Study of Calcination Temperature Influence on Physicochemical Properties and Photodegradation Performance of Cu2O/WO3/TiO2
Abstract
:1. Introduction
2. Experimental
2.1. Chemicals
2.2. Synthesis of CWT
2.3. Characterization
2.4. PEC Study
2.5. Photodegradation Study
3. Characterizations
3.1. TGA
3.2. XRD
3.3. SEM
3.4. TEM
3.5. BET
3.6. Optical Characteristics
3.7. PEC Study
4. Results and Discussion
Photodegradation Performance
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yu, H.; Li, S.; Peng, S.; Yu, Z.; Chen, F.; Liu, X.; Guo, J.; Zhu, B.; Huang, W.; Zhang, S. Construction of rutile/anatase TiO2 homojunction and metal-support interaction in Au/TiO2 for visible photocatalytic water splitting and degradation of methylene blue. Int. J. Hydrogen Energy 2023, 48, 975–990. [Google Scholar] [CrossRef]
- Wolde, G.S.; Kuo, D.-H.; Abdullah, H. Solar-light-driven ternary MgO/TiO2/g-C3N4 heterojunction photocatalyst with surface defects for dinitrobenzene pollutant reduction. Chemosphere 2022, 307, 135939. [Google Scholar] [CrossRef] [PubMed]
- Xie, Z.; Yang, J.; Wang, K.; Meng, Q.; Tang, Y.; Zhao, K. Facile fabrication of TiO2-SiO2-C composite with anatase/rutile heterostructure via sol-gel process and its enhanced photocatalytic activity in the presence of H2O2. Ceram. Int. 2022, 48, 9114–9123. [Google Scholar] [CrossRef]
- Yang, L.; Liu, X.; Wang, C.; Liu, Z.; Feng, X. Influence of calcination temperatures on the anatase and rutile mixed phase composition and photocatalytic activity of the carbon doped mesoporous TiO2. Opt. Mater. 2022, 133, 112997. [Google Scholar] [CrossRef]
- Norouzi, M.; Fazeli, A.; Tavakoli, O. Photocatalytic degradation of phenol under visible light using electrospun Ag/TiO2 as a 2D nano-powder: Optimizing calcination temperature and promoter content. Adv. Powder Technol. 2022, 33, 103792. [Google Scholar] [CrossRef]
- Zhang, J.; Kuang, M.; Cao, Y.; Ji, Z. Environment-friendly ternary ZnO/ZnFe2O4/TiO2 composite photocatalyst with synergistic enhanced photocatalytic activity under visible-light irradiation. Solid State Sci. 2022, 129, 106913. [Google Scholar] [CrossRef]
- De Melo Oliveira, A.C.; Anjos de Jesus, R.; Bilal, M.; Iqbal, H.M.N.; Bharagava, R.N.; Yerga, R.M.N.; Ferreira, L.F.R.; Egues, S.M.; Figueiredo, R.T. Influence of sound and calcination temperature on the fabrication of TiO2-based photocatalysts and their photoactivity for H2 production. Mol. Catal. 2022, 529, 112523. [Google Scholar] [CrossRef]
- Bashiri, R.; Mohamed, N.M.; Fai Kait, C.; Sufian, S.; Khatani, M. Enhanced hydrogen production over incorporated Cu and Ni into titania photocatalyst in glycerol-based photoelectrochemical cell: Effect of total metal loading and calcination temperature. Int. J. Hydrogen Energy 2017, 42, 9553–9566. [Google Scholar] [CrossRef]
- Chau, J.H.F.; Lai, C.W.; Leo, B.F.; Juan, J.C.; Lee, K.M.; Qian, X.; Badruddin, I.A.; Zai, J. Direct Z-scheme Cu2O/WO3/TiO2 nanocomposite as a potential supercapacitor electrode and an effective visible-light-driven photocatalyst. J. Environ. Manag. 2024, 363, 121332. [Google Scholar] [CrossRef]
- Chau, J.H.F.; Lai, C.W.; Leo, B.F.; Juan, J.C.; Johan, M.R. Advanced photocatalytic degradation of acetaminophen using Cu2O/WO3/TiO2 ternary composite under solar irradiation. Catal. Commun. 2022, 163, 106396. [Google Scholar] [CrossRef]
- Chau, J.H.F.; Lee, K.M.; Pang, Y.L.; Abdullah, B.; Juan, J.C.; Leo, B.F.; Lai, C.W. Photodegradation assessment of RB5 dye by utilizing WO3/TiO2 nanocomposite: A cytotoxicity study. Environ. Sci. Pollut. Res. 2022, 29, 22372–22390. [Google Scholar] [CrossRef] [PubMed]
- Mafa, P.J.; Malefane, M.E.; Idris, A.O.; Mamba, B.B.; Liu, D.; Gui, J.; Kuvarega, A.T. Cobalt oxide/copper bismuth oxide/samarium vanadate (Co3O4/CuBi2O4/SmVO4) dual Z-scheme heterostructured photocatalyst with high charge-transfer efficiency: Enhanced carbamazepine degradation under visible light irradiation. J. Colloid Interface Sci. 2021, 603, 666–684. [Google Scholar] [CrossRef] [PubMed]
- Sitara, E.; Nasir, H.; Iram, S.; Bukhari, S.A.B.; Akhtar, T.; Mumtaz, S. Tailoring of ZnSe/GCN/MoS2 ternary heterojunction with enhanced photoelectrochemical activity for water oxidation. Surf. Interfaces 2023, 37, 102632. [Google Scholar] [CrossRef]
- Youssef, A.M.; Yakout, S.M. Mono, dual and tri-doped TiO2: Sunlight photocatalytic, room temperature ferromagnetic and dielectric constant properties. Mater. Chem. Phys. 2022, 282, 125978. [Google Scholar] [CrossRef]
- Tekin, D.; Birhan, D.; Kiziltas, H. Thermal, photocatalytic, and antibacterial properties of calcinated nano-TiO2/polymer composites. Mater. Chem. Phys. 2020, 251, 123067. [Google Scholar] [CrossRef]
- El Kaim Billah, R.; Shekhawat, A.; Mansouri, S.; Majdoubi, H.; Agunaou, M.; Soufiane, A.; Jugade, R. Adsorptive removal of Cr(VI) by Chitosan-SiO2-TiO2 nanocomposite. Environ. Nanotechnol. Monit. Manag. 2022, 18, 100695. [Google Scholar] [CrossRef]
- Rasouli, K.; Alamdari, A.; Sabbaghi, S. Ultrasonic-assisted synthesis of α-Fe2O3@TiO2 photocatalyst: Optimization of effective factors in the fabrication of photocatalyst and removal of non-biodegradable cefixime via response surface methodology-central composite design. Sep. Purif. Technol. 2023, 307, 122799. [Google Scholar] [CrossRef]
- Sarngan, P.P.; Lakshmanan, A.; Sarkar, D. Influence of Anatase-Rutile Ratio on Band Edge Position and Defect States of TiO2 Homojunction Catalyst. Chemosphere 2022, 286, 131692. [Google Scholar] [CrossRef]
- Wang, Z.; Xu, P.; Yue, X.; Wang, A.; Wu, Y.; Liu, X.; Zhang, Y. Effect of calcination temperature on the electrochemical performance of nickel nanoparticles on carbon coated porous silicon nanospheres anode for lithium-ion batteries. Colloids Surf. A Physicochem. Eng. Asp. 2022, 648, 129193. [Google Scholar] [CrossRef]
- Silva, M.M.S.; Raimundo, R.A.; Silva, T.R.; Araújo, A.J.M.; Macedo, D.A.; Morales, M.A.; Souza, C.P.; Santos, A.G.; Lopes-Moriyama, A.L. Morphology-controlled NiFe2O4 nanostructures: Influence of calcination temperature on structural, magnetic and catalytic properties towards OER. J. Electroanal. Chem. 2023, 933, 117277. [Google Scholar] [CrossRef]
- Chankhanittha, T.; Watcharakitti, J.; Piyavarakorn, V.; Johnson, B.; Bushby, R.J.; Chuaicham, C.; Sasaki, K.; Nijpanich, S.; Nakajima, H.; Chanlek, N.; et al. ZnO/ZnS photocatalyst from thermal treatment of ZnS: Influence of calcination temperature on development of heterojunction structure and photocatalytic performance. J. Phys. Chem. Solids 2023, 179, 111393. [Google Scholar] [CrossRef]
- Chakraborty, M.; Bera, K.K.; Mandal, M.; Ray, A.; Das, S.; Bhunia, T.; Gayen, A.; Panda, A.; Park, H.-H.; Bhattacharya, S.K. Phase-dependent electrocatalytic activities of Pt-anchored rutile, anatase and mixed anatase-rutile TiO2 nano-composites for methanol oxidation in alkali. Solid State Sci. 2022, 129, 106903. [Google Scholar] [CrossRef]
- Nguyen, C.H.; Tran, M.L.; Tran, T.T.V.; Juang, R.-S. Enhanced removal of various dyes from aqueous solutions by UV and simulated solar photocatalysis over TiO2/ZnO/rGO composites. Sep. Purif. Technol. 2020, 232, 115962. [Google Scholar] [CrossRef]
- Mioduska, J.; Łapiński, M.S.; Karczewski, J.; Hupka, J.; Zielińska-Jurek, A. New LED photoreactor with modulated UV–vis light source for efficient degradation of toluene over WO3/TiO2 photocatalyst. Chem. Eng. Res. Des. 2023, 193, 145–157. [Google Scholar] [CrossRef]
- Zhang, X.; Xiang, S.; Du, Q.; Bi, F.; Xie, K.; Wang, L. Effect of calcination temperature on the structure and performance of rod-like MnCeOx derived from MOFs catalysts. Mol. Catal. 2022, 522, 112226. [Google Scholar] [CrossRef]
- Xing, J.; Wang, Y.; Wu, Y.; Li, L.; Liu, P. Influence of calcination temperature on the microstructure and photocatalysis performance of B/Sm-TiO2 nanomaterials. Vacuum 2023, 212, 112063. [Google Scholar] [CrossRef]
- Cui, X.; Gong, Y.; Liu, Y.; Yu, H.; Qin, W.; Huo, M. Synthesis of a Z-scheme ternary photocatalyst (Ta3N5/Ag3PO4/AgBr) for the enhanced photocatalytic degradation of tetracycline under visible light. J. Phys. Chem. Solids 2022, 170, 110962. [Google Scholar] [CrossRef]
- Chang, C.-J.; Chen, Y.-C.; Tsai, Z.-T. Effect of calcination induced phase transition on the photocatalytic hydrogen production activity of BiOI and Bi5O7I based photocatalysts. Int. J. Hydrogen Energy 2022, 47, 40777–40786. [Google Scholar] [CrossRef]
- Iqbal, S.; Liu, J.; Ma, H.; Liu, W.; Zuo, S.; Yu, Y. Fabrication of TiO2/Fe2O3/g-C3N4 Ternary Photocatalyst via a Low-Temperature Calcination and Solvothermal Route and its visible light Assisted Photocatalytic Properties. J. Mol. Struct. 2023, 1282, 135166. [Google Scholar] [CrossRef]
- Cheng, G.; Jiang, M.; Zhang, W.; Wen, Z.; Xiong, J. Uncovering fabrication approach impact on photocatalytic ciprofloxacin (CIP) antibiotic degradation of brookite TiO2. Sustain. Mater. Technol. 2024, 41, e01018. [Google Scholar] [CrossRef]
- Náfrádi, M.; Hernadi, K.; Kónya, Z.; Alapi, T. Investigation of the efficiency of BiOI/BiOCl composite photocatalysts using UV, cool and warm white LED light sources—Photon efficiency, toxicity, reusability, matrix effect, and energy consumption. Chemosphere 2021, 280, 130636. [Google Scholar] [CrossRef] [PubMed]
- Xu, C.; Jin, Z.; Yang, J.; Cui, J.; Hu, J.; Li, Z.; Chen, C.; Liu, F.; Hu, R. High surface area B-doped LaFeO3/Ag/Ag3PO4 as a Z-scheme photocatalyst for facilitate phenol degradation. Colloids Surf. A Physicochem. Eng. Asp. 2022, 651, 129668. [Google Scholar] [CrossRef]
- Kovačič, Ž.; Likozar, B.; Huš, M. Electronic properties of rutile and anatase TiO2 and their effect on CO2 adsorption: A comparison of first principle approaches. Fuel 2022, 328, 125322. [Google Scholar] [CrossRef]
- Shi, C.; Wang, Y.; He, J.; Feng, D.; Zhang, R.; Zheng, L.; Yang, Z.; Li, H.; Pan, P.; Zhao, J. Fabrication of 3D array ferromagnetic photocatalyst with enhanced visible-light photocatalytic activity. Ceram. Int. 2022, 48, 32314–32325. [Google Scholar] [CrossRef]
- Tang, Y.; Zhang, D.; Qiu, X.; Zeng, L.; Huang, B.; Li, H.; Pu, X.; Geng, Y. Fabrication of a NiCo2O4/Zn0.1Cd0.9S p-n heterojunction photocatalyst with improved separation of charge carriers for highly efficient visible light photocatalytic H2 evolution. J. Alloys Compd. 2019, 809, 151855. [Google Scholar] [CrossRef]
- Shi, J.H.; Zhao, T.; Yang, T.T.; Pu, K.K.; Shi, J.T.; Zhou, A.J.; Li, H.F.; Wang, S.F.; Xue, J.B. Z-scheme heterojunction photocatalyst formed by MOF-derived C-TiO2 and Bi2WO6 for enhancing degradation of oxytetracycline: Mechanistic insights and toxicity evaluation in the presence of a single active species. J. of Colloid. Interface. Sci. 2024, 665, 41–59. [Google Scholar] [CrossRef]
- Liu, Z.; Luo, M.; Yuan, S.; Meng, L.; Ding, W.; Su, S.; Cao, Y.; Wang, Y.; Li, X. Boron-doped graphene quantum dot/bismuth molybdate composite photocatalysts for efficient photocatalytic nitrogen fixation reactions. J. Colloid Interface Sci. 2023, 650, 1301–1311. [Google Scholar] [CrossRef] [PubMed]
- Wan, C.; Zhou, L.; Sun, L.; Xu, L.; Cheng, D.-g.; Chen, F.; Zhan, X.; Yang, Y. Boosting visible-light-driven hydrogen evolution from formic acid over AgPd/2D g-C3N4 nanosheets Mott-Schottky photocatalyst. Chem. Eng. J. 2020, 396, 125229. [Google Scholar] [CrossRef]
- Jiang, M.; Zhang, W.; Xiong, J. 1D-2D N@TiO2-x nanoassembly with regulating oxygen vacancy for photocatalytic antibiotic remediation. Mol. Catal. 2024, 564, 114355. [Google Scholar] [CrossRef]
- Qian, H.; Cao, L.; Liao, S.; Xie, S.; Xiong, X.; Zou, J. Construction of noble-metal-free FeWO4/Mn0.5Cd0.5S photocatalyst to optimize H2 evolution performance in water splitting. Int. J. Hydrogen Energy 2023, 48, 8514–8525. [Google Scholar] [CrossRef]
- Chen, L.; Qiang, T.; Qiu, B.; Yu, M.; Ren, L. Monolayered Ti3C2O/(001) TiO2 photocatalyst with Schottky junction and active facets for hydrogen production. Int. J. Hydrogen Energy 2022, 47, 29741–29752. [Google Scholar] [CrossRef]
- Tai, X.H.; Lai, C.W.; Yang, T.C.K.; Johan, M.R.; Lee, K.M.; Chen, C.-Y.; Juan, J.C. Highly effective removal of volatile organic pollutants with p-n heterojunction photoreduced graphene oxide-TiO2 photocatalyst. J. Environ. Chem. Eng. 2022, 10, 107304. [Google Scholar] [CrossRef]
- Yang, Z.; Xie, X.; Wei, J.; Zhang, Z.; Yu, C.; Dong, S.; Chen, B.; Wang, Y.; Xiang, M.; Qin, H. Interface engineering Ni/Ni12P5@CNx Mott-Schottky heterojunction tailoring electrocatalytic pathways for zinc-air battery. J. Colloid Interface Sci. 2023, 642, 439–446. [Google Scholar] [CrossRef]
- Qiu, P.; Xiong, J.; Lu, M.; Liu, L.; Li, W.; Wen, Z.; Li, W.; Chen, R.; Cheng, G. Integrated p-n/Schottky junctions for efficient photocatalytic hydrogen evolution upon Cu@TiO2-Cu2O ternary hybrids with steering charge transfer. J. Colloid Interface Sci. 2022, 622, 924–937. [Google Scholar] [CrossRef] [PubMed]
Sample | Surface Area (m2.g−1) | Pore Volume (cm3.g−1) | Pore Diameter (nm) |
---|---|---|---|
CWT-500 | 35.77 | 0.09 | 12.96 |
CWT-600 | 12.81 | 0.06 | 16.92 |
CWT-700 | 15.01 | 0.02 | 7.73 |
CWT-800 | 8.09 | 0.01 | 9.34 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chau, J.H.F.; Lai, C.W.; Leo, B.F.; Juan, J.C.; Lee, K.M.; Badruddin, I.A.; Kumar, A.; Sharma, G. Study of Calcination Temperature Influence on Physicochemical Properties and Photodegradation Performance of Cu2O/WO3/TiO2. Catalysts 2025, 15, 601. https://doi.org/10.3390/catal15060601
Chau JHF, Lai CW, Leo BF, Juan JC, Lee KM, Badruddin IA, Kumar A, Sharma G. Study of Calcination Temperature Influence on Physicochemical Properties and Photodegradation Performance of Cu2O/WO3/TiO2. Catalysts. 2025; 15(6):601. https://doi.org/10.3390/catal15060601
Chicago/Turabian StyleChau, Jenny Hui Foong, Chin Wei Lai, Bey Fen Leo, Joon Ching Juan, Kian Mun Lee, Irfan Anjum Badruddin, Amit Kumar, and Gaurav Sharma. 2025. "Study of Calcination Temperature Influence on Physicochemical Properties and Photodegradation Performance of Cu2O/WO3/TiO2" Catalysts 15, no. 6: 601. https://doi.org/10.3390/catal15060601
APA StyleChau, J. H. F., Lai, C. W., Leo, B. F., Juan, J. C., Lee, K. M., Badruddin, I. A., Kumar, A., & Sharma, G. (2025). Study of Calcination Temperature Influence on Physicochemical Properties and Photodegradation Performance of Cu2O/WO3/TiO2. Catalysts, 15(6), 601. https://doi.org/10.3390/catal15060601