Genomic Confirmation of Resistance Genes for Blast, Bacterial Leaf Blight, Rice Tungro Spherical Virus, and Brown Planthopper in Tropically Adapted Temperate Japonica Rice Varieties
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.2. Evaluation of Blast Resistance
2.3. Bacterial Leaf Blight (BLB) Resistance Screening
2.4. Rice Tungro Spherical Virus (RTSV) Resistance Screening
2.5. Brown Planthopper (BPH) Resistance Screening
2.6. Whole Genome Sequencing
2.7. NGS Analysis and Allele Typing of the Biotic Stress Resistance Genes
3. Results
3.1. Blast Resistance at Natural Blast Nursery and 27 M. grisea Isolate Inoculation
3.2. BLB Resistance by 14 Representative Xoo Isolates Inoculation
3.3. RTSV and BPH Resistance
3.4. Allele Typing of the Major Biotic Stress Resistance Genes by Whole Genome Sequencing
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Koizumi, T.; Furuhashi, G. Global rice market projections distinguishing Japonica and Indica rice under climate change. Jpn. Agric. Res. Q. 2020, 54, 63–91. [Google Scholar] [CrossRef]
- Koizumi, T.; Furuhashi, G.; Gay, S.H. Reviewing Indica and Japonica Rice Market Developments. In OECD Food, Agriculture and Fisheries Papers; OECD Publishing: Paris, France, 2021; p. 154. [Google Scholar] [CrossRef]
- Pacleb, M.; Jeong, O.-Y.; Lee, J.-S.; Padolina, T.; Braceros, R.; Pautin, L.; Torollo, G.; Sana, E.E.; Del-Amen, J.Y.; Baek, M.-K.; et al. Breeding temperate Japonica rice varieties adaptable to tropical regions: Progress and prospects. Agronomy 2021, 11, 2253. [Google Scholar] [CrossRef]
- Asibi, A.E.; Chai, Q.; Coulter, J.A. Rice Blast: A Disease with Implications for Global Food Security. Agronomy 2019, 9, 451. [Google Scholar] [CrossRef]
- Teja, B.S.; Jamwal, G.; Gupta, V.; Verma, M.; Sharma, A.; Sharma, A.; Pandit, V. Biological control of bacterial leaf blight (BLB) in rice–A sustainable approach. Heliyon 2025, 11, e41769. [Google Scholar] [CrossRef]
- Bunawan, H.; Dusik, L.; Bunawan, S.N.; Mat Amin, N. Rice tungro disease: From identification to disease control. World Appl. Sci. J. 2014, 31, 1221–1226. [Google Scholar] [CrossRef]
- Neelamraju, S.; Sundaram, R.M.; Mangrauthia, S.K.; Ram, T. Identification and Functional Characterization of Two Major Loci Associated with Resistance against Brown Planthoppers (Nilaparvata lugens (Stål)) Derived from Oryza nivara. Genes 2023, 14, 2066. [Google Scholar] [CrossRef]
- Singh, P.; Verma, R.L.; Singh, R.S.; Singh, R.P.; Singh, H.B.; Arsode, P.; Kumar, M.; Singh, P.K. Biotic stress management in rice (Oryza sativa L.) through conventional and molecular approaches. In New Frontiers in Stress Management for Durable Agriculture; Rana, M.K., Gosal, S.S., Eds.; Springer: Singapore, 2020; pp. 609–644. [Google Scholar] [CrossRef]
- Jamaloddin, M.; Singh, P.; Verma, R.L.; Singh, R.S.; Singh, R.P.; Singh, H.B.; Arsode, P.; Kumar, M.; Singh, P.K. Molecular approaches for disease resistance in rice. In Rice Improvement; Ali, J., Wani, S.H., Eds.; Springer: Cham, Switzerland, 2021; pp. 245–270. [Google Scholar] [CrossRef]
- Liang, Y.; Yan, B.-Y.; Peng, Y.-L.; Ji, Z.-J.; Zeng, Y.-X.; Wu, H.-L.; Yang, C.-D. Molecular screening of blast resistance genes in rice germplasms resistant to Magnaporthe oryzae. Rice Sci. 2017, 24, 41–47. [Google Scholar] [CrossRef]
- Jiang, N.; Yan, J.; Liang, Y.; Shi, Y.; He, Z.; Wu, Y.; Zeng, Q.; Liu, X.; Peng, J. Resistance genes and their interactions with bacterial blight/leaf streak pathogens (Xanthomonas oryzae) in rice (Oryza sativa L.)—An updated review. Rice 2020, 13, 3. [Google Scholar] [CrossRef]
- Heong, K.L.; Hardy, B. (Eds.) Planthoppers: New Threats to the Sustainability of Intensive Rice Production Systems in Asia; International Rice Research Institute: Los Baños, Philippines, 2009; pp. 401–426. [Google Scholar]
- Han, Y.; Wu, C.; Yang, L.; Zhang, D.; Xiao, Y. Resistance to Nilaparvata lugens in rice lines introgressed with the resistance genes Bph14 and Bph15 and related resistance types. PLoS ONE 2018, 13, e0198630. [Google Scholar] [CrossRef]
- Hore, T.K.; Inabangan-Asilo, M.A.; Wulandari, R.; Septiningsih, E.M.; Collard, B.C.Y.; Kumar, A. Introgression of tsv1 improves tungro disease resistance of a rice variety BRRI dhan71. Sci. Rep. 2022, 12, 18820. [Google Scholar] [CrossRef]
- Qi, Z.; Du, Y.; Yu, J.; Zhang, R.; Yu, M.; Cao, H.; Song, T.; Pan, X.; Liang, D.; Liu, Y. Molecular detection and analysis of blast resistance genes in rice main varieties in Jiangsu Province, China. Agronomy 2023, 13, 157. [Google Scholar] [CrossRef]
- Qi, Y.; Rao, Q.; Lu, C.; Gong, J.; Hou, Y. Correction: Qi et al. Recent Progress in Rice–Xanthomonas oryzae Interactions. Biology 2025, 14, 837. [Google Scholar] [CrossRef]
- Chen, X.; Liu, P.; Mei, L.; He, X.; Chen, L.; Liu, H.; Shen, S.; Ji, Z.; Zheng, X.; Zhang, Y.; et al. Xa7, a new executor R gene that confers durable and broad-spectrum resistance to bacterial blight disease in rice. Plant Commun. 2021, 2, 100143. [Google Scholar] [CrossRef] [PubMed]
- Muduli, L.; Pradhan, S.K.; Mishra, A.; Bastia, D.N.; Samal, K.C.; Agrawal, P.K.; Dash, M. Understanding brown planthopper resistance in rice: Genetics, biochemical and molecular breeding approaches. Rice Sci. 2021, 28, 532–546. [Google Scholar] [CrossRef]
- Suh, J.P.; Roh, J.H.; Cho, Y.C.; Han, S.S.; Kim, Y.G.; Jena, K.K. The Pi40 gene for durable resistance to rice blast and molecular analysis of Pi40-advanced backcross breeding lines. Phytopathology 2009, 99, 243–250. [Google Scholar] [CrossRef] [PubMed]
- Hsu, Y.C.; Chiu, C.H.; Yap, R.; Tseng, Y.C.; Wu, Y.P. Pyramiding bacterial blight resistance genes in Tainung82 for broad-spectrum resistance using marker-assisted selection. Int. J. Mol. Sci. 2020, 21, 1281. [Google Scholar] [CrossRef]
- Shim, J.; Torollo, G.; Angeles-Shim, R.B.; Cabunagan, R.C.; Choi, I.R.; Yeo, U.S.; Ha, W.G. Rice tungro spherical virus resistance into photoperiod-insensitive japonica rice by marker-assisted selection. Breed. Sci. 2015, 65, 345–351. [Google Scholar] [CrossRef][Green Version]
- Suh, J.P.; Yang, S.J.; Jeung, J.U.; Pamplona, A.; Kim, J.J.; Lee, J.H.; Hong, H.C.; Yang, C.I.; Kim, Y.G.; Jena, K.K. Development of elite breeding lines conferring Bph18 gene-derived resistance to brown planthopper (BPH) by marker-assisted selection and genome-wide background analysis in japonica rice (Oryza sativa L.). Field Crops Res. 2011, 120, 215–222. [Google Scholar] [CrossRef]
- Suh, J.-P.; Cho, Y.-C.; Won, Y.-J.; Ahn, E.-K.; Baek, M.-K.; Kim, M.-K.; Kim, B.-K.; Jena, K.K. Development of resistant gene-pyramided japonica rice for multiple biotic stresses using molecular marker-assisted selection. Plant Breed. Biotechnol. 2015, 3, 333–345. [Google Scholar] [CrossRef]
- Reinke, R.; Kim, S.M.; Kim, B.K. Developing japonica rice introgression lines with multiple resistance genes for brown planthopper, bacterial blight, rice blast, and rice stripe virus using molecular breeding. Mol. Genet. Genom. 2018, 293, 1565–1575. [Google Scholar] [CrossRef]
- International Rice Research Institute (IRRI). Standard Evaluation System for Rice, 5th ed.; IRRI: Los Baños, Philippines, 2015. [Google Scholar]
- Bonman, J.M. Durable resistance to rice blast disease—Environmental influences. Euphytica 1992, 63, 115–123. [Google Scholar] [CrossRef]
- Campbell, C.L.; Madden, L.V. Introduction to Plant Disease Epidemiology; Wiley-Interscience: New York, NY, USA, 1990. [Google Scholar]
- Kauffman, H.E.; Reddy, A.P.K.; Hsieh, S.P.Y.; Merca, S.D. An improved technique for evaluating resistance of rice varieties to Xanthomonas oryzae. Plant Dis. Rep. 1973, 57, 537–541. [Google Scholar]
- Campbell, M.M.; Doyle, J.J. DNA extraction from rice leaf tissue using a modified CTAB protocol. Unpublished protocol. 1996. [Google Scholar]
- UseGalaxy.eu. Available online: https://usegalaxy.eu (accessed on 6 November 2025).
- Hall, T.A. BioEdit: A User-Friendly Biological Sequence Alignment Editor and Analysis Program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 1999, 41, 95–98. [Google Scholar]
- Simon, R.; Xiao, G.; Telebanco-Yanoria, M.J.; Padilla, J.; Wu, J.; Zhou, B.; Lu, G.D. Genomic architecture and deployment of rice blast resistance genes in breeding programs. Rice 2023, 16, 23. [Google Scholar] [CrossRef]
- Zhao, H.; Wang, X.; Jia, Y.; Minkenberg, B.; Wheatley, M.; Fan, J.; Jia, M.H.; Famoso, A.; Edwards, J.D.; Wamishe, Y.; et al. The rice blast resistance gene Ptr encodes an atypical protein required for broad-spectrum disease resistance. Nat. Commun. 2018, 9, 2039. [Google Scholar] [CrossRef]
- Lee, S.-K.; Song, M.-Y.; Seo, Y.-S.; Kim, H.-K.; Ko, S.; Cao, P.-J.; Suh, J.-P.; Yi, G.; Roh, J.-H.; Lee, S.; et al. Rice Pi5-mediated resistance to Magnaporthe oryzae requires the presence of two coiled-coil–nucleotide-binding–leucine-rich repeat genes. Genetics 2009, 181, 1627–1638. [Google Scholar] [CrossRef]
- Iyer, A.S.; McCouch, S.R. The rice bacterial blight resistance gene xa5 encodes a novel form of disease resistance. Mol. Plant Microbe Interact. 2004, 17, 1348–1354. [Google Scholar] [CrossRef]
- Wang, C.; Chen, S.; Feng, A.; Su, J.; Wang, W.; Feng, J.; Chen, B.; Zhang, M.; Yang, J.; Zeng, L.; et al. Xa7, a Small Orphan Gene Harboring Promoter Trap for AvrXa7, Leads to the Durable Resistance to Xanthomonas oryzae Pv. oryzae. Rice 2021, 14, 48. [Google Scholar] [CrossRef]
- Song, W.Y.; Wang, G.L.; Chen, L.L.; Kim, H.S.; Pi, L.Y.; Holsten, T.; Gardner, J.; Wang, B.; Zhai, W.X.; Zhu, L.H.; et al. A receptor kinase-like protein encoded by the rice disease resistance gene, Xa21. Science 1995, 270, 1804–1806. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, X.; Fan, Y.; Gao, Y.; Zhu, Q.; Zheng, C.; Qin, T.; Li, Y.; Che, J.; Zhang, M.; et al. XA23 is an executor R protein and confers broad-spectrum disease resistance in rice. Mol. Plant 2015, 8, 290–302. [Google Scholar] [CrossRef]
- Zhou, J.; Peng, Z.; Long, J.; Sosso, D.; Liu, B.; Eom, J.S.; Huang, S.; Liu, S.; Vera Cruz, C.; Frommer, W.B.; et al. Gene targeting by TAL effectors reveals cryptic resistance genes and a paradigm for resistance to bacterial blight in rice. Nat. Biotechnol. 2015, 33, 451–455. [Google Scholar] [CrossRef]
- Lee, S.K.; Song, M.Y.; Seo, Y.S.; Kim, H.K.; Ko, S.; Cao, P.J.; Suh, J.P.; Hahn, T.R. Rice tungro spherical virus resistance gene tsv1 encodes eIF4G and is associated with virus replication inhibition. Mol. Plant Microbe Interact. 2010, 23, 746–754. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, Y.; Zhang, H.; Li, X. Natural variation in the eIF4G gene confers resistance to Rice tungro spherical virus in rice. Plant Biotechnol. J. 2020, 18, 749–761. [Google Scholar] [CrossRef]
- Ren, J.; Gao, F.; Wu, X.; Li, X.; Zhang, Y.; Wang, W.; Zhao, H.; Li, W. Bph32, a novel gene encoding an unknown SCR domain-containing protein, confers resistance against the brown planthopper in rice. Sci. Rep. 2016, 6, 37645. [Google Scholar] [CrossRef]
- Wang, G.-L.; Liu, W. Plant innate immunity in rice: A defense against pathogen infection. Natl. Sci. Rev. 2016, 3, 295–308. [Google Scholar] [CrossRef]
- Jain, P.; Singh, P.K.; Kapoor, R.; Khanna, A.; Solanke, A.U.; Krishnan, S.G.; Singh, A.K.; Sharma, V.; Sharma, T.R. Understanding Host-Pathogen Interactions with Expression Profiling of NILs Carrying Rice-Blast Resistance Pi9 Gene. Front. Plant Sci. 2017, 8, 93. [Google Scholar] [CrossRef] [PubMed]
- Meng, X.; Xiao, G.; Telebanco-Yanoria, M.J.; Siazon, P.M.; Padilla, J.; Opulencia, R.; Bigirimana, J.; Habarugira, G.; Wu, J.; Li, M.; et al. The broad-spectrum rice blast resistance (R) gene Pita2 encodes a novel R protein unique from Pita. Rice 2020, 13, 19. [Google Scholar] [CrossRef] [PubMed]
- Ellur, R.K.; Khanna, A.; Yadav, A.; Pathania, S.; Rajashekara, H.; Singh, V.K.; Gopala Krishnan, S.; Bhowmick, P.K.; Nagarajan, M.; Vinod, K.K.; et al. Improvement of Basmati rice varieties for resistance to blast and bacterial blight diseases using marker assisted backcross breeding. Plant Sci. 2016, 242, 330–341. [Google Scholar] [CrossRef]
- Xiao, G.; Huang, X.; Zhang, S.; Peng, Y.; Luo, C.; Zhou, B. Pyramiding of five resistance genes to rice blast in japonica rice using marker-assisted selection. Front. Plant Sci. 2017, 8, 205. [Google Scholar] [CrossRef][Green Version]
- Chen, Q.; Hu, Y.; Shen, W.; Zhang, A. Evaluation of Rice Blast Resistance and R Gene Analysis in Japonica Rice Varieties Tested in the Anhui Region. Agronomy 2025, 15, 1008. [Google Scholar] [CrossRef]
- Guvvala, L.D.; Koradi, P.; Shenoy, V.; Marella, L.S. Making an Indian Traditional Rice Variety Mahsuri, Bacterial Blight Resistant Using Marker-Assisted Selection. J. Crop Sci. Biotechnol. 2013, 16, 111–121. [Google Scholar] [CrossRef]
- Thu, N.T.; Quang, V.H.; Tan, M.V.; Lam, V.Đ.; Toshitsugu, N.; Hue, N.T.; Hue, N.T.; Long, N.V.; Hoan, N.V.; Liet, V.V.; et al. Marker-Assisted Pyramiding of Xa21 and Xa7 Genes Conferring Resistance to Bacterial Leaf Blight in Indica Cultivar Bacthom7. Afr. J. Biotechnol. 2018, 17, 1389–1396. [Google Scholar] [CrossRef]
- Widiarta, I.N.; Firmansyah, F.; Yunus, M.; Apriana, A.; Sisharmini, A.; Santoso, T.J.; Terryana, R.T.; Rahmini, R.; Rumanti, I.A.; Sitaresmi, T.; et al. Rice Virus Disease in Indonesia: Epidemiology and Varietal Resistance. Phytopathol. Res. 2025, 7, 11. [Google Scholar] [CrossRef]
- Sriram, M.; Manonmani, S.; Gopalakrishnan, C.; Sheela, V.; Shanmugam, A.; Swamy, K.M.R.; Suresh, R. Breeding for Brown Planthopper Resistance in Rice: Recent Updates and Future Perspectives. Mol. Biol. Rep. 2024, 51, 1038. [Google Scholar] [CrossRef]
- Claridge, M.F. Variation in Pest and Natural Enemy Populations—Relevance to Brown Planthopper Control Strategies. In Pest Management in Rice; Grayson, B.T., Ed.; Springer: Dordrecht, The Netherlands, 1980; pp. 143–154. [Google Scholar] [CrossRef]


| Variety | Release Name | IRRI Designation | Parentage | Year Registered |
|---|---|---|---|---|
| MS11 | NSIC Rc170 SR | IRRI 142 | Jinmibyeo/Cheolweon 46 | 2008 |
| Japonica 1 | NSIC Rc 220 SR | IRRI 152 | IR77863-95-2-3/HR15490-34 | 2009 |
| Japonica 2 | NSIC Rc 242 SR | IRRI 157 | IR80091-46-2-1/IR71663-14-2-3-5 | 2012 |
| Japonica 6 | NSIC Rc 484 SR | IRRI 202 | MS 11/IR86743-2B-1-4 | 2017 |
| Cordillera 4 | NSIC Rc 566 SR | IRRI 232 | Jinmibyeo/SR18977-2-7-2-TB-1 | 2019 |
| Japonica 7 | NSIC Rc 584 SR | IRRI 236 | Japonica 2/IR11K233 | 2019 |
| MDGs (Resistance Genes for Blast and BLB) |
|---|
| 23 MDGs in LTH genetic background with known blast resistance genes: |
| IRBLzt-T(Pizt), IRBLz5-CA(Piz5), IRBLz-Fu(Piz), IRBL9-W(Pi9), IRBL7-M(Pi7), IRBLkp-K60(Pikp), IRBLk-Ka(Pik), IRBL20-IR24(Pi20), IRBL19-A(Pi19), IRBLta-K1(Pita), IRBL12-M(Pi12), IRBLta2-Re(Pita2), IRBL3-CP4(Pi3), IRBLi-F5(Pii), IRBLa-A(Pia), IRBLt-K59(Pit), IRBLb-B(Pib), IRBLsh-B(Pish), IRBLkh-K3(Pikh), IRBL1-CL(Pi1), IRBLkm-Ts(Pikm), IRBLks-F5(Piks), IRBL5-M(Pi5) |
| 9 MDGs in IR24 genetic background with known BB resistance genes |
| IRBB1(Xa1), IRBB4(Xa4), IRBB5(xa5), IRBB7(Xa7), IRBB10(Xa10), IRBB13(Xa13), IRBB14(Xa14), IRBB21(Xa21), IRBB23(Xa23) |
| Entries | NGS Results | De Novo Sequence Assembly | ||||
|---|---|---|---|---|---|---|
| Read Count | Total Bases (bp) | n | N50 | E-Size (bp) | Max (bp) | |
| MS 11 | 80,261,886 | 24,078,565,800 | 451,900 | 22,351 | 29,473 | 186,259 |
| Japonica 1 | 80,233,025 | 24,069,907,500 | 574,499 | 20,068 | 26,851 | 186,312 |
| Japonica 2 | 80,178,258 | 24,053,477,400 | 538,383 | 21,674 | 28,225 | 186,266 |
| Japonica 6 | 80,077,301 | 24,023,190,300 | 779,768 | 17,025 | 22,069 | 141,647 |
| Cordillera 4 | 80,194,377 | 24,058,313,100 | 422,982 | 20,023 | 26,557 | 185,804 |
| Japonica 7 | 80,215,226 | 24,064,567,800 | 486,943 | 20,863 | 27,599 | 158,615 |
| Entries | R Genes | Total Number of Resistant Entries to 27 Blast Races | Percentage of Resistant Monogenic Lines |
|---|---|---|---|
| MS 11 | - | 21 | 77.78 |
| Japonica 1 | - | 21 | 77.78 |
| Japonica 2 | - | 23 | 85.19 |
| Japonica 6 | - | 17 | 62.96 |
| Cordillera 4 | - | 22 | 81.48 |
| Japonica 7 | - | 19 | 70.37 |
| IRBLa-C | Pia | 2 | 7.41 |
| IRBLks-F5 | Piks | 3 | 11.11 |
| IRBLk-Ka | Pik | 13 | 48.15 |
| IRBLkp-K60 | Pikp | 14 | 51.85 |
| IRBLkh-K3 | Pikh | 14 | 51.85 |
| IRBL7-M | Pi7 | 13 | 48.15 |
| IRBL1-CL | Pi1 | 14 | 51.85 |
| IRBLz-Fu | Piz | 23 | 85.19 |
| IRBLz5-CA | Piz-5 | 23 | 85.19 |
| IRBLzt-T | Piz-t | 12 | 44.44 |
| IRBLta-CT2 | Pita | 9 | 33.33 |
| IRBLb-B | Pib | 7 | 25.93 |
| IRBLt-K59 | Pit | 2 | 7.41 |
| IRBLsh-S | Pish | 16 | 59.26 |
| IRBLi-F5 | Pii | 16 | 59.26 |
| IRBL3-CP4 | Pi3 | 18 | 66.67 |
| IRBL5-M | Pi5 | 18 | 66.67 |
| IRBL9-W | Pi9 | 25 | 92.59 |
| IRBL12-M | Pi12 | 24 | 88.89 |
| IRBL19-A | Pi19 | 1 | 3.70 |
| IRBL20-IR24 | Pi20 | 9 | 33.33 |
| IRBLta2-Pi | Pita-2 | 22 | 81.48 |
| IRBL11-Zh | Pi11 | 11 | 40.74 |
| LTH | - | - | - |
| Entry | R Gene | Number of Resistant Reactions (R-MR) | Resistance Frequency (%) |
|---|---|---|---|
| MS11 | - | 2 | 14.3 |
| Japonica 1 | - | 4 | 28.6 |
| Japonica 2 | - | 6 | 42.9 |
| Japonica 6 | - | 6 | 42.9 |
| Cordillera 4 | - | 6 | 42.9 |
| Japonica 7 | - | 9 | 64.3 |
| IRBB1 | Xa1 | 5 | 35.7 |
| IRBB4 | Xa4 | 6 | 42.9 |
| IRBB5 | xa5 | 12 | 85.7 |
| IRBB7 | Xa7 | 10 | 71.4 |
| IRBB10 | Xa10 | 5 | 35.7 |
| IRBB13 | Xa13 | 1 | 7.1 |
| IRBB14 | Xa14 | 4 | 28.6 |
| IRBB21 | Xa21 | 12 | 85.7 |
| IRBB23 | Xa23 | 14 | 100 |
| IR24 | - | 0 | 0 |
| MS 11 | MR | R | MR | MR | RTV Disease Index Rating |
| Japonica 1 | MR | R | MR | MR | |
| Japonica 2 | MR | R | MR | MR | |
| Japonica 6 | MR | R | MR | MR | |
| Cordillera 4 | MR | R | MR | MR | |
| Japonica 7 | R | R | MR | MR | |
| 2023 DS | 2023 WS | 2024 DS | 2024 WS | ||
| MS 11 | S | S | MR | S | BPH Scores |
| Japonica 1 | S | S | MR | S | |
| Japonica 2 | MR | S | MR | S | |
| Japonica 6 | MR | S | S | MR | |
| Cordillera 4 | MR | S | MR | R | |
| Japonica 7 | MR | S | MR | R |
| Gene | Chr. | Location (bp) | Encoding Protein | Haplotype (S = Susceptible/R = Resistant Allele) | |||||
|---|---|---|---|---|---|---|---|---|---|
| MS11 | Japonica1 | Japonica2 | Japonica6 | Cordillera4 | Japonica7 | ||||
| Pi9/Pi2/ Piz-t/Pi50 | 6 | 10,387,509 | NBS-LRR | GUVA1 (S) | GUVA1 (S) | GUVA1 (S) | Nip (S) | GUVA1 (S) | GUVA1 (S) |
| Pita2 = Ptr | 12 | 10,822,534 | Armadillo repeats protein | Nip (S) | Nip (S) | Nip (S) | Nip (S) | Nip (S) | Nip (S) |
| Pi5 | 9 | 9,681,913 | NBS-LRR | (S) | (R) | (S) | (S) | (S) | (S) |
| xa5 | 5 | 437,043 | Transcription factor IIA gamma subunit | Nip (S) | Nip (S) | GUVA1 (S) | Nip (S) | Nip (S) | GUVA1 (S) |
| Xa7 | 6 | 28,015,259 | Executor R protein | (S) | (S) | (S) | (S) | (S) | (S) |
| Xa21 | 11 | 21,277,443 | LRR receptor kinase-like protein | Nip (S) | GUVA1 (S) | Nip (S) | Nip (S) | Nip (S) | Nip (S) |
| Xa23 | 11 | 22,204,131 | Executor R protein | Nip (S) | GUVA1 (S) | Nip (S) | Nip (S) | Nip (S) | GUVA2 (S) |
| Xa25/OsSWEET13 | 12 | 17,302,127 | SWEET-type protein | Nip (R) | Nip (R) | Nip (R) | Nip (R) | Nip (R) | GUVA1 (R?) |
| BPH32 = BPH3 | 6 | 1,223,069 | Unknown short consensus repeat (SCR) domain-containing protein | Nip (S) | Nip (S) | Nip (S) | Nip (S) | Nip (S) | Nip (S) |
| tsv1 | 7 | 22,114,961 | Eukaryotic translation initiation factor 4G (eIF4G) | Nip (S) | Nip (S) | Nip (S) | Kinmaze (R) | Nip (S) | Kinmaze (R) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pacleb, M.A.; Lee, S.; Hechanova, S.L.; Padolina, T.; Pautin, L.; Del-Amen, J.; Park, D.-S.; Choi, I.-R.; Kim, S.-R.; Shin, D.; et al. Genomic Confirmation of Resistance Genes for Blast, Bacterial Leaf Blight, Rice Tungro Spherical Virus, and Brown Planthopper in Tropically Adapted Temperate Japonica Rice Varieties. Agronomy 2025, 15, 2585. https://doi.org/10.3390/agronomy15112585
Pacleb MA, Lee S, Hechanova SL, Padolina T, Pautin L, Del-Amen J, Park D-S, Choi I-R, Kim S-R, Shin D, et al. Genomic Confirmation of Resistance Genes for Blast, Bacterial Leaf Blight, Rice Tungro Spherical Virus, and Brown Planthopper in Tropically Adapted Temperate Japonica Rice Varieties. Agronomy. 2025; 15(11):2585. https://doi.org/10.3390/agronomy15112585
Chicago/Turabian StylePacleb, Myrish Alvarez, Seongkyeong Lee, Sherry Lou Hechanova, Thelma Padolina, Lenie Pautin, Jesson Del-Amen, Dong-Soo Park, Il-Ryong Choi, Sung-Ryul Kim, Dongjin Shin, and et al. 2025. "Genomic Confirmation of Resistance Genes for Blast, Bacterial Leaf Blight, Rice Tungro Spherical Virus, and Brown Planthopper in Tropically Adapted Temperate Japonica Rice Varieties" Agronomy 15, no. 11: 2585. https://doi.org/10.3390/agronomy15112585
APA StylePacleb, M. A., Lee, S., Hechanova, S. L., Padolina, T., Pautin, L., Del-Amen, J., Park, D.-S., Choi, I.-R., Kim, S.-R., Shin, D., & Suh, J.-P. (2025). Genomic Confirmation of Resistance Genes for Blast, Bacterial Leaf Blight, Rice Tungro Spherical Virus, and Brown Planthopper in Tropically Adapted Temperate Japonica Rice Varieties. Agronomy, 15(11), 2585. https://doi.org/10.3390/agronomy15112585

