Predicting Cardiovascular Risk in Patients with Prostate Cancer Receiving Abiraterone or Enzalutamide by Using Machine Learning
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Data Acquisition and Characteristics
2.2. PCa Cohort and ARPIs
2.3. Baseline Characteristics
2.4. MACE and Follow-Up Protocol
2.5. Random Survival Forest Analysis
2.6. Predictive Behavior Analysis of RSF Variables
2.7. Statistical Analysis
3. Results
3.1. Patient Demographics and Clinical Outcomes
3.2. RSF Model Development and Predictor Selection
3.3. Prognostic Significance of Identified Risk Factors
3.4. Sensitivity Analysis
4. Discussion
Study Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ADT | androgen deprivation therapy |
ARPI | androgen receptor pathway inhibitor |
GnRH | gonadotropin-releasing hormone |
HF | heart failure |
MACE | major adverse cardiovascular event |
mCRPC | metastatic castration-resistant prostate cancer |
NHIRD | National Health Insurance Research Database |
PCa | prostate cancer |
RSF | random survival forest |
VIMP | variable importance |
References
- Tran, C.; Ouk, S.; Clegg, N.J.; Chen, Y.; Watson, P.A.; Arora, V.; Wongvipat, J.; Smith-Jones, P.M.; Yoo, D.; Kwon, A. Development of a second-generation antiandrogen for treatment of advanced prostate cancer. Science 2009, 324, 787–790. [Google Scholar] [CrossRef] [PubMed]
- de Bono, J.S.; Logothetis, C.J.; Molina, A.; Fizazi, K.; North, S.; Chu, L.; Chi, K.N.; Jones, R.J.; Goodman, O.B., Jr.; Saad, F.; et al. Abiraterone and increased survival in metastatic prostate cancer. N. Engl. J. Med. 2011, 364, 1995–2005. [Google Scholar] [CrossRef] [PubMed]
- Scher, H.I.; Fizazi, K.; Saad, F.; Taplin, M.E.; Sternberg, C.N.; Miller, K.; de Wit, R.; Mulders, P.; Chi, K.N.; Shore, N.D.; et al. Increased survival with enzalutamide in prostate cancer after chemotherapy. N. Engl. J. Med. 2012, 367, 1187–1197. [Google Scholar] [CrossRef] [PubMed]
- Beer, T.M.; Armstrong, A.J.; Rathkopf, D.E.; Loriot, Y.; Sternberg, C.N.; Higano, C.S.; Iversen, P.; Bhattacharya, S.; Carles, J.; Chowdhury, S.; et al. Enzalutamide in metastatic prostate cancer before chemotherapy. N. Engl. J. Med. 2014, 371, 424–433. [Google Scholar] [CrossRef] [PubMed]
- Ryan, C.J.; Smith, M.R.; de Bono, J.S.; Molina, A.; Logothetis, C.J.; de Souza, P.; Fizazi, K.; Mainwaring, P.; Piulats, J.M.; Ng, S.; et al. Abiraterone in metastatic prostate cancer without previous chemotherapy. N. Engl. J. Med. 2013, 368, 138–148. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.Y.; Lee, C.H.; Tsai, M.L.; Hsieh, M.J.; Chuang, C.K.; Pang, S.T.; Chen, S.W.; Tseng, C.N.; Chang, S.H.; Chu, P.H.; et al. Cancer Therapy-Related Cardiac Dysfunction in Patients With Prostate Cancer Undergoing Androgen Deprivation Therapy. J. Am. Heart Assoc. 2023, 12, e030447. [Google Scholar] [CrossRef] [PubMed]
- Lai, L.Y.; Oerline, M.K.; Caram, M.E.V.; Tsao, P.A.; Kaufman, S.R.; Hollenbeck, B.K.; Shahinian, V.B. Risk of Metabolic and Cardiovascular Adverse Events With Abiraterone or Enzalutamide Among Men With Advanced Prostate Cancer. J. Natl. Cancer Inst. 2022, 114, 1127–1134. [Google Scholar] [CrossRef] [PubMed]
- Kulkarni, A.A.; Rubin, N.; Tholkes, A.; Shah, S.; Ryan, C.J.; Lutsey, P.L.; Prizment, A.; Rao, A. Risk for stroke and myocardial infarction with abiraterone versus enzalutamide in metastatic prostate cancer patients. ESMO Open 2021, 6, 100261. [Google Scholar] [CrossRef] [PubMed]
- George, G.; Vikman, H.; Gedeborg, R.; Lissbrant, I.F.; Garmo, H.; Styrke, J.; Van Hemelrijck, M.; Stattin, P. Risk of cardiovascular events in men on abiraterone or enzalutamide combined with GnRH agonists: Nation-wide, population-based cohort study in Sweden. Acta Oncol. 2021, 60, 459–465. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.K.; Su, P.J.; Wang, Y.L.; Chang, K.C.; Su, Y.L.; Chang, P.H.; Kuan, F.C.; Hsieh, C.H.; Kuo, Y.C.; Sheng, T.W.; et al. Long-term use and risk of major adverse cardiac events: Comparing enzalutamide and abiraterone in chemotherapy-naïve patients with metastatic castration-resistant prostate cancer. Int. J. Cancer 2023, 152, 1191–1201. [Google Scholar] [CrossRef] [PubMed]
- Chang, W.T.; Hong, J.H.; Chen, D.Y.; Huang, C.Y.; Chen, Y.C.; Cha, T.L.; Wu, Y.W.; Lin, T.P.; Cheng, K.H.; Chiang, P.J.; et al. Taiwan Consensus for the Management of Cardiovascular Risks and Complications in Patients with Prostate Cancer. Acta Cardiol. Sin. 2025, 41, 288–310. [Google Scholar] [CrossRef] [PubMed]
- de Vries, S.; Haaksma, M.L.; Jóźwiak, K.; Schaapveld, M.; Hodgson, D.C.; Lugtenburg, P.J.; Krol, A.D.G.; Petersen, E.J.; van Spronsen, D.J.; Ahmed, S.; et al. Development and Validation of Risk Prediction Models for Coronary Heart Disease and Heart Failure After Treatment for Hodgkin Lymphoma. J. Clin. Oncol. 2023, 41, 86–95. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Qadir, H.; Thavendiranathan, P.; Austin, P.C.; Lee, D.S.; Amir, E.; Tu, J.V.; Fung, K.; Anderson, G.M. Development and validation of a multivariable prediction model for major adverse cardiovascular events after early stage breast cancer: A population-based cohort study. Eur. Heart J. 2019, 40, 3913–3920. [Google Scholar] [CrossRef] [PubMed]
- Tajvidi Asr, R.; Rahimi, M.; Hossein Pourasad, M.; Zayer, S.; Momenzadeh, M.; Ghaderzadeh, M. Hematology and Hematopathology Insights Powered by Machine Learning: Shaping the Future of Blood Disorder Management. Iran. J. Blood Cancer 2024, 16, 9–19. [Google Scholar] [CrossRef]
- Wang, J.; Li, X.; Ma, Z. Multi-Scale Three-Path Network (MSTP-Net): A new architecture for retinal vessel segmentation. Measurement 2025, 250, 117100. [Google Scholar] [CrossRef]
- Cheng, C.-L.; Lee, C.-H.; Chen, P.-S.; Li, Y.-H.; Lin, S.-J.; Yang, Y.-H.K. Validation of acute myocardial infarction cases in the national health insurance research database in Taiwan. J. Epidemiol. 2014, 24, 500–507. [Google Scholar] [CrossRef] [PubMed]
- Cheng, C.L.; Kao, Y.H.Y.; Lin, S.J.; Lee, C.H.; Lai, M.L. Validation of the National Health Insurance Research Database with ischemic stroke cases in Taiwan. Pharmacoepidemiol. Drug Saf. 2011, 20, 236–242. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.-S.; Lai, M.-S.; Gau, S.S.-F.; Wang, S.-C.; Tsai, H.-J. Concordance between patient self-reports and claims data on clinical diagnoses, medication use, and health system utilization in Taiwan. PLoS ONE 2014, 9, e112257. [Google Scholar] [CrossRef] [PubMed]
- Lu, T.-H.; Lee, M.-C.; Chou, M.-C. Accuracy of cause-of-death coding in Taiwan: Types of miscoding and effects on mortality statistics. Int. J. Epidemiol. 2000, 29, 336–343. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.-Y.; Chang, S.-H.; Huang, W.-K.; Hsieh, I.C.; See, L.-C. The cold temperature associated with new-onset heart failure after incorporating dynamic status of multimorbidity: Nationwide cohort, Taiwan 2012–2019. Eur. J. Prev. Cardiol. 2024, 31, 2026–2035. [Google Scholar] [CrossRef] [PubMed]
- Hicks, K.A.; Mahaffey, K.W.; Mehran, R.; Nissen, S.E.; Wiviott, S.D.; Dunn, B.; Solomon, S.D.; Marler, J.R.; Teerlink, J.R.; Farb, A. 2017 cardiovascular and stroke endpoint definitions for clinical trials. Circulation 2018, 137, 961–972. [Google Scholar] [CrossRef]
- Chen, Y.; Jia, Z.; Mercola, D.; Xie, X. A gradient boosting algorithm for survival analysis via direct optimization of concordance index. Comput. Math. Methods Med. 2013, 2013, 873595. [Google Scholar] [CrossRef] [PubMed]
- Katzman, J.L.; Shaham, U.; Cloninger, A.; Bates, J.; Jiang, T.; Kluger, Y. DeepSurv: Personalized treatment recommender system using a Cox proportional hazards deep neural network. BMC Med. Res. Methodol. 2018, 18, 24. [Google Scholar] [CrossRef] [PubMed]
- Schmid, M.; Wright, M.N.; Ziegler, A. On the use of Harrell’s C for clinical risk prediction via random survival forests. Expert. Syst. Appl. 2016, 63, 450–459. [Google Scholar] [CrossRef]
- Ishwaran, H.; Kogalur, U.B.; Blackstone, E.H.; Lauer, M.S. Random survival forests. Ann. Appl. Stat. 2008, 2, 841–860. [Google Scholar] [CrossRef]
- Chang, C.-Y.; Chen, C.-C.; Tsai, M.-L.; Hsieh, M.-J.; Chen, T.-H.; Chen, S.-W.; Chang, S.-H.; Chu, P.-H.; Hsieh, I.-C.; Wen, M.-S.; et al. Predicting Mortality and Hospitalization in Heart Failure With Preserved Ejection Fraction by Using Machine Learning. JACC Asia 2024, 4, 956–968. [Google Scholar] [CrossRef] [PubMed]
- Lu-Yao, G.; Nikita, N.; Keith, S.W.; Nightingale, G.; Gandhi, K.; Hegarty, S.E.; Rebbeck, T.R.; Chapman, A.; Kantoff, P.W.; Cullen, J. Mortality and hospitalization risk following oral androgen signaling inhibitors among men with advanced prostate cancer by pre-existing cardiovascular comorbidities. Eur. Urol. 2020, 77, 158–166. [Google Scholar] [CrossRef] [PubMed]
- Rice, M.A.; Malhotra, S.V.; Stoyanova, T. Second-generation antiandrogens: From discovery to standard of care in castration resistant prostate cancer. Front. Oncol. 2019, 9, 801. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.Y.; Chen, H.-L.; Teoh, J.Y.-C.; Chen, T.-C.; Hao, S.-Y.; Tsai, H.-Y.; Huang, W.-H.; Juan, Y.-S.; Cheng, H.-M.; Chang, H.-M. Abiraterone and enzalutamide had different adverse effects on the cardiovascular system: A systematic review with pairwise and network meta-analyses. Prostate Cancer Prostatic Dis. 2021, 24, 244–252. [Google Scholar] [CrossRef] [PubMed]
- Vietri, M.T.; D’elia, G.; Caliendo, G.; Resse, M.; Casamassimi, A.; Passariello, L.; Albanese, L.; Cioffi, M.; Molinari, A.M. Hereditary prostate cancer: Genes related, target therapy and prevention. Int. J. Mol. Sci. 2021, 22, 3753. [Google Scholar] [CrossRef] [PubMed]
- van Westerop, L.; Arts-de Jong, M.; Hoogerbrugge, N.; De Hullu, J.; Maas, A. Cardiovascular risk of BRCA1/2 mutation carriers: A review. Maturitas 2016, 91, 135–139. [Google Scholar] [CrossRef] [PubMed]
- Wingard, M.C.; Frasier, C.R.; Singh, M.; Singh, K. Heart failure and diabetes: Role of ATM. Curr. Opin. Pharmacol. 2020, 54, 27–35. [Google Scholar] [CrossRef] [PubMed]
- Armenian, S.H.; Lacchetti, C.; Barac, A.; Carver, J.; Constine, L.S.; Denduluri, N.; Dent, S.; Douglas, P.S.; Durand, J.-B.; Ewer, M. Prevention and monitoring of cardiac dysfunction in survivors of adult cancers: American Society of Clinical Oncology Clinical Practice Guideline. J. Clin. Oncol. 2017, 35, 893–911. [Google Scholar] [CrossRef] [PubMed]
- Curigliano, G.; Lenihan, D.; Fradley, M.; Ganatra, S.; Barac, A.; Blaes, A.; Herrmann, J.; Porter, C.; Lyon, A.; Lancellotti, P. Management of cardiac disease in cancer patients throughout oncological treatment: ESMO consensus recommendations. Ann. Oncol. 2020, 31, 171–190. [Google Scholar] [CrossRef] [PubMed]
- Lyon, A.R.; Dent, S.; Stanway, S.; Earl, H.; Brezden-Masley, C.; Cohen-Solal, A.; Tocchetti, C.G.; Moslehi, J.J.; Groarke, J.D.; Bergler-Klein, J.; et al. Baseline cardiovascular risk assessment in cancer patients scheduled to receive cardiotoxic cancer therapies: A position statement and new risk assessment tools from the Cardio-Oncology Study Group of the Heart Failure Association of the European Society of Cardiology in collaboration with the International Cardio-Oncology Society. Eur. J. Heart Fail. 2020, 22, 1945–1960. [Google Scholar] [PubMed]
- Lin, L.-Y.; Warren-Gash, C.; Smeeth, L.; Chen, P.-C. Data resource profile: The national health insurance research database (NHIRD). Epidemiol. Health 2018, 40, e2018062. [Google Scholar] [CrossRef] [PubMed]
- Motwani, M.; Dey, D.; Berman, D.S.; Germano, G.; Achenbach, S.; Al-Mallah, M.H.; Andreini, D.; Budoff, M.J.; Cademartiri, F.; Callister, T.Q. Machine learning for prediction of all-cause mortality in patients with suspected coronary artery disease: A 5-year multicentre prospective registry analysis. Eur. Heart J. 2017, 38, 500–507. [Google Scholar] [CrossRef] [PubMed]
- Molenaar, M.A.; Bouma, B.J.; Asselbergs, F.W.; Verouden, N.J.; Selder, J.L.; Chamuleau, S.A.; Schuuring, M.J. Explainable machine learning using echocardiography to improve risk prediction in patients with chronic coronary syndrome. Eur. Heart J.-Digit. Health 2024, 5, 170–182. [Google Scholar] [CrossRef] [PubMed]
- Pezel, T.; Sanguineti, F.; Garot, P.; Unterseeh, T.; Champagne, S.; Toupin, S.; Morisset, S.; Hovasse, T.; Faradji, A.; Ah-Sing, T. Machine-learning score using stress CMR for death prediction in patients with suspected or known CAD. Cardiovasc. Imaging 2022, 15, 1900–1913. [Google Scholar]
Variable | Total (n = 4739) | Training (n = 3318) | Validation (n = 1421) | p Value |
---|---|---|---|---|
Urbanization level of the residence | 0.343 | |||
Low | 748 (15.8) | 513 (15.5) | 235 (16.5) | |
Moderate | 1667 (35.2) | 1182 (35.6) | 485 (34.1) | |
High | 1282 (27.1) | 880 (26.5) | 402 (28.3) | |
Very High | 1042 (22.0) | 743 (22.4) | 299 (21.0) | |
Region | 0.041 | |||
North | 2000 (42.2) | 1445 (43.6) | 555 (39.1) | |
West | 1220 (25.7) | 833 (25.1) | 387 (27.2) | |
South | 1390 (29.3) | 951 (28.7) | 439 (30.9) | |
East | 129 (2.7) | 89 (2.7) | 40 (2.8) | |
Age, year | 75.1 ± 9.3 | 75.0 ± 9.2 | 75.3 ± 9.6 | 0.380 |
Age group, year | 0.108 | |||
40–49 | 21 (0.4) | 13 (0.4) | 8 (0.6) | |
50–59 | 234 (4.9) | 163 (4.9) | 71 (5.0) | |
60–69 | 1209 (25.5) | 838 (25.3) | 371 (26.1) | |
70–79 | 1758 (37.1) | 1270 (38.3) | 488 (34.3) | |
≥80 | 1517 (32.0) | 1034 (31.2) | 483 (34.0) | |
Age group, year | 0.253 | |||
<65 | 1245 (26.3) | 860 (25.9) | 385 (27.1) | |
65–74 | 1531 (32.3) | 1112 (33.5) | 419 (29.5) | |
≥75 | 1963 (41.4) | 1346 (40.6) | 617 (43.4) | |
ARPI at index date | 0.408 | |||
Abiraterone | 2341 (49.4) | 1626 (49.0) | 715 (50.3) | |
Enzalutamide | 2398 (50.6) | 1692 (51.0) | 706 (49.7) | |
Previous docetaxel use | 1749 (36.9) | 1229 (37.0) | 520 (36.6) | 0.770 |
ADT type before the index date | 0.492 | |||
GnRH agonist | 3886 (82.0) | 2735 (82.4) | 1151 (81.0) | |
GnRH antagonist (Degarelix) | 557 (11.8) | 382 (11.5) | 175 (12.3) | |
Bilateral orchiectomy | 296 (6.3) | 201 (6.1) | 95 (6.7) | |
Comorbidities | ||||
Hypertension | 2530 (53.4) | 1783 (53.7) | 747 (52.6) | 0.460 |
Diabetes mellitus | 1338 (28.2) | 936 (28.2) | 402 (28.3) | 0.955 |
Coronary heart disease | 295 (6.2) | 208 (6.3) | 87 (6.1) | 0.848 |
Hyperlipidemia | 1285 (27.1) | 906 (27.3) | 379 (26.7) | 0.653 |
Atrial fibrillation | 180 (3.8) | 124 (3.7) | 56 (3.9) | 0.737 |
Peripheral arterial disease | 162 (3.4) | 117 (3.5) | 45 (3.2) | 0.533 |
Chronic obstructive pulmonary disease | 444 (9.4) | 301 (9.1) | 143 (10.1) | 0.283 |
Chronic kidney disease or dialysis | 1047 (22.1) | 740 (22.3) | 307 (21.6) | 0.596 |
Cardiovascular disease * | 809 (17.1) | 569 (17.2) | 240 (16.9) | 0.828 |
History of event | ||||
Myocardial infarction | 94 (2.0) | 68 (2.1) | 26 (1.8) | 0.619 |
Coronary revascularization | 224 (4.7) | 165 (5.0) | 59 (4.2) | 0.222 |
Heart failure | 205 (4.3) | 148 (4.5) | 57 (4.0) | 0.486 |
Stroke | 300 (6.3) | 206 (6.2) | 94 (6.6) | 0.599 |
Duration between PCa diagnosis and index, month | 53.1 ± 45.0 | 52.5 ± 44.7 | 54.4 ± 45.7 | 0.193 |
Anti-androgen medication | ||||
Flutamide | 161 (3.4) | 111 (3.4) | 50 (3.5) | 0.763 |
Bicalutamide | 1824 (38.5) | 1254 (37.8) | 570 (40.1) | 0.133 |
Cyproterone | 366 (7.7) | 270 (8.1) | 96 (6.8) | 0.103 |
Follow-up year | 2.1 ± 1.4 | 2.1 ± 1.4 | 2.2 ± 1.4 | 0.756 |
Outcome | Total (n = 4739) | Training (n = 3318) | Validation (n = 1421) | p Value |
---|---|---|---|---|
Cardiovascular event | ||||
Ischemic stroke | 52 (1.1) | 34 (1.0) | 18 (1.3) | 0.464 |
Myocardial infarction | 44 (0.9) | 33 (1.0) | 11 (0.8) | 0.468 |
Cardiovascular death | 425 (9.0) | 295 (8.9) | 130 (9.2) | 0.776 |
HF hospitalization | 54 (1.1) | 34 (1.0) | 20 (1.4) | 0.255 |
MACE * | 524 (11.1) | 363 (10.9) | 161 (11.3) | 0.695 |
Other outcome | ||||
All-cause death | 3211 (67.8) | 2237 (67.4) | 974 (68.5) | 0.449 |
PCa related death | 2863 (60.4) | 1989 (60.0) | 874 (61.5) | 0.314 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, D.-Y.; Chen, C.-C.; Tsai, M.-L.; Chang, C.-Y.; Hsieh, M.-J.; Chen, T.-H.; Su, P.-J.; Chu, P.-H.; Hsieh, I.-C.; Pang, S.-T.; et al. Predicting Cardiovascular Risk in Patients with Prostate Cancer Receiving Abiraterone or Enzalutamide by Using Machine Learning. Cancers 2025, 17, 2414. https://doi.org/10.3390/cancers17152414
Chen D-Y, Chen C-C, Tsai M-L, Chang C-Y, Hsieh M-J, Chen T-H, Su P-J, Chu P-H, Hsieh I-C, Pang S-T, et al. Predicting Cardiovascular Risk in Patients with Prostate Cancer Receiving Abiraterone or Enzalutamide by Using Machine Learning. Cancers. 2025; 17(15):2414. https://doi.org/10.3390/cancers17152414
Chicago/Turabian StyleChen, Dong-Yi, Chun-Chi Chen, Ming-Lung Tsai, Chieh-Yu Chang, Ming-Jer Hsieh, Tien-Hsing Chen, Po-Jung Su, Pao-Hsien Chu, I-Chang Hsieh, See-Tong Pang, and et al. 2025. "Predicting Cardiovascular Risk in Patients with Prostate Cancer Receiving Abiraterone or Enzalutamide by Using Machine Learning" Cancers 17, no. 15: 2414. https://doi.org/10.3390/cancers17152414
APA StyleChen, D.-Y., Chen, C.-C., Tsai, M.-L., Chang, C.-Y., Hsieh, M.-J., Chen, T.-H., Su, P.-J., Chu, P.-H., Hsieh, I.-C., Pang, S.-T., & Huang, W.-K. (2025). Predicting Cardiovascular Risk in Patients with Prostate Cancer Receiving Abiraterone or Enzalutamide by Using Machine Learning. Cancers, 17(15), 2414. https://doi.org/10.3390/cancers17152414