Phytol. 2002, 156, 9–26. [Google Scholar] [CrossRef]
- Kimball, B.A. Crop responses to elevated CO2 and interactions with H2O, N, and temperature. Curr. Opin. Plant Biol. 2016, 31, 36–43. [Google Scholar] [CrossRef] [PubMed]
- Kang, H.X.; Zhu, T.; Zhang, Y.; Ke, X.R.; Sun, W.J.; Hu, Z.H.; Zhu, X.G.; Shen, H.H.; Huang, Y.; Tang, Y.H. Elevated CO2 enhances dynamic photosynthesis in rice and wheat. Front. Plant Sci. 2021, 12, 727374. [Google Scholar] [CrossRef] [PubMed]
- Li, X.N.; Ulfa, A.; Shokat, S.; Liu, S.Q.; Zhu, X.C.; Liu, F.L. Responses of carbohydrate metabolism enzymes in leaf and spike to CO2 elevation and nitrogen fertilization and their relations to grain yield in wheat. Environ. Exp. Bot. 2019, 164, 149–156. [Google Scholar] [CrossRef]
- Rahman, S.; Copeland, L.; Atwell, B.J.; Roberts, T.H. Elevated CO2 differentially affects the properties of grain from wild and domesticated rice. J. Cereal Sci. 2021, 100, 103227. [Google Scholar] [CrossRef]
- Robinson, E.A.; Ryan, G.D.; Newman, J.A. A meta-analytical review of the effects of elevated CO2 on plant-arthropod interactions highlights the importance of interacting environmental and biological variables. New Phytol. 2012, 194, 321–336. [Google Scholar] [CrossRef]
- Lee, C.J.; Moon, T.W. Structural characteristics of slowly digestible starch and resistant starch isolated from heat–moisture treated waxy potato starch. Carbohydr. Polym. 2015, 125, 200–205. [Google Scholar] [CrossRef]
- Fan, F.F.; Liu, M.M.; Li, N.N.; Guo, Y.; Yuan, H.Y.; Si, F.F.; Cheng, M.M.; Chen, G.L.; Cai, M.; Li, N.W.; et al. Gain-of-function allele of HPY1 coordinates source and sink to increase grain yield in rice. Sci. Bull. 2023, 68, 2155–2159. [Google Scholar] [CrossRef]
- Smith, M.R.; Rao, I.M.; Merchant, A. Source-sink relationships in crop plants and their influence on yield development and nutritional quality. Front. Plant Sci. 2018, 9, 1889. [Google Scholar] [CrossRef] [PubMed]
- Rosado-Souza, L.; Yokoyama, R.; Sonnewald, U.; Fernie, A.R. Understanding source–sink interactions, progress in model plants and translational research to crops. Mol. Plant 2023, 16, 96–121. [Google Scholar] [CrossRef]
- Różewicz, M.; Grabiński, J.; Wyzińska, M. Effect of strip-till and cultivar on photosynthetic parameters and grain yield of winter wheat. Int. Agrophysics. 2024, 38, 279–291. [Google Scholar] [CrossRef]
- Liu, Y.L.; Zhang, S.Y.; Qian, H.Y.; Shen, C.B.; Hu, S.J.; Zhang, W.J.; Wang, Y.; Huang, S.; Wang, S.H.; Liu, Z.H.; et al. Variation in a single allele drives divergent yield responses to elevated CO2 between rice subspecies. Nat. Commun. 2025, 16, 376. [Google Scholar] [CrossRef] [PubMed]
- Asseng, S.; Kassiea, B.T.; Labrab, M.H.; Amadorb, C.; Calderini, D.F. Simulating the impact of source–sink manipulations in wheat. Field Crops Res. 2017, 202, 47–56. [Google Scholar] [CrossRef]
- Long, S.P.; Zhu, X.G.; Naidu, S.L.; Ort, D.R. Can improvement in photo synthesis increase crop yields? Plant Cell Environ. 2006, 29, 315–330. [Google Scholar] [CrossRef]
- Sugiura, D.; Wang, Y.; Kono, M.; Mizokami, Y. Exploring the responses of crop photosynthesis to CO2 elevation at the molecular, physiological, and morphological levels toward increasing crop production. Crop Environ. 2024, 3, 75–83. [Google Scholar] [CrossRef]
- Yang, K.; Huang, Y.; Yang, J.G.; Lv, C.H.; Sun, W.J.; Hu, Z.H.; You, C.Y.; Yu, L.F. Do rice growth and yield respond similarly to abrupt and gradual increase in atmospheric CO2? Sci. Total Environ. 2024, 906, 167658. [Google Scholar] [CrossRef]
- Tausz, N.; Norton, R.M.; Tausz-Posch, S.; Löw, M.; Seneweera, S.; O’Leary, G.; Armstrong, R.; Fitzgerald, G.J. Can additional N fertiliser ameliorate the elevated CO2-induced depression in grain and tissue N concentrations of wheat on a high soil N background? J. Agron. Crop Sci. 2017, 203, 574–583. [Google Scholar] [CrossRef]
- Gifford, R.M.; Barrett, D.J.; Lutze, J.L. The effects of elevated [CO2] on the C, N and C, P mass ratios of plant tissues. Plant Soil 2000, 224, 1–14. [Google Scholar] [CrossRef]
- Sułek, A.; Cacak-Pietrzak, G.; Różewicz, M.; Nieróbca, A.; Grabiński, J.; Studnicki, M.; Sujka, K.; Dziki, D. Effect of production technology intensity on the grain yield, protein content and amino acid profile in common and durum wheat grain. Plants 2023, 12, 364. [Google Scholar] [CrossRef]
- Akar, T.; Cengiz, M.F.; Tekin, M. A comparative study of protein and free amino acid contents in some important ancient wheat lines. Qual. Assur. Saf. Crops Foods 2019, 11, 1–10. [Google Scholar] [CrossRef]
- Erbs, M.; Manderscheid, R.; Jansen, G.; Seddig, S.; Pacholski, A.; Hans-Joachim, W. Effects of free-air CO2 enrichment and nitrogen supply on grain quality parameters and elemental composition of wheat and barley grown in a crop rotation. Agric. Ecosyst. Environ. 2009, 136, 59–68. [Google Scholar] [CrossRef]
- Myers, S.S.; Zanobetti, A.; Kloog, I.; Huybers, P.; Leakey, A.D.B.; Bloom, A.J.; Carlisle, E.; Dietterich, L.H.; Fitzgerald, G.; Hasegawa, T.; et al. Increasing CO2 threatens human nutrition. Nature 2014, 510, 139–142. [Google Scholar] [CrossRef] [PubMed]
- Fowler, D.B. Crop nitrogen demand and grain protein concentration of spring and winter wheat. Agron. J. 2003, 95, 260–265. [Google Scholar] [CrossRef]
- Li, Y.S.; Yu, Z.H.; Jin, J.; Zhang, Q.Y.; Wang, G.H.; Liu, C.K.; Wu, J.J.; Wang, C.; Liu, X.B. Impact of elevated CO2 on seed quality of soybean at the fresh edible and mature stages. Front. Plant Sci. 2018, 9, 1413. [Google Scholar] [CrossRef] [PubMed]
- Bernacchi, C.J.; Kimball, B.A.; Quarles, D.R.; Long, S.P.; Ort, D.R. Decreases in stomatal conductance of soybean under open-air elevation of [CO2] are closely coupled with decreases in ecosystem evapotranspiration. Plant Physiol. 2007, 143, 134–144. [Google Scholar] [CrossRef]
- Ploschuk, E.L.; Bado, L.A.; Salinas, M.; Wassner, D.F.; Windauer, L.B.; Insausti, P. Photosynthesis and fluorescence responses of Jatropha curcas to chilling and freezing stress during early vegetative stages. Environ. Exp. Bot. 2014, 102, 18–26. [Google Scholar] [CrossRef]
- McGrath, J.M.; Lobell, D.B. Reduction of transpiration and altered nutrient allocation contribute to nutrient decline of crops grown in elevated CO2 concentrations. Plant Cell Environ. 2013, 36, 697–705. [Google Scholar] [CrossRef]
- Uddling, J.; Broberg, M.C.; Feng, Z.Z.; Pleijel, H. Crop quality under rising atmospheric CO2. Curr. Opin. Plant Biol. 2018, 45, 262–267. [Google Scholar] [CrossRef]
Cultivar-CO2 | Grain Length (mm) | Grain Width (mm) | Length/Width |
---|---|---|---|
CS-aCO2 | 6.08 ± 0.16 e | 3.15 ± 0.21 b | 1.94 ± 0.12 bc |
CS-eCO2 | 6.17 ± 0.28 d | 3.16 ± 0.17 b | 1.96 ± 0.12 b |
CM44-aCO2 | 6.41 ± 0.22 c | 3.10 ± 0.21 b | 2.08 ± 0.14 a |
CM44-eCO2 | 6.46 ± 0.15 c | 3.38 ± 0.13 a | 1.91 ± 0.06 c |
NM9-aCO2 | 6.57 ± 0.23 b | 3.40 ± 0.27 a | 1.94 ± 0.16 bc |
NM9-eCO2 | 6.76 ± 0.23 a | 3.33 ± 0.19 a | 2.03 ± 0.11 a |
Cultivar | *** | *** | * |
CO2 | *** | ** | ns |
Cultivar × CO2 | ns | *** | *** |
Cultivar-CO2 | SL (cm) | SN | FSN | GN | TN | GW (g) | HGW (g) |
---|---|---|---|---|---|---|---|
CS-aCO2 | 6.32 ± 0.29 d | 18.48 ± 1.11 d | 13.90 ± 1.93 bc | 37.20 ± 6.07 a | 2.18 ± 1.05 b | 3.50 ± 1.47 a | 3.26 ± 0.00 a |
CS-eCO2 | 6.43 ± 0.56 cd | 17.76 ± 1.41 e | 11.81 ± 3.00 d | 29.19 ± 6.35 c | 2.95 ± 1.15 a | 3.10 ± 1.25 a | 3.26 ± 0.00 a |
CM44-aCO2 | 6.62 ± 0.32 bc | 21.43 ± 1.45 a | 16.46 ± 1.42 a | 34.74 ± 6.83 ab | 2.41 ± 0.50 b | 3.44 ± 1.67 a | 3.23 ± 0.00 e |
CM44-eCO2 | 6.17 ± 0.37 d | 20.65 ± 1.26 b | 12.86 ± 2.34 cd | 23.67 ± 7.15 d | 1.68 ± 0.72 c | 2.59 ± 1.25 b | 4.28 ± 0.00 a |
NM9-aCO2 | 6.97 ± 0.65 a | 19.42 ± 1.73 c | 13.92 ± 2.49 b | 32.60 ± 4.05 b | 2.14 ± 0.67 b | 2.72 ± 0.75 a | 3.66 ± 0.00 c |
NM9-eCO2 | 6.73 ± 0.15 ab | 18.71 ± 1.24 d | 11.94 ± 2.79 d | 27.90 ± 7.99 c | 2.18 ± 0.81 b | 2.52 ± 0.98 a | 3.97 ± 0.00 b |
Cultivar | *** | *** | *** | ** | *** | ns | *** |
CO2 | * | *** | *** | *** | ns | ns | *** |
Cultivar × CO2 | * | ns | ns | * | *** | ns | *** |
Cultivar-CO2 | C concentration (%) | N concentration (%) | C/N |
---|---|---|---|
CS-aCO2 | 41.16 ± 0.25 a | 2.89 ± 0.02 d | 14.23 ± 0.12 a |
CS-eCO2 | 40.97 ± 0.23 a | 3.10 ± 0.06 b | 13.22 ± 0.19 c |
CM44-aCO2 | 40.59 ± 0.39 a | 3.03 ± 0.02 bc | 13.40 ± 0.10 b |
CM44-eCO2 | 41.12 ± 0.28 a | 3.08 ± 0.03 b | 13.34 ± 0.14 bc |
NM9-aCO2 | 41.04 ± 0.10 a | 3.30 ± 0.03 a | 12.43 ± 0.08 d |
NM9-eCO2 | 40.78 ± 0.28 a | 3.35 ± 0.02 a | 12.18 ± 0.07 e |
Cultivar | ns | *** | *** |
CO2 | ns | *** | *** |
Cultivar × CO2 | * | *** | *** |
Cultivar-CO2 | Asp | Thr | Ser | Glu | Pro | Gly | Ala | Val | Met | Ile | Leu | Tyr | Phe | His | Lys | Arg |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CS-aCO2 | 15.59 ± 2.43 c | 11.07 ± 2.34 b | 13.33 ± 1.83 d | 56.08 ± 3.26 cd | 19.37 ± 5.25 a | 11.7 ± 1.12 c | 11.44 ± 1.91 b | 12.33 ± 1.56 c | 8.12 ± 2.99 b | 12.64 ± 2.41 b | 16.95 ± 1.74 d | 10.93 ± 2.64 b | 12.6 ± 1.26 e | 13.64 ± 2.73 b | 10.98 ± 1.77 c | 16.16 ± 2.76 b |
CS-eCO2 | 19.5 ± 0.76 ab | 14.26 ± 0.39 a | 16.26 ± 0.71 abc | 59.97 ± 4.96 bc | 14.63 ± 0.14 b | 13.82 ± 0.63 a | 14.17 ± 0.38 a | 14.76 ± 0.45 ab | 11.99 ± 0.72 a | 15.92 ± 0.57 a | 20.12 ± 1.00 bc | 14.5 ± 0.63 a | 15.07 ± 0.70 bc | 17.51 ± 0.58 a | 13.3 ± 0.46 ab | 20.44 ± 0.79 a |
CM44-aCO2 | 19.68 ± 0.39 ab | 14.61 ± 0.17 a | 16.8 ± 0.29 ab | 64.55 ± 1.93 ab | 14.64 ± 0.24 b | 14.16 ± 0.34 a | 14.15 ± 0.34 a | 15.2 ± 0.18 ab | 11.63 ± 0.15 a | 16.26 ± 0.27 a | 20.97 ± 0.43 ab | 14.49 ± 0.29 a | 15.66 ± 0.30 ab | 17.61 ± 0.30 a | 13.4 ± 0.36 ab | 20.15 ± 0.43 a |
CM44-eCO2 | 18.01 ± 0.39 b | 13.63 ± 0.17 a | 15.23 ± 0.27 c | 52.78 ± 1.73 e | 13.71 ± 0.15 b | 12.71 ± 0.25 b | 13.32 ± 0.20 a | 13.97 ± 0.21 b | 11.8 ± 0.35 a | 15.08 ± 0.13 a | 18.7 ± 0.36 c | 13.78 ± 0.36 a | 13.78 ± 0.27 d | 16.42 ± 0.33 a | 12.38 ± 0.23 bc | 18.69 ± 0.29 a |
NM9-aCO2 | 20.25 ± 0.16 a | 14.77 ± 0.09 a | 17.44 ± 0.08 a | 68.43 ± 1.06 a | 15.7 ± 0.39 ab | 14.32 ± 0.11 a | 14.35 ± 0.54 a | 15.69 ± 0.41 a | 12.39 ± 0.52 a | 16.86 ± 0.16 a | 21.86 ± 0.20 a | 15.16 ± 0.02 a | 16.26 ± 0.16 a | 18.1 ± 0.10 a | 13.97 ± 0.11 a | 20.69 ± 0.16 a |
NM9-eCO2 | 18.22 ± 0.37 b | 13.76 ± 0.25 a | 15.6 ± 0.38 bc | 55.59 ± 2.22 cd | 16.15 ± 0.50 ab | 12.74 ± 0.29 b | 13.16 ± 0.56 a | 14.04 ± 0.58 b | 11.78 ± 0.34 a | 15.37 ± 0.12 a | 19.22 ± 0.40 c | 13.52 ± 0.46 a | 14.38 ± 0.35 cd | 16.98 ± 0.28 a | 12.63 ± 0.29 ab | 18.88 ± 0.19 a |
Cultivar | * | * | * | ns | ns | ns | ns | * | * | * | ** | ns | ** | * | ns | ns |
CO2 | ns | ns | ns | *** | ns | ns | ns | ns | ns | ns | ns | ns | ns | ns | ns | ns |
Cultivar × CO2 | *** | ** | *** | *** | ns | *** | ** | *** | * | ** | *** | ** | *** | ** | ** | ** |
Cultivar-CO2 | Ca (mg/g) | K (mg/g) | Mg (mg/g) | Cu (mg/g) | Mn (mg/g) | Zn (mg/g) | Fe (mg/g) |
---|---|---|---|---|---|---|---|
CS-aCO2 | 0.670 ± 0.113 ab | 3.810 ± 0.510 bc | 0.403 ± 0.130 ab | 0.047 ± 0.031 a | 0.039 ± 0.005 a | 0.021 ± 0.006 b | 0.049 ± 0.013 a |
CS-eCO2 | 0.524 ± 0.156 ab | 4.110 ± 0.109 bc | 0.423 ± 0.035 ab | 0.024 ± 0.002 a | 0.040 ± 0.003 a | 0.038 ± 0.007 ab | 0.050 ± 0.003 a |
CM44-aCO2 | 0.713 ± 0.085 a | 4.686 ± 0.355 ab | 0.520 ± 0.031 ab | 0.030 ± 0.015 a | 0.043 ± 0.003 a | 0.025 ± 0.013 ab | 0.038 ± 0.015 a |
CM44-eCO2 | 0.709 ± 0.162 a | 4.109 ± 0.558 bc | 0.338 ± 0.053 b | 0.028 ± 0.003 a | 0.037 ± 0.012 a | 0.029 ± 0.003 ab | 0.052 ± 0.002 a |
NM9-aCO2 | 0.622 ± 0.081 ab | 5.195 ± 0.439 a | 0.617 ± 0.096 a | 0.030 ± 0.006 a | 0.045 ± 0.014 a | 0.041 ± 0.005 a | 0.046 ± 0.012 a |
NM9-eCO2 | 0.477 ± 0.111 b | 3.583 ± 0.787 c | 0.417 ± 0.198 b | 0.020 ± 0.006 a | 0.042 ± 0.016 a | 0.028 ± 0.013 ab | 0.045 ± 0.004 a |
Cultivar | * | ns | ns | ns | ns | ns | ns |
CO2 | ns | * | * | ns | ns | ns | ns |
Cultivar × CO2 | ns | * | ns | ns | ns | * | ns |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Kang, C.; Lin, S.; Yang, Z.; Wu, Y.; Wei, S. Effects of Elevated CO2 on Grain Yield and Quality in Different Wheat Cultivars. Agronomy 2025, 15, 1359. https://doi.org/10.3390/agronomy15061359
Zhang Y, Kang C, Lin S, Yang Z, Wu Y, Wei S. Effects of Elevated CO2 on Grain Yield and Quality in Different Wheat Cultivars. Agronomy. 2025; 15(6):1359. https://doi.org/10.3390/agronomy15061359
Chicago/Turabian StyleZhang, Yue, Chaoyong Kang, Shan Lin, Zaijun Yang, Yichao Wu, and Shuhong Wei. 2025. "Effects of Elevated CO2 on Grain Yield and Quality in Different Wheat Cultivars" Agronomy 15, no. 6: 1359. https://doi.org/10.3390/agronomy15061359
APA StyleZhang, Y., Kang, C., Lin, S., Yang, Z., Wu, Y., & Wei, S. (2025). Effects of Elevated CO2 on Grain Yield and Quality in Different Wheat Cultivars. Agronomy, 15(6), 1359. https://doi.org/10.3390/agronomy15061359