Brightly Visualizing Pancreatic Cancer Margins in Orthotopic Mouse Models with an Anti-CA19-9 Antibody Conjugated to a Near-Infrared Fluorophore
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Antibody–Dye Conjugate Excitation and Emission Wave Lengths
3.2. CA19-9-IRDye800CW Shows Superior Tumor Labeling Versus Control in Orthotopic Nude Mouse Models of Pancreatic Cancer
3.3. Biodistribution Studies of CA19-9-IRDye800CW Demonstrate Specific Tumor Labeling
3.4. Subcutaneous Imaging Demonstrates CA19-9-IRDye800CW Binds Selectively to CA19-9-Expressing Tumors
3.5. Immunohistochemical Staining of CA19-9 Expression in Histologic Sections
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
CA19-9 | Carbohydrate antigen 19-9 |
FGS | Fluorescence-guided surgery |
IP | Intraperitoneal |
mFI | Mean fluorescence intensity |
NIR | Near-infrared |
PBS | Phosphate-buffered saline |
PDAC | Pancreatic ductal adenocarcinoma |
TBR | Tumor-to-background ratio |
TLR | Tumor-to-liver ratio |
TPR | Tumor-to-pancreas ratio |
References
- Siegel, R.L.; Giaquinto, A.N.; Jemal, A. Cancer statistics, 2024. CA Cancer J. Clin. 2024, 74, 12–49. [Google Scholar] [CrossRef]
- Turner, M.A.; Hollandsworth, H.M.; Amirfakhri, S.; Lwin, T.M.; Nishino, H.; Neel, N.C.; Natarajan, G.; Kaur, S.; Mallya, K.; Hoffman, R.M.; et al. Anti-mucin 4 fluorescent antibody brightly targets colon cancer in patient-derived orthotopic xenograft mouse models: A proof-of-concept study for future clinical applications. Am. J. Surg. 2022, 224, 1081–1085. [Google Scholar] [CrossRef]
- Dekker, E.N.; Dam, J.L.v.; Janssen, Q.P.; Besselink, M.G.; DeSilva, A.; Doppenberg, D.; Eijck, C.H.J.v.; Nasar, N.; O’Reilly, E.M.; Paniccia, A.; et al. Improved Clinical Staging System for Localized Pancreatic Cancer Using the ABC Factors: A TAPS Consortium Study. J. Clin. Oncol. 2024, 42, 1357–1367. [Google Scholar] [CrossRef]
- Hesami, Z.; Olfatifar, M.; Sadeghi, A.; Zali, M.R.; Mohammadi-Yeganeh, S.; Habibi, M.A.; Ghadir, M.R.; Houri, H. Global Trend in Pancreatic Cancer Prevalence Rates Through 2040: An Illness-Death Modeling Study. Cancer Med. 2024, 13, e70318. [Google Scholar] [CrossRef] [PubMed]
- Wagner, M.; Redaelli, C.; Lietz, M.; Seiler, C.A.; Friess, H.; Büchler, M.W. Curative resection is the single most important factor determining outcome in patients with pancreatic adenocarcinoma. Br. J. Surg. 2004, 91, 586–594. [Google Scholar] [CrossRef] [PubMed]
- Kang, M.J.; Jang, J.Y.; Kim, S.W. Surgical resection of pancreatic head cancer: What is the optimal extent of surgery? Cancer Lett. 2016, 382, 259–265. [Google Scholar] [CrossRef] [PubMed]
- Ryan, D.P.; Hong, T.S.; Bardeesy, N. Pancreatic adenocarcinoma. N. Engl. J. Med. 2014, 371, 1039–1049. [Google Scholar] [CrossRef] [PubMed]
- Cortiana, V.; Vallabhaneni, H.; Gambill, J.; Nadar, S.; Itodo, K.; Park, C.H.; Leyfman, Y. Advancing Pancreatic Cancer Surgical Treatments and Proposal of New Approaches. Cancers 2024, 16, 2848. [Google Scholar] [CrossRef]
- Tamburrino, D.; De Stefano, F.; Belfiori, G.; Partelli, S.; Crippa, S.; Falconi, M. Surgical Planning for “Borderline Resectable” and “Locally Advanced” Pancreatic Cancer During Open Pancreatic Resection. J. Gastrointest. Surg. 2023, 27, 3014–3023. [Google Scholar] [CrossRef]
- Handgraaf, H.J.; Boonstra, M.C.; Van Erkel, A.R.; Bonsing, B.A.; Putter, H.; Van De Velde, C.J.; Vahrmeijer, A.L.; Mieog, J.S. Current and future intraoperative imaging strategies to increase radical resection rates in pancreatic cancer surgery. Biomed. Res. Int. 2014, 2014, 890230. [Google Scholar] [CrossRef]
- Hernot, S.; van Manen, L.; Debie, P.; Mieog, J.S.D.; Vahrmeijer, A.L. Latest developments in molecular tracers for fluorescence image-guided cancer surgery. Lancet Oncol. 2019, 20, e354–e367. [Google Scholar] [CrossRef]
- Lee, K.H.; Cox, K.E.; Amirfakhri, S.; Jaiswal, S.; Liu, S.; Hosseini, M.; Lwin, T.M.; Yazaki, P.J.; Hoffman, R.M.; Bouvet, M. Accurate Co-Localization of Luciferase Expression and Fluorescent Anti-CEA Antibody Targeting of Liver Metastases in an Orthotopic Mouse Model of Colon Cancer. Cancers 2024, 16, 3341. [Google Scholar] [CrossRef]
- Kannagi, R. Carbohydrate antigen sialyl Lewis a—Its pathophysiological significance and induction mechanism in cancer progression. Chang Gung Med. J. 2007, 30, 189–209. [Google Scholar] [PubMed]
- Luo, G.; Jin, K.; Deng, S.; Cheng, H.; Fan, Z.; Gong, Y.; Qian, Y.; Huang, Q.; Ni, Q.; Liu, C.; et al. Roles of CA19-9 in pancreatic cancer: Biomarker, predictor and promoter. Biochim. Biophys. Acta Rev. Cancer 2021, 1875, 188409. [Google Scholar] [CrossRef] [PubMed]
- Molina, V.; Visa, L.; Conill, C.; Navarro, S.; Escudero, J.M.; Auge, J.M.; Filella, X.; Lopez-Boado, M.A.; Ferrer, J.; Fernandez-Cruz, L.; et al. CA19-9 in pancreatic cancer: Retrospective evaluation of patients with suspicion of pancreatic cancer. Tumour Biol. 2012, 33, 799–807. [Google Scholar] [CrossRef] [PubMed]
- Ahmadipour, M.; Bhattacharya, A.; Sarafbidabad, M.; Syuhada Sazali, E.; Krishna Ghoshal, S.; Satgunam, M.; Singh, R.; Rezaei Ardani, M.; Missaoui, N.; Kahri, H.; et al. CA19-9 and CEA biosensors in pancreatic cancer. Clin. Chim. Acta 2024, 554, 117788. [Google Scholar] [CrossRef]
- Goonetilleke, K.S.; Siriwardena, A.K. Systematic review of carbohydrate antigen (CA19-9) as a biochemical marker in the diagnosis of pancreatic cancer. Eur. J. Surg. Oncol. 2007, 33, 266–270. [Google Scholar] [CrossRef]
- Nakisa, A.; Sempere, L.F.; Chen, X.; Qu, L.T.; Woldring, D.; Crawford, H.C.; Huang, X. Tumor-Associated Carbohydrate Antigen 19-9 (CA19-9), a Promising Target for Antibody-Based Detection, Diagnosis, and Immunotherapy of Cancer. ChemMedChem 2024, 19, e202400491. [Google Scholar] [CrossRef]
- McElroy, M.; Kaushal, S.; Luiken, G.A.; Talamini, M.A.; Moossa, A.R.; Hoffman, R.M.; Bouvet, M. Imaging of primary and metastatic pancreatic cancer using a fluorophore-conjugated anti-CA19-9 antibody for surgical navigation. World J. Surg. 2008, 32, 1057–1066. [Google Scholar] [CrossRef]
- Metildi, C.A.; Kaushal, S.; Hardamon, C.R.; Snyder, C.S.; Pu, M.; Messer, K.S.; Talamini, M.A.; Hoffman, R.M.; Bouvet, M. Fluorescence-guided surgery allows for more complete resection of pancreatic cancer, resulting in longer disease-free survival compared with standard surgery in orthotopic mouse models. J. Am. Coll. Surg. 2012, 215, 126–135. [Google Scholar] [CrossRef]
- Hiroshima, Y.; Maawy, A.; Zhang, Y.; Murakami, T.; Momiyama, M.; Mori, R.; Matsuyama, R.; Katz, M.H.G.; Fleming, J.B.; Chishima, T.; et al. Metastatic Recurrence in a Pancreatic Cancer Patient Derived Orthotopic Xenograft (PDOX) Nude Mouse Model Is Inhibited by Neoadjuvant Chemotherapy in Combination with Fluorescence-Guided Surgery with an Anti-CA19-9-Conjugated Fluorophore. PLoS ONE 2014, 9, e114310. [Google Scholar] [CrossRef]
- Cox, K.E.; Turner, M.A.; Lwin, T.M.; Amirfakhri, S.; Kelly, K.J.; Hosseini, M.; Ghosh, P.; Obonyo, M.; Hoffman, R.M.; Yazaki, P.J.; et al. Targeting Patient-Derived Orthotopic Gastric Cancers with a Fluorescent Humanized Anti-CEA Antibody. Ann. Surg. Oncol. 2024, 31, 6291–6299. [Google Scholar] [CrossRef]
- Jaiswal, S.; Cox, K.E.; Amirfakhri, S.; Din Parast Saleh, A.; Kobayashi, K.; Lwin, T.M.; Talib, S.; Aithal, A.; Mallya, K.; Jain, M.; et al. Targeting Human Pancreatic Cancer with a Fluorophore-Conjugated Mucin 4 (MUC4) Antibody: Initial Characterization in Orthotopic Cell Line Mouse Models. J. Clin. Med. 2024, 13, 6211. [Google Scholar] [CrossRef]
- Lu, G.; van den Berg, N.S.; Martin, B.A.; Nishio, N.; Hart, Z.P.; van Keulen, S.; Fakurnejad, S.; Chirita, S.U.; Raymundo, R.C.; Yi, G.; et al. Tumour-specific fluorescence-guided surgery for pancreatic cancer using panitumumab-IRDye800CW: A phase 1 single-centre, open-label, single-arm, dose-escalation study. Lancet Gastroenterol. Hepatol. 2020, 5, 753–764. [Google Scholar] [CrossRef] [PubMed]
- Boogerd, L.S.F.; Hoogstins, C.E.S.; Schaap, D.P.; Kusters, M.; Handgraaf, H.J.M.; van der Valk, M.J.M.; Hilling, D.E.; Holman, F.A.; Peeters, K.C.M.J.; Mieog, J.S.D.; et al. Safety and effectiveness of SGM-101, a fluorescent antibody targeting carcinoembryonic antigen, for intraoperative detection of colorectal cancer: A dose-escalation pilot study. Lancet Gastroenterol. Hepatol. 2018, 3, 181–191. [Google Scholar] [CrossRef] [PubMed]
- Hoogstins, C.E.S.; Boogerd, L.S.F.; Sibinga Mulder, B.G.; Mieog, J.S.D.; Swijnenburg, R.J.; van de Velde, C.J.H.; Farina Sarasqueta, A.; Bonsing, B.A.; Framery, B.; Pèlegrin, A.; et al. Image-Guided Surgery in Patients with Pancreatic Cancer: First Results of a Clinical Trial Using SGM-101, a Novel Carcinoembryonic Antigen-Targeting, Near-Infrared Fluorescent Agent. Ann. Surg. Oncol. 2018, 25, 3350–3357. [Google Scholar] [CrossRef]
- Tummers, W.S.; Miller, S.E.; Teraphongphom, N.T.; Gomez, A.; Steinberg, I.; Huland, D.M.; Hong, S.; Kothapalli, S.R.; Hasan, A.; Ertsey, R.; et al. Intraoperative Pancreatic Cancer Detection using Tumor-Specific Multimodality Molecular Imaging. Ann. Surg. Oncol. 2018, 25, 1880–1888. [Google Scholar] [CrossRef] [PubMed]
- Mulder, B.G.S.; Koller, M.; Duiker, E.W.; Sarasqueta, A.F.; Burggraaf, J.; Meijer, V.E.; Vahrmeijer, A.L.; Hoogwater, F.J.H.; Bonsing, B.A.; van Dam, G.M.; et al. Intraoperative Molecular Fluorescence Imaging of Pancreatic Cancer by Targeting Vascular Endothelial Growth Factor: A Multicenter Feasibility Dose-Escalation Study. J. Nucl. Med. 2023, 64, 82–89. [Google Scholar] [CrossRef]
- Fu, X.; Guadagni, F.; Hoffman, R.M. A metastatic nude-mouse model of human pancreatic cancer constructed orthotopically with histologically intact patient specimens. Proc. Natl. Acad. Sci. USA 1992, 89, 5645–5649. [Google Scholar] [CrossRef]
- Karunakaran, M.; Barreto, S.G. Surgery for pancreatic cancer: Current controversies and challenges. Future Oncol. 2021, 17, 5135–5162. [Google Scholar] [CrossRef]
- Soer, E.C.; Verbeke, C.S. Pathology reporting of margin status in locally advanced pancreatic cancer: Challenges and uncertainties. J. Gastrointest. Oncol. 2021, 12, 2512–2520. [Google Scholar] [CrossRef]
- Itzkowitz, S.H.; Yuan, M.; Fukushi, Y.; Lee, H.; Shi, Z.R.; Zurawski, V., Jr.; Hakomori, S.; Kim, Y.S. Immunohistochemical comparison of Lea, monosialosyl Lea (CA19-9), and disialosyl Lea antigens in human colorectal and pancreatic tissues. Cancer Res. 1988, 48, 3834–3842. [Google Scholar]
- Loy, T.S.; Sharp, S.C.; Andershock, C.J.; Craig, S.B. Distribution of CA19-9 in adenocarcinomas and transitional cell carcinomas. An immunohistochemical study of 527 cases. Am. J. Clin. Pathol. 1993, 99, 726–728. [Google Scholar] [CrossRef] [PubMed]
- Houghton, J.L.; Zeglis, B.M.; Abdel-Atti, D.; Aggeler, R.; Sawada, R.; Agnew, B.J.; Scholz, W.W.; Lewis, J.S. Site-specifically labeled CA19.9-targeted immunoconjugates for the PET, NIRF, and multimodal PET/NIRF imaging of pancreatic cancer. Proc. Natl. Acad. Sci. USA 2015, 112, 15850–15855. [Google Scholar] [CrossRef] [PubMed]
- Mallya, K.; Gautam, S.K.; Aithal, A.; Batra, S.K.; Jain, M. Modeling pancreatic cancer in mice for experimental therapeutics. Biochim. Biophys. Acta Rev. Cancer 2021, 1876, 188554. [Google Scholar] [CrossRef] [PubMed]
- Metildi, C.A.; Kaushal, S.; Pu, M.; Messer, K.A.; Luiken, G.A.; Moossa, A.R.; Hoffman, R.M.; Bouvet, M. Fluorescence-guided surgery with a fluorophore-conjugated antibody to carcinoembryonic antigen (CEA), that highlights the tumor, improves surgical resection and increases survival in orthotopic mouse models of human pancreatic cancer. Ann. Surg. Oncol. 2014, 21, 1405–1411. [Google Scholar] [CrossRef]
- Meijer, R.P.J.; de Valk, K.S.; Deken, M.M.; Boogerd, L.S.F.; Hoogstins, C.E.S.; Bhairosingh, S.S.; Swijnenburg, R.J.; Bonsing, B.A.; Framery, B.; Fariña Sarasqueta, A.; et al. Intraoperative detection of colorectal and pancreatic liver metastases using SGM-101, a fluorescent antibody targeting CEA. Eur. J. Surg. Oncol. 2021, 47, 667–673. [Google Scholar] [CrossRef]
- Huynh, A.S.; Abrahams, D.F.; Torres, M.S.; Baldwin, M.K.; Gillies, R.J.; Morse, D.L. Development of an orthotopic human pancreatic cancer xenograft model using ultrasound guided injection of cells. PLoS ONE 2011, 6, e20330. [Google Scholar] [CrossRef]
- Yu, Y.; Ding, F.; Gao, M.; Jia, Y.F.; Ren, L. Establishment and characterization of the gemcitabine-resistant human pancreatic cancer cell line SW1990/gemcitabine. Oncol. Lett. 2019, 18, 3065–3071. [Google Scholar] [CrossRef]
Fluorescent Probe | Target | Fluorophore | Clinical Trial(s) | Clinical Trials.gov ID |
---|---|---|---|---|
SGM-101 | Carcinoembryonic antigen (CEA) | 700 nm fluorophore | Detection of pancreatic/liver metastases | NCT02784028 [25], NCT02973672 [26] |
Cetuximab–IRDye800CW | Epidermal growth factor receptor (EGFR) | IRDye800CW | Intraoperative imaging in pancreatic and head/neck cancer | NCT02736578 [27] |
Pnitunimab-IRDye800CW | Epidermal growth factor receptor (EGFR) | IRDye800CW | Tumor-specific fluorescence-guided surgery in pancreatic cancer | NCT03384238 [24] |
Bevacizumab-IRDye800CW | Vascular endothelial growth factor (VEGF) | IRDye800CW | Fluorescence imaging in pancreatic cancer | NCT02743975 [28] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cox, K.E.; Bravo, J.; Jaiswal, S.; Amirfakhri, S.; Lwin, T.M.; Aithal, A.; Talib, S.; Jih, L.J.; Saleh, A.D.P.; Kobayashi, K.; et al. Brightly Visualizing Pancreatic Cancer Margins in Orthotopic Mouse Models with an Anti-CA19-9 Antibody Conjugated to a Near-Infrared Fluorophore. Cancers 2025, 17, 2617. https://doi.org/10.3390/cancers17162617
Cox KE, Bravo J, Jaiswal S, Amirfakhri S, Lwin TM, Aithal A, Talib S, Jih LJ, Saleh ADP, Kobayashi K, et al. Brightly Visualizing Pancreatic Cancer Margins in Orthotopic Mouse Models with an Anti-CA19-9 Antibody Conjugated to a Near-Infrared Fluorophore. Cancers. 2025; 17(16):2617. https://doi.org/10.3390/cancers17162617
Chicago/Turabian StyleCox, Kristin E., Javier Bravo, Sunidhi Jaiswal, Siamak Amirfakhri, Thinzar M. Lwin, Abhijit Aithal, Sumbal Talib, Lily J. Jih, Aylin Din Parast Saleh, Keita Kobayashi, and et al. 2025. "Brightly Visualizing Pancreatic Cancer Margins in Orthotopic Mouse Models with an Anti-CA19-9 Antibody Conjugated to a Near-Infrared Fluorophore" Cancers 17, no. 16: 2617. https://doi.org/10.3390/cancers17162617
APA StyleCox, K. E., Bravo, J., Jaiswal, S., Amirfakhri, S., Lwin, T. M., Aithal, A., Talib, S., Jih, L. J., Saleh, A. D. P., Kobayashi, K., Mallya, K., Jain, M., Hoffman, R. M., Mohs, A. M., Batra, S. K., & Bouvet, M. (2025). Brightly Visualizing Pancreatic Cancer Margins in Orthotopic Mouse Models with an Anti-CA19-9 Antibody Conjugated to a Near-Infrared Fluorophore. Cancers, 17(16), 2617. https://doi.org/10.3390/cancers17162617