Optimum Sowing Date and Salt Tolerant Variety Boost Rice (Oryza sativa L.) Yield and Water Productivity during Boro Season in the Ganges Delta
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site and Experimental Details
2.2. Crop Management
2.3. Observations
2.4. Statistical Analyses
3. Results
3.1. Effect of Sowing Dates on Phenology and Irrigation Water Requirement of Boro Rice
3.2. Effect on Yield Attributes
3.3. Effect on Grain and Straw Yields
3.4. Irrigation Water Productivity (IWP) and Economic Water Productivity (EWP)
3.5. Changes in Soil and Water Salinity
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mainuddin, M.; Maniruzzaman, M.; Gaydon, D.S.; Sarkar, S.; Rahman, M.A.; Sarangi, S.K.; Sarker, K.K.; Kirby, J.M. A water and salt balance model for the polders and islands in the Ganges delta. J. Hydrol. 2020, 587, 125008. [Google Scholar] [CrossRef]
- Yesmin, M.S.; Maniruzzaman, M.; Hossain, M.B.; Gaydon, D.S.; Mostafizur, A.B.M.; Kabir, M.J.; Biswas, J.C.; Mainuddin, M.; Bell, R.W. Selection of suitable sowing window for Boro rice in coastal regions of Bangladesh. J. Indian Soc. Coast. Agric. Res. 2019, 37, 134–143. [Google Scholar]
- Gaydon, D.S.; Radanielson, A.M.; Chaki, A.K.; Sarker, M.M.R.; Rahman, M.A.; Rashid, M.H.; Kabir, M.J.; Khan, A.S.M.M.R.; Roth, C.H. Options for increasing Boro rice production in the saline coastal zone of Bangladesh. Field Crop. Res. 2021, 264, 108089. [Google Scholar] [CrossRef]
- Mainuddin, M.; Maniruzzaman, M.; Alam, M.M.; Mojid, M.A.; Schmidt, E.J.; Islam, M.T.; Scobie, M. Water usage and productivity of Boro rice at the field level and their impacts on the sustainable groundwater irrigation in the North-West Bangladesh. Agric. Water Manag. 2020, 240, 106294. [Google Scholar] [CrossRef]
- Moore, L.M.; Lauenroth, W.K. Differential effects of temperature and precipitation on early- vs. late flowering species. Ecosphere 2017, 8, e01819. [Google Scholar] [CrossRef] [Green Version]
- Patel, A.R.; Patel, M.L.; Patel, R.K.; Mote, B.M. Effect of different sowing dates on phenology, growth and yield of rice—A review. Plant Arch. 2019, 19, 12–16. [Google Scholar]
- Wu, Y.; Qiu, X.; Zhang, K.; Chen, Z.; Pang, A.; Tian, Y.; Cao, W.; Liu, X.; Zhu, Y. A rice model system for determining suitable sowing and transplanting dates. Agronomy 2020, 10, 604. [Google Scholar] [CrossRef] [Green Version]
- Sarangi, S.K.; Burman, D.; Mandal, S.; Maji, B.; Tuong, T.P.; Humphreys, E.; Bandyopadhyay, B.K.; Sharma, D.K. Reducing irrigation water requirement of dry season rice (Boro) in coastal areas using timely seeding and short duration varieties. In Revitalizing the Ganges Costal Zone: Turning Science into Policy and Practices, Proceedings of the International Conference on Revitalizing the Ganges Costal Zone, Dhaka, Bangladesh, 21–23 October 2014; Humphreys, E., Tuong, T.P., Buisson, M.C., Pukinskis, I., Phillips, M., Eds.; CGIAR Challenge Program on Water and Food (CPWF): Colombo, Sri Lanka, 2015; pp. 68–79. [Google Scholar]
- Gopalakrishnan, T.; Kumar, L. Linking long-term changes in soil salinity to paddy land abandonment in Jaffna peninsula, Sri Lanka. Agriculture 2021, 11, 211. [Google Scholar] [CrossRef]
- Sarangi, S.K.; Maji, B.; Singh, S.; Sharma, D.K.; Burman, D.; Mandal, S.; Ismail, A.M.; Haefele, S.M. Crop establishment and nutrient management for dry season (Boro) rice in coastal areas. Agron. J. 2014, 106, 2013–2023. [Google Scholar] [CrossRef]
- Radanielson, A.M.; Gaydon, D.S.; Khan, M.M.R.; Chaki, A.K.; Rahman, M.A.; Angeles, O.; Li, T.; Ismail, A. Varietal improvement options for higher rice productivity in salt affected areas using crop modelling. Field Crop. Res. 2018, 229, 27–36. [Google Scholar] [CrossRef] [PubMed]
- Mackill, D.J.; Ismail, A.M.; Pamplona, A.M.; Sanchez, D.L.; Carandang, J.J.; Septiningsih, E.M. Stress tolerant rice varieties for adaptation to a changing climate. Crop. Environ. Bioinf. 2010, 7, 250–259. [Google Scholar]
- Sarangi, S.K.; Maji, B. Sustainable rice cultivation in coastal saline soils: A case study. Volume 2: Cultivation, pest and disease management. In Achieving Sustainable Cultivation of Rice; Takuji, S., Ed.; Burleigh Dodds Science Publishing Limited: Cambridge, UK, 2017; pp. 69–103. ISBN 9781786760289. [Google Scholar]
- Sarangi, S.K.; Islam, M.R. Advances in agronomic and related management options for Sundarbans. In The Sundarbans: A Disaster-Prone Eco-Region; Sen, H.S., Ed.; Coastal Research Library; Springer: Cham, Switzerland, 2019; Volume 30, pp. 225–260. [Google Scholar] [CrossRef]
- Acharjee, T.K.; Halsema, G.V.; Ludwig, F.; Hellegers, P.; Supit, I. Shifting planting date of Boro rice as a climate change adaptation strategy to reduce water use. Agric. Syst. 2019, 168, 131–143. [Google Scholar] [CrossRef]
- Mainuddin, M.; Alam, M.M.; Maniruzzaman, M.; Kabir, M.J.; Mojid, M.A.; Hasan, M.M.; Schmidt, E.J.; Islam, M.T. Yield, profitability and prospects of irrigated Boro rice cultivation in the North-West region of Bangladesh. PLoS ONE 2021, 16, e0250897. [Google Scholar] [CrossRef] [PubMed]
- Mondal, B.; Samal, P.; Rath, N.C.; Kumar, G.A.K.; Mishra, S.K.; Bag, M.K.; Prasad, S.M.; Roy, S.; Saikia, K. Quantification of yield gaps and impact assessment of rice production technologies. In Rice Research for Enhancing Productivity, Profitability and Climate Resilience; Pathak, H., Nayak, A.K., Jena, M., Singh, O.N., Saml, P., Sharma, S.G., Eds.; ICAR-National Rice Research Institute: Cuttack, India, 2018; pp. 497–511. Available online: https://icar-nrri.in/wp-content/uploads/2019/02/Rice_Research_book_nrri.pdf (accessed on 18 October 2021).
- Sarangi, S.K.; Burman, D.; Mandal, S.; Maji, B.; Humphreys, E.; Tuong, T.P.; Bandyopadhyay, B.K.; Sharma, D.K. Promising rice genotypes for the wet and dry seasons in coastal West Bengal. In Revitalizing the Ganges Costal Zone: Turning Science into Policy and Practices, Proceedings of the International Conference on Revitalizing the Ganges Costal Zone, Dhaka, Bangladesh, 21–23 October 2014; Humphreys, E., Tuong, T.P., Buisson, M.C., Pukinskis, I., Phillips, M., Eds.; CGIAR Challenge Program on Water and Food (CPWF): Colombo, Sri Lanka, 2015; pp. 304–319. [Google Scholar]
- International Rice Research Institute (IRRI). Standard Evaluation System for Rice (SES). 2002. Available online: http://www.knowledgebank.irri.org/images/docs/rice-standard-evaluation-system.pdf (accessed on 3 January 2021).
- Statistical Tool for Agricultural Research. International Rice Research Institute, Manila, Philippines. Available online: http://bbi.irri.org/ (accessed on 3 January 2021).
- Gomez, K.A.; Gomez, A.A. Statistical Procedures for Agricultural Research, 2nd ed.; John Wiley and Sons: New York, NY, USA, 1984; pp. 97–107. [Google Scholar]
- Acharjee, T.K.; Ludwig, F.; Halsema, G.V.; Hellegers, P.; Supit, I. Future changes in water requirements of Boro rice in the face of climate change in North-West Bangladesh. Agric. Water Manag. 2017, 194, 172–183. [Google Scholar] [CrossRef]
- Singh, B.; Mishra, S.; Bisht, D.S.; Joshi, R. Growing rice with less water: Improving productivity by decreasing water demand. In Rice Improvement; Ali, J., Wani, S.H., Eds.; Springer: Cham, Switzerland, 2021; pp. 147–170. [Google Scholar] [CrossRef]
- Ali, I.; Tang, L.; Dai, J.; Kang, M.; Mahmood, A.; Wang, W.; Liu, B.; Liu, L.; Cao, W.; Zhu, Y. Responses of grain yield and yield related parameters to post-heading low-temperature stress in Japonica rice. Plants 2021, 10, 1425. [Google Scholar] [CrossRef]
- Faghani, R.; Mobasser, H.R.; Dehpor, A.A.; Kochaksarai, S.T. The effect of planting date and seedling age on yield and yield components of rice (Oryza sativa L.) varieties in North of Iran. Afr. J. Agric. Res. 2011, 6, 2571–2575. [Google Scholar]
- Shiade, S.R.G.; Fallah, A. Temperature effect on yield and yield components of different rice cultivars in flowering stage. Internat. J. Agron. 2020, 2014, 846707. [Google Scholar]
- Safdar, M.E.; Noorka, I.R.; Tanveer, A.; Tariq, S.A.; Rauf, S. Growth and yield of advanced breeding lines of medium grain rice as influenced by different transplanting dates. J. Anim. Plant Sci. 2013, 23, 227–231. [Google Scholar]
- Chauhan, B.S.; Kaur, P.; Mahajan, G.; Randhawa, R.K.; Singh, H.; Kang, M.S. Global warming and its possible impact on agriculture in India. Adv. Agron. 2014, 123, 65–121. [Google Scholar] [CrossRef]
- Sharma, B.R.; Gulati, A.; Mohan, G.; Manchanda, S.; Ray, I.; Amarasinghe, U. Water Productivity Mapping of Major Indian Crops; National Bank for Agriculture and Rural Development (NABARD), Mumbai, India and Indian Council for Research on International Economic Relations (ICRIER): New Delhi, India, 2018; p. 182. [Google Scholar]
- Annual Report (2020–2021); Department of Agriculture, Cooperation and Farmers’ Welfare, Ministry of Agriculture and Farmers’ Welfare, Government of India Krishi Bhawan: New Delhi, India, 2021; p. 294. Available online: https://agricoop.nic.in/en/whatsnew (accessed on 7 October 2021).
- Sarangi, S.K.; Maji, B.; Sharma, P.C.; Digar, S.; Mahanta, K.K.; Burman, D.; Mandal, U.K.; Mandal, S.; Mainuddin, M. Potato (Solanum tuberosum L.) cultivation by zero tillage and paddy straw mulching in the saline soils of the Ganges Delta. Potato Res. 2020, 64, 277–305. Available online: https://link.springer.com/article/10.1007%2Fs11540-020-09478-6 (accessed on 7 October 2021).
- Sarangi, S.K.; Singh, S.; Kumar, V.; Srivastava, A.K.; Sharma, P.C.; Johnson, D.E. Tillage and crop establishment options for enhancing the productivity, profitability, and resource use efficiency of rice-rabi systems of the salt-affected coastal lowlands of eastern India. Field Crop. Res. 2020, 247, 107494. [Google Scholar] [CrossRef]
- Sarangi, S.K.; Singh, S.; Srivastava, A.K.; Choudhary, M.; Mandal, U.K.; Lama, T.D.; Mahanta, K.K.; Kumar, V.; Sharma, P.C.; Ismail, A.M. Crop and residue management improves productivity and profitability of rice–maize system in salt-affected rainfed lowlands of East India. Agronomy 2020, 10, 2019. [Google Scholar] [CrossRef]
- Pandey, S.; Yadav, S.; Hellin, J.; Balie, J.; Bhandari, H.; Kumar, A.; Mondal, M.K. Why technologies often fail to scale: Policy and market failures behind limited scaling of alternate wetting and drying in rice in Bangladesh. Water 2020, 12, 1510. [Google Scholar] [CrossRef]
- Burman, D.; Maji, B.; Singh, S.; Mandal, S.; Sarangi, S.K.; Bandyopadhyay, B.K.; Bal, A.R.; Sharma, D.K.; Krishnamurthy, S.L.; Singh, H.N.; et al. Participatory evaluation guides the development and selection of farmers’ preferred rice varieties for salt- and flood-affected coastal deltas of South and Southeast Asia. Field Crop. Res. 2018, 220, 67–77. [Google Scholar] [CrossRef] [PubMed]
- Bricheno, L.M.; Wolf, J.; Sun, Y. Saline intrusion in the Ganges-Brahmaputra-Meghna mega delta. Estuar. Coast. Shelf Sci. 2021, 252, 107246. [Google Scholar] [CrossRef]
- Clarke, D.; Williams, S.; Jahiruddin, M.; Parks, K.; Salehin, M. Projections of on-farm salinity in coastal Bangladesh. Environ. Sci. Process. Impacts 2015, 17, 1127. [Google Scholar] [CrossRef] [Green Version]
- Rhoades, J.D.; Kandiah, A.; Mashali, A.M. The Use of Saline Waters for Crop. In Production; FAO Irrigation and Drainage Paper 48; Food and Agriculture Organization of the United Nations: Rome, Italy, 1992; p. 7. Available online: https://www.ars.usda.gov/arsuserfiles/20361500/pdf_pubs/P1313.pdf (accessed on 7 October 2021).
- Burman, D.; Sarangi, S.K.; Mandal, S.; Bandyopadhyay, B.K. Water Quality of tube-wells used for irrigation during Rabi and summer seasons in the coastal areas of Sundarbans, West Bengal. J. Indian Soc. Coast. Agric. Res. 2009, 27, 76–77. [Google Scholar]
- Salehin, M.; Chowdhury, M.M.A.; Clarke, D.; Mondal, S.; Nowreen, S.; Jahiruddin, M.; Haque, A. Mechanisms and drivers of soil salinity in coastal Bangladesh. In Ecosystem Services for Well-Being in Deltas; Nicholls, R.J., Hutton, C.W., Adger, W.N., Hanson, S.E., Rahman, M.M., Salehin, M., Eds.; Springer Nature: Cham, Switzerland, 2018; pp. 333–347. [Google Scholar] [CrossRef] [Green Version]
- Mainuddin, M.; Karim, F.; Gaydon, D.S.; Kirby, J.M. Impact of climate change and management strategies on water and salt balance of the polders and islands in the Ganges delta. Sci. Rep. 2021, 11, 7041. [Google Scholar] [CrossRef] [PubMed]
Month | Temperature (°C) | RH * (%) | Rainfall (mm) | Rainy Days | Av. Wind (km h−1) | BSSH # (h Day−1) | ||
---|---|---|---|---|---|---|---|---|
Max. | Min. | Mean | ||||||
2016–17 | ||||||||
Oct. | 31.9 | 24.8 | 28.3 | 61.0 | 27.5 | 3 | 0.3 | 5.8 |
Nov. | 29.2 | 18.6 | 23.9 | 47.3 | 48.2 | 3 | 0.2 | 6.6 |
Dec. | 26.3 | 14.6 | 20.5 | 50.1 | 0.0 | 0 | 0.3 | 5.9 |
Jan. | 25.7 | 12.7 | 19.2 | 77.9 | 0.0 | 0 | 0.6 | 7.6 |
Feb. | 29.4 | 17.0 | 23.2 | 81.0 | 0.0 | 0 | 1.2 | 7.1 |
Mar. | 31.4 | 21.5 | 26.4 | 81.9 | 49.0 | 4 | 3.4 | 6.9 |
Apr. | 34.2 | 26.0 | 30.1 | 76.8 | 12.6 | 2 | 6.8 | 5.0 |
May | 36.6 | 26.9 | 31.7 | 72.5 | 66.6 | 5 | 7.5 | 8.4 |
2017–18 | ||||||||
Oct. | 31.4 | 24.9 | 28.2 | 88.2 | 420.8 | 11 | 4.1 | 5.5 |
Nov. | 29.3 | 19.1 | 24.2 | 76.8 | 34.6 | 5 | 2.0 | 6.9 |
Dec. | 25.7 | 15.6 | 20.7 | 86.7 | 28.8 | 2 | 2.0 | 5.9 |
Jan. | 24.3 | 11.2 | 17.8 | 81.0 | 0.0 | 0 | 1.9 | 7.4 |
Feb. | 30.6 | 17.8 | 24.2 | 79.0 | 0.0 | 0 | 2.7 | 7.0 |
Mar. | 33.9 | 22.8 | 28.4 | 78.0 | 2.4 | 0 | 4.2 | 7.2 |
Apr. | 34.4 | 23.9 | 29.1 | 75.0 | 67.4 | 7 | 6.5 | 8.0 |
May | 34.9 | 26.3 | 30.6 | 74.5 | 141.0 | 7 | 7.7 | 7.9 |
Treatments | Disease Score | Irrigation Water Requirement (mm) |
---|---|---|
Sowing dates | ||
D1 | 6.61 a | 1391 b |
D2 | 3.83 bc | 1210 e |
D3 | 3.50 c | 1285 d |
D4 | 3.33 c | 1334 c |
D5 | 3.72 c | 1384 b |
D6 | 4.61 b | 1444 a |
SEm± | 0.17 | 9.8 |
LSD0.05 | 0.52 | 31.2 |
Varieties | ||
V1 | 3.97 b | 1357 a |
V2 | 3.94 b | 1341 b |
V3 | 4.89 a | 1326 c |
SEm± | 0.11 | 4.7 |
LSD0.05 | 0.33 | 13.8 |
Years | ||
2016–17 | 4.17 b | 1308 b |
2017–18 | 4.37 a | 1374 a |
SEm± | 0.04 | 3.03 |
LSD0.05 | 0.12 | 9.15 |
Interaction | ns | ns |
Dates of Sowing | Mean Air Temperature (°C) during Flowering | Flowering Period | Harvesting Period | Mean Air Temperature (°C) at Harvesting | Maturity Duration (Days) |
---|---|---|---|---|---|
1 Oct. | 17.8–19.2 | Late Jan. | Late Mar. | 26.4–28.4 | 170–177 |
15 Oct. | 23.2–24.2 | Early Feb. | Late Mar. | 26.4–28.4 | 155–162 |
1 Nov. | 26.4–28.4 | Early Mar. | Early Apr.–Mid Apr. | 29.1–30.1 | 160–167 |
15 Nov. | 26.4–28.4 | Mid Mar. | Late Apr. | 29.1–30.1 | 155–162 |
1 Dec. | 29.1–30.1 | Late Mar.–Mid Apr. | Early May | 29.1–30.1 | 155–162 |
15 Dec. | 30.6–31.7 | Late Apr.–Early May | Mid May–Late May | 30.6–31.7 | 155–162 |
Treatments | Yield Attributes | |||
---|---|---|---|---|
Panicles m−2 | Spikelets Panicle−1 | Spikelet Fertility (%) | 1000 Grain wt (g) | |
Sowing dates | ||||
D1 | 345 bc | 108 e | 82.2 bc | 19.43 |
D2 | 429 a | 156 a | 88.8 a | 19.99 |
D3 | 345 bc | 149 ab | 86.5 ab | 19.81 |
D4 | 333 bc | 146 b | 86.6 ab | 20.24 |
D5 | 365 b | 131 c | 84.5 b | 19.60 |
D6 | 315 c | 118 d | 81.4 c | 18.98 |
SEm± | 13 | 3 | 0.9 | 0.25 |
LSD0.05 | 42 | 9 | 2.7 | ns |
Varieties | ||||
V1 | 379 a | 125 b | 86.4 a | 19.12 b |
V2 | 354 ab | 157 a | 87.0 a | 20.58 a |
V3 | 332 b | 122 b | 81.6 b | 19.33 b |
SEm± | 11 | 2 | 0.5 | 0.17 |
LSD0.05 | 32 | 7 | 1.5 | 0.49 |
Years | ||||
2016–17 | 310 b | 133 | 83.6 b | 19.65 |
2017–18 | 400 a | 136 | 86.4 a | 19.70 |
SEm± | 10 | 1 | 0.4 | 0.12 |
LSD0.05 | 27 | ns | 1.2 | ns |
Interaction | ns | ns | ns | ns |
Dates of Sowing | Grain Yield (t ha−1) | Straw Yield (t ha−1) | ||||||
---|---|---|---|---|---|---|---|---|
V1 | V2 | V3 | Mean | V1 | V2 | V3 | Mean | |
D1 | 3.06 bc | 2.48 d | 3.23 b | 2.92 bc | 8.04 a | 7.89 a | 6.57 a | 7.50 a |
D2 | 3.40 b | 3.98 b | 4.96 a | 4.11 a | 4.93 b | 5.91 b | 5.67 b | 5.51 b |
D3 | 4.06 a | 5.10 a | 1.40 d | 3.52 ab | 4.45 c | 5.62 bc | 4.85 c | 4.97 b |
D4 | 2.67 c | 3.18 c | 1.32 d | 2.39 c | 4.28 c | 3.93 d | 2.11 d | 3.44 c |
D5 | 4.25 a | 2.95 cd | 2.49 c | 3.23 b | 4.36 c | 3.18 e | 4.48 c | 4.01 c |
D6 | 2.98 c | 2.76 d | 2.52 c | 2.75 bc | 4.99 b | 5.35 c | 5.79 b | 5.38 b |
Mean | 3.40 | 3.41 | 2.65 | - | 5.17 | 5.31 | 4.91 | - |
Comparisons | C1 | C2 | C3 | C4 | C1 | C2 | C3 | C4 |
SEm± | 0.23 | 0.16 | 0.40 | 0.13 | 0.29 | 0.17 | 0.43 | 0.15 |
LSD0.05 | 0.71 | 0.48 | 1.17 | 0.40 | 0.92 | ns | 1.25 | 0.46 |
Dates of Sowing | Grain Yield (t ha−1) | Straw Yield (t ha−1) | ||||||
---|---|---|---|---|---|---|---|---|
V1 | V2 | V3 | Mean | V1 | V2 | V3 | Mean | |
D1 | 2.74 d | 2.66 d | 2.73 b | 2.71 c | 4.83 d | 4.36 e | 4.27 b | 4.49 c |
D2 | 5.95 b | 6.32 b | 4.25 a | 5.51 a | 6.64 b | 6.59 c | 4.85 a | 6.03 a |
D3 | 6.69 a | 6.95 a | 3.05 b | 5.57 a | 7.07 a | 7.64 a | 3.32 c | 6.01 a |
D4 | 7.08 a | 7.19 a | 2.95 b | 5.74 a | 7.11 a | 7.32 ab | 3.30 c | 5.91 a |
D5 | 6.85 a | 6.85 a | 2.84 b | 5.51 a | 7.00 a | 7.05 b | 3.47 c | 5.84 a |
D6 | 5.53 c | 5.76 c | 2.08 c | 4.45 b | 6.03 c | 6.06 d | 3.48 c | 5.19 b |
Mean | 5.81 | 5.95 | 2.98 | - | 6.45 | 6.50 | 3.78 | - |
Comparisons | C1 | C2 | C3 | C4 | C1 | C2 | C3 | C4 |
SEm± | 0.16 | 0.17 | 0.42 | 0.13 | 0.19 | 0.14 | 0.34 | 0.12 |
LSD0.05 | 0.52 | 0.53 | 1.29 | 0.40 | 0.58 | 0.43 | 1.04 | 0.35 |
Months | 2016–17 | 2017–18 | ||||
---|---|---|---|---|---|---|
Soil Salinity (ECe) | IW * Salinity (EC) | # Field Water Salinity (EC) | Soil Salinity (ECe) | IW Salinity (EC) | Field Water Salinity (EC) | |
Nov. | 2.53 ± 0.37 | 1.28 ± 0.05 | 1.37 ± 0.07 | 2.20 ± 0.61 | 1.42 ± 0.03 | 1.51 ± 0.04 |
Dec. | 3.26 ± 0.25 | 1.76 ± 0.04 | 2.04 ± 0.05 | 2.35 ± 0.46 | 1.52 ± 0.02 | 1.77 ± 0.05 |
Jan. | 3.96 ± 0.32 | 1.57 ± 0.03 | 1.72 ± 0.06 | 2.93 ± 0.61 | 1.58 ± 0.04 | 1.79 ± 0.06 |
Feb. | 4.18 ± 0.26 | 1.15 ± 0.04 | 1.84 ± 0.07 | 3.30 ± 0.59 | 1.77 ± 0.06 | 1.85 ± 0.08 |
Mar. | 4.99 ± 0.25 | 1.39 ± 0.02 | 1.51 ± 0.06 | 3.90 ± 0.48 | 1.72 ± 0.03 | 1.87 ± 0.05 |
Apr. | 5.23 ± 0.27 | 1.32 ± 0.07 | 1.42 ± 0.08 | 4.30 ± 0.53 | 1.72 ± 0.04 | 1.89 ± 0.07 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sarangi, S.K.; Mainuddin, M.; Maji, B.; Mahanta, K.K.; Digar, S.; Burman, D.; Mandal, U.K.; Mandal, S. Optimum Sowing Date and Salt Tolerant Variety Boost Rice (Oryza sativa L.) Yield and Water Productivity during Boro Season in the Ganges Delta. Agronomy 2021, 11, 2413. https://doi.org/10.3390/agronomy11122413
Sarangi SK, Mainuddin M, Maji B, Mahanta KK, Digar S, Burman D, Mandal UK, Mandal S. Optimum Sowing Date and Salt Tolerant Variety Boost Rice (Oryza sativa L.) Yield and Water Productivity during Boro Season in the Ganges Delta. Agronomy. 2021; 11(12):2413. https://doi.org/10.3390/agronomy11122413
Chicago/Turabian StyleSarangi, Sukanta K., Mohammed Mainuddin, Buddheswar Maji, Kshirendra K. Mahanta, Saheb Digar, Dhiman Burman, Uttam Kumar Mandal, and Subhasis Mandal. 2021. "Optimum Sowing Date and Salt Tolerant Variety Boost Rice (Oryza sativa L.) Yield and Water Productivity during Boro Season in the Ganges Delta" Agronomy 11, no. 12: 2413. https://doi.org/10.3390/agronomy11122413
APA StyleSarangi, S. K., Mainuddin, M., Maji, B., Mahanta, K. K., Digar, S., Burman, D., Mandal, U. K., & Mandal, S. (2021). Optimum Sowing Date and Salt Tolerant Variety Boost Rice (Oryza sativa L.) Yield and Water Productivity during Boro Season in the Ganges Delta. Agronomy, 11(12), 2413. https://doi.org/10.3390/agronomy11122413