Interplay Between Ionic Liquids, Kolbe Chemistry, and 2D Photocatalyst Supports in Aqueous CO2 Photoreduction over Pd/TiO2 and Pd/g-C3N4
Abstract
1. Introduction
2. Results
2.1. Synthesis and Characterization of Photocatalyst Supports
2.1.1. NS-TiO2 and NS-TiO2/Pd
2.1.2. NS-g-C3N4 and NS-g-C3N4/Pd
2.2. Photocatalytic Reduction of CO2
- The central role of imidazolium acetate (C1C4ImOAc): In the absence of a heterogeneous photocatalyst, C1C4ImOAc alone produces CO selectively (0.44 μmol·h−1), consistent with its demonstrated ability to act as a homogeneous photocatalyst [10,11,12,13,14,15,16]. This confirms that the imidazolium cation functions as a photosensitizer while the acetate anion activates the solvent, leading to alkylcarbonate or bicarbonate intermediates [14]. When combined with NS-g-C3N4/Pd, the selectivity shifts from CO toward CH4 (0.38 μmol·h−1), underlining that the coexistence of heterogeneous and homogeneous pathways can alter the reduction mechanism (entry 2). In this hybrid system, the pre-activated C1C4Im–CO2 species may be reduced further than CO, thereby promoting C–H bond formation. The results obtained under argon confirm that the two phenomena take part in CH4 production, since its production decreases drastically but does not become zero (entry 3). Furthermore, it appears that the protic character of the cation or the presence of a proton due to acid conditions strongly enhances CH4 production (entries 4–5).
- The decisive influence of photocatalyst composition: A striking contrast emerges between NS-g-C3N4/Pd and NS-TiO2/Pd. The former, when combined with C1C4ImOAc, supports CO2 reduction but with altered selectivity (favoring CH4 over CO) (entry 2). The latter, however, overwhelmingly drives hydrogen evolution (entries 6 and 7), with H2 yields exceeding several thousand μmol·gPd−1·h−1 in the presence of salts such as CholineNTf2 or LiNTf2 (entries 14–15). This divergence illustrates that TiO2 strongly promotes proton reduction, while g-C3N4, in synergy with IL-mediated pre-activation, can direct electrons toward C–C bond chemistry and deeper CO2 reduction pathways. Surprisingly, under argon and in the presence of C1C4ImOAc, NS-TiO2/Pd affords higher amounts of CO, CH4, and H2, while H2 remains the dominant product (entry 8). No CO, CH4, and H2 are produced in the absence of palladium (Table S1, entries S5–S7).
- The impact of pH and additive nature: The correlation between solution pH, anion basicity, and selectivity is particularly revealing. At neutral to slightly acidic pH (≈5–6), imidazolium acetate affords CO or CH4, whereas alkaline conditions (>8) are detrimental: both KHCO3 and Na2CO3 completely suppress CO2 reduction and H2 production (entries 11 and 12), in line with the accumulation of inactive carbonate species. Salts such as NaOAc, operating around pH 8.1, bias the reaction toward methane (1.89 μmol·h−1) but with substantial co-production of H2 (entry 9), suggesting that basic acetate stabilizes pathways leading to C–H bond formation but destabilizes selective CO formation. Non-coordinating or weakly basic anions (NTf2− in CholineNTf2 or LiNTf2) promote massive hydrogen evolution, confirming that only sufficiently basic anions can activate CO2. These observations are in full agreement with the mechanistic picture outlined in [14], where the Kamlet–Taft β parameter (anion basicity) was shown to positively correlate with CO2 reduction efficiency. No CO, CH4, and H2 are produced in the absence of a photocatalyst (Table S1, entries S1–S4).
3. Discussion
4. Materials and Methods
4.1. Materials
4.2. Characterizations
4.3. Photocatalytic Reduction of CO2 in Diluted Ionic Liquid
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A

References
- Garcia, J.A.; Villen-Guzman, M.; Rodriguez-Maroto, J.M.; Paz-Garcia, J.M. Technical analysis of CO2 capture pathways and technologies. J. Environ. Chem. Eng. 2022, 10, 108470. [Google Scholar] [CrossRef]
- White, J.L.; Baruch, M.F.; Pander, J.E.; Hu, Y.; Fortmeyer, I.C.; Park, J.E.; Zhang, T.; Liao, K.; Yan, Y.; Shaw, T.W.; et al. Light-driven heterogeneous reduction of carbon dioxide: Photocatalysts and photoelectrodes. Chem. Rev. 2015, 115, 12888–12935. [Google Scholar] [CrossRef]
- Li, K.; Peng, B.; Peng, T. Recent advances in heterogeneous photocatalytic CO2 conversion to solar fuels. ACS Catal. 2016, 6, 7485–7527. [Google Scholar] [CrossRef]
- Zhang, W.; Mohamed, A.R.; Ong, W.-J. Z-scheme photocatalytic systems for carbon dioxide reduction: Where are we now? Angew. Chem. Int. Ed. 2020, 56, 22894. [Google Scholar] [CrossRef]
- Habisreutinger, S.N.; Schmidt-Mende, L.; Stolarczyk, J.K.; Kumaravel, V.; Bartlett, J.; Pillai, S.C. Photoelectrochemical conversion of Carbon Dioxide (CO2) into fuels and value-added products. ACS Energy Lett. 2020, 5, 486–519. [Google Scholar] [CrossRef]
- Rosen, B.A.; Salehi-Khojin, A.; Thorson, M.R.; Zhu, W.; Whipple, D.T.; Kenis, P.J.A.; Masel, R.I. Ionic Liquid–Mediated Selective Conversion of CO2 to CO at Low Overpotentials. Science 2011, 334, 643–644. [Google Scholar] [CrossRef]
- Rosen, B.A.; Haan, J.L.; Mukherjee, P.; Braunschweig, B.; Zhu, W.; Salehi-Khojin, A.; Dlott, D.D.; Masel, R.I. In Situ Spectroscopic Examination of a Low Overpotential Pathway for Carbon Dioxide Conversion to Carbon Monoxide. J. Phys. Chem. C 2012, 116, 15307–15312. [Google Scholar] [CrossRef]
- Dupont, J.; Leal, B.C.; Lozano, P.; Monteiro, A.L.; Migowski, P.; Scholten, J.D. Ionic Liquids in Metal, Photo-, Electro-, and (Bio)Catalysis. Chem. Rev. 2024, 124, 329–412. [Google Scholar] [CrossRef]
- Qadir, M.I.; Dupont, J. Thermo- and Photocatalytic Activation of CO2 in Ionic Liquids Nanodomains. Angew. Chem. Int. Ed. 2023, 62, e202301497. [Google Scholar] [CrossRef]
- Eisele, L.; Bica-Schröder, K. Photocatalytic Carbon Dioxide Reduction with Imidazolium-Based Ionic Liquids. ChemSusChem 2025, 18, e202402626. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, H.; Zeng, L.; Huang, L. Understanding the Roles of Ionic Liquids in Photocatalytic CO2 Reduction. J. Mater. Chem. A 2025, 13, 5546–5560. [Google Scholar] [CrossRef]
- Wang, P.; Wang, R. Ionic Liquid-Catalyzed CO2 Conversion for Valuable Chemicals. Molecules 2024, 29, 3805. [Google Scholar] [CrossRef]
- Liu, Y.; Sun, J.; Huang, H.; Bai, L.; Zhao, X.; Qu, B.; Xiong, L.; Bai, F.; Tang, J.; Jing, L.; et al. Improving CO2 Photoconversion with Ionic Liquid and Co-Catalyst. Nat. Commun. 2023, 14, 2713. [Google Scholar]
- Peng, Y.; Szeto, K.C.; Santini, C.C.; Daniele, S. Ionic Liquids as homogeneous photocatalyst for CO2 reduction in protic solvents. Chem. Engin. J. Adv. 2022, 12, 100379. [Google Scholar] [CrossRef]
- Peng, Y.; Szeto, K.C.; Santini, C.C.; Daniele, S. Study of the Parameters Impacting the Photocatalytic Reduction of Carbon Dioxide in Ionic Liquids. Chem. Photo. Chem. 2021, 5, 721–726. [Google Scholar]
- Qadir, M.I.; Zanatta, M.; Gil, E.S.; Stassen, H.K.; Gonçalves, P.; Neto, B.A.; Dupont, J. Photocatalytic Reverse Semi-Combustion Driven by Ionic Liquids. ChemSusChem 2019, 12, 1011–1016. [Google Scholar] [CrossRef]
- Nordness, O.; Brennecke, J.F. Ion Dissociation in Ionic Liquids and Ionic Liquid Solutions. Chem. Rev. 2020, 120, 12873–12902. [Google Scholar] [CrossRef]
- Strauch, M.; Roth, C.; Kubatzki, F.; Ludwig, R. Formation of “quasi” contact or solvent-separated ion pairs in the local environment of probe molecules dissolved in ionic liquids. ChemPhysChem 2014, 15, 265–270. [Google Scholar] [CrossRef]
- Dupont, J. On the Solid, Liquid and Solution Structural Organization of Imidazolium Ionic Liquids. J. Braz. Chem. Soc. 2004, 15, 341–350. [Google Scholar] [CrossRef]
- Hu, S.; Zhu, M. Ultrathin two-dimensional semiconductors for photocatalysis in energy and environment applications. ChemCatChem 2019, 11, 6147–6165. [Google Scholar] [CrossRef]
- Li, Y.; Gao, C.; Long, R.; Xiong, Y. Photocatalyst design based on two-dimensional materials. Mat. Today Chem. 2019, 11, 197–216. [Google Scholar] [CrossRef]
- Han, X.; Kuang, Q.; Jin, M.; Xie, Z.; Zheng, L. Synthesis of titania nanosheets with a high percentage of exposed (001) facets and related photocatalytic properties. J. Am. Chem. Soc. 2009, 131, 3152–3153. [Google Scholar] [CrossRef]
- Chen, Y.; Ge, Y.; Yan, Y.; Xu, L.; Zhu, X.; Yan, P.; Li, H. Photoinduced Zn-Air Battery-Assisted Self-Powered Sensor Utilizing Cobalt and Sulfur Co-Doped Carbon Nitride for Portable Detection Device. Adv. Sci. 2024, 11, 2408293. [Google Scholar] [CrossRef]
- Hayat, A.; Sohail, M.; Shah Syed, J.A.; Al-Sehemi, A.G.; Mohammed, M.H.; Al-Ghamdi, A.A.; Taha, T.A.; Al-Salem, H.S.; Alenad, A.M.; Amin, M.A.; et al. Recent Advancement of the Current Aspects of g-C3N4 for its Photocatalytic Applications in Sustainable Energy System. Chem. Rec. 2022, 22, e202100310. [Google Scholar] [CrossRef]
- Wang, Q.; Fang, Z.; Zhang, W.; Zhang, D. High-Efficiency g-C3N4 Based Photocatalysts for CO2 Reduction: Modification Methods. Adv. Fiber Mater. 2022, 4, 342–360. [Google Scholar] [CrossRef]
- Azofra, L.M.; MacFarlane, D.R.; Sun, C. A DFT study of planar vs. corrugated graphene-like carbon nitride (g-C3N4) and its role in the catalytic performance of CO2 conversion. Phys. Chem. Chem. Phys. 2016, 18, 18507–18514. [Google Scholar]
- Kraeutler, B.; Jaeger, C.D.; Bard, A.J. Direct observation of radical intermediates in the photo-Kolbe reaction-heterogeneous photocatalytic radical formation by electron spin resonance. J. Am. Chem. Soc. 1978, 100, 4903–4905. [Google Scholar] [CrossRef]
- Yang, D.; Ni, X.; Chen, W.; Weng, Z. The observation of photo-Kolbe reaction as a novel pathway to initiate photocatalytic polymerization over oxide semiconductor nanoparticles. J. Photochem. Photobiol. A Chem. 2008, 195, 323–329. [Google Scholar] [CrossRef]
- Cao, Y.; Lou, S.N.; Ohno, T. Photocatalytic Reforming of Acetic Acid into Methane over Pt/TiO2. Mater. Lett. 2023, 347, 134552. [Google Scholar] [CrossRef]
- Sakata, T.; Kawai, T.; Hashimoto, K. Heterogeneous photocatalytic reactions of organic acids and water. New reaction paths besides the photo-Kolbe reaction. J. Phys. Chem. 1984, 88, 2344–2350. [Google Scholar] [CrossRef]
- Rodembusch, F.S.; Albuquerque, B.L.; Gonçalves, W.D.; Morais, J.; Baptista, D.L.; de Moraes Lisbôa, A.; Dupont, J. Photocatalytic effects on Au@TiO2 confined in BMIm.NTf2 ionic liquid for hydrogen evolution reactions. Int. J. Hydrogen Energy 2023, 48, 31629–31642. [Google Scholar]
- Can, E.; Uralcan, B.; Yildirim, R. Enhancing charge transfer in photocatalytic hydrogen production over dye-sensitized Pt/TiO2 by ionic liquid coating. ACS Appl. Energy Mater. 2021, 4, 10931–10939. [Google Scholar] [CrossRef]






| Entry | Photocatalyst + Additive | CO (μmol·h−1) | CH4 (μmol·h−1) | H2 (μmol·gPd−1·h−1) | pH |
|---|---|---|---|---|---|
| 1 | C1C4ImOAc | 0.44 | 0 | 0 | 5.53 |
| 2 | NS-g-C3N4/Pd + C1C4ImOAc | 0 | 0.38 | 0 | 5.53 |
| 3 | NS-g-C3N4/Pd +C1C4ImOAc (Argon) | 0 | 0.12 | 0 | 5.53 |
| 4 | NS-g-C3N4/Pd + NaOAc (Argon) | 0 | 0.03 | 0 | 8.15 |
| 5 | NS-g-C3N4/Pd + HOAc (Argon) | 0 | 5.41 | 0 | 2.68 |
| 6 | NS-TiO2/Pd | 0.13 | 0 | 301 | 5.34 |
| 7 | NS-TiO2/Pd + C1C4ImOAc | 0.13 | 0.28 | 298 | 5.53 |
| 8 | NS-TiO2/Pd + C1C4ImOAc (Argon) | 0.25 | 0.50 | 416 | 5.53 |
| 9 | NS-TiO2/Pd + NaOAc | 0 | 1.89 | 269 | 8.15 |
| 10 | NS-TiO2/Pd + C1C4ImCF3CO2 | 0 | 0 | 449 | 3.80 |
| 11 | NS-TiO2/Pd + KHCO3 | 0 | 0 | 0 | 8.34 |
| 12 | NS-TiO2/Pd + Na2CO3 | 0 | 0 | 0 | 11.70 |
| 13 | NS-TiO2/Pd + CholineCl | 0 | 0 | 1394 | 8.12 |
| 14 | NS-TiO2/Pd + CholineNTf2 | 0 | 0 | 2867 | 8.12 |
| 15 | NS-TiO2/Pd + LiNTf2 | 0 | 0 | 3515 | 8.11 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peng, Y.; Dugas, P.-Y.; Szeto, K.-C.; Santini, C.C.; Daniele, S. Interplay Between Ionic Liquids, Kolbe Chemistry, and 2D Photocatalyst Supports in Aqueous CO2 Photoreduction over Pd/TiO2 and Pd/g-C3N4. Catalysts 2025, 15, 1128. https://doi.org/10.3390/catal15121128
Peng Y, Dugas P-Y, Szeto K-C, Santini CC, Daniele S. Interplay Between Ionic Liquids, Kolbe Chemistry, and 2D Photocatalyst Supports in Aqueous CO2 Photoreduction over Pd/TiO2 and Pd/g-C3N4. Catalysts. 2025; 15(12):1128. https://doi.org/10.3390/catal15121128
Chicago/Turabian StylePeng, Yulan, Pierre-Yves Dugas, Kai-Chung Szeto, Catherine C. Santini, and Stéphane Daniele. 2025. "Interplay Between Ionic Liquids, Kolbe Chemistry, and 2D Photocatalyst Supports in Aqueous CO2 Photoreduction over Pd/TiO2 and Pd/g-C3N4" Catalysts 15, no. 12: 1128. https://doi.org/10.3390/catal15121128
APA StylePeng, Y., Dugas, P.-Y., Szeto, K.-C., Santini, C. C., & Daniele, S. (2025). Interplay Between Ionic Liquids, Kolbe Chemistry, and 2D Photocatalyst Supports in Aqueous CO2 Photoreduction over Pd/TiO2 and Pd/g-C3N4. Catalysts, 15(12), 1128. https://doi.org/10.3390/catal15121128

