Cardiotoxicity in Adult Patients with Relapsed or Refractory Acute Myeloid Leukemia
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Population
2.2. Study Objectives and Variables
2.3. Definitions
2.4. Statistical Analyses
3. Results
3.1. Patient and Disease Characteristics of the 2L and 3L Cohorts
3.2. Incidence and Characteristics of Cardiac Events in the 2L Cohort
3.3. Risk Factors for Development of Cardiac Events in the 2L Cohort
3.4. Impact of Cardiac Events on Outcomes After Intensive Salvage Regimens (2L Cohort)
3.5. Incidence and Characteristics of Cardiac Events in the 3L Cohort
3.6. Risk Factors for Cardiac Events in the 3L Cohort
3.7. Impact of Cardiac Events on Outcomes After Intensive Salvage Regimens (3L Cohort)
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hassan, S.; Smith, M. Acute Myeloid Leukaemia. Hematology 2014, 19, 493–494. [Google Scholar] [CrossRef] [PubMed]
- Megías-Vericat, J.E.; Martínez-Cuadrón, D.; Sanz, M.Á.; Montesinos, P. Salvage Regimens Using Conventional Chemotherapy Agents for Relapsed/Refractory Adult AML Patients: A Systematic Literature Review. Ann. Hematol. 2018, 97, 1115–1153. [Google Scholar] [CrossRef] [PubMed]
- Döhner, H.; Estey, E.H.; Amadori, S.; Appelbaum, F.R.; Büchner, T.; Burnett, A.K.; Dombret, H.; Fenaux, P.; Grimwade, D.; Larson, R.A.; et al. Diagnosis and Management of Acute Myeloid Leukemia in Adults: Recommendations from an International Expert Panel, on Behalf of the European LeukemiaNet. Blood 2010, 115, 453–474. [Google Scholar] [CrossRef] [PubMed]
- Konstantinidis, I.; Tsokkou, S.; Grigoriadis, S.; Chrysavgi, L.; Gavriilaki, E. Cardiotoxicity in Acute Myeloid Leukemia in Adults: A Scoping Study. Cancers 2024, 16, 2474. [Google Scholar] [CrossRef]
- Swain, S.M.; Whaley, F.S.; Ewer, M.S. Congestive Heart Failure in Patients Treated with Doxorubicin: A Retrospective Analysis of Three Trials. Cancer 2003, 97, 2869–2879. [Google Scholar] [CrossRef]
- Onoue, T.; Vakilpour, A.; Kang, Y.; Lefebvre, B.; Smith, A.; McCurdy, S.; Carver, J.R.; Fradley, M.; Chittams, J.; Scherrer-Crosbie, M. Cardiotoxicity of Venetoclax in Patients with Acute Myeloid Leukemia: Comparison with Anthracyclines. J. Am. Coll. Cardiol. 2024, 83, 2585. [Google Scholar] [CrossRef]
- Holyoake, T.L.; Hillan, K.J.; Lucie, N.P. Acute Cardiotoxicity after Daunorubicin in Acute Myeloid Leukaemia. Leuk. Lymphoma 1991, 3, 305–307. [Google Scholar] [CrossRef]
- Neuendorff, N.R.; Loh, K.P.; Mims, A.S.; Christofyllakis, K.; Soo, W.K.; Bölükbasi, B.; Oñoro-Algar, C.; Hundley, W.G.; Klepin, H.D. Anthracycline-Related Cardiotoxicity in Older Patients with Acute Myeloid Leukemia: A Young SIOG Review Paper. Blood Adv. 2020, 4, 762–775. [Google Scholar] [CrossRef]
- Mohamed Jiffry, M.Z.; Kloss, R.; Ahmed-khan, M.; Carmona-Pires, F.; Okam, N.; Weeraddana, P.; Dharmaratna, D.; Dandwani, M.; Moin, K. A Review of Treatment Options Employed in Relapsed/Refractory AML. Hematology 2023, 28, 2196482. [Google Scholar] [CrossRef]
- Hefti, E.; Blanco, J.G. Anthracycline-Related Cardiotoxicity in Patients with Acute Myeloid Leukemia and Down Syndrome: A Literature Review. Cardiovasc. Toxicol. 2016, 16, 5–13. [Google Scholar] [CrossRef]
- Anderlini, P.; Benjamin, R.S.; Wong, F.C.; Kantarjian, H.M.; Andreeff, M.; Kornblau, S.M.; O’Brien, S.; Mackay, B.; Ewer, M.S.; Pierce, S.A.; et al. Idarubicin Cardiotoxicity: A Retrospective Study in Acute Myeloid Leukemia and Myelodysplasia. J. Clin. Oncol. 1995, 13, 2827–2834. [Google Scholar] [CrossRef]
- Kang, Y.; Assuncao, B.L.; Denduluri, S.; McCurdy, S.; Luger, S.; Lefebvre, B.; Carver, J.; Scherrer-Crosbie, M. Symptomatic Heart Failure in Acute Leukemia Patients Treated with Anthracyclines. JACC CardioOncol. 2019, 1, 208–217. [Google Scholar] [CrossRef] [PubMed]
- Kim, L.; Fowler, B.; Campbell, C.M.; Slivnick, J.; Nawaz, H.; Kaka, Y.; Ruz, P.; Vallakati, A.; Baliga, R.; Vasu, S.; et al. Acute Cardiotoxicity after Initiation of the Novel Tyrosine Kinase Inhibitor Gilteritinib for Acute Myeloid Leukemia. Cardio-Oncology 2021, 7, 36. [Google Scholar] [CrossRef] [PubMed]
- Perl, A.E.; Martinelli, G.; Cortes, J.E.; Neubauer, A.; Berman, E.; Paolini, S.; Montesinos, P.; Baer, M.R.; Larson, R.A.; Ustun, C.; et al. Gilteritinib or Chemotherapy for Relapsed or Refractory FLT3-Mutated AML. N. Engl. J. Med. 2019, 381, 1728–1740. [Google Scholar] [CrossRef]
- Larrosa-Garcia, M.; Baer, M.R. FLT3 Inhibitors in Acute Myeloid Leukemia: Current Status & Future Directions. Mol. Cancer Ther. 2017, 16, 991–1001. [Google Scholar] [CrossRef]
- Cortes, J.E.; Khaled, S.; Martinelli, G.; Perl, A.E.; Ganguly, S.; Russell, N.; Krämer, A.; Dombret, H.; Hogge, D.; Jonas, B.A.; et al. Quizartinib versus Salvage Chemotherapy in Relapsed or Refractory FLT3-ITD Acute Myeloid Leukaemia (QuANTUM-R): A Multicentre, Randomised, Controlled, Open-Label, Phase 3 Trial. Lancet Oncol. 2019, 20, 984–997. [Google Scholar] [CrossRef]
- Montesinos, P.; Recher, C.; Vives, S.; Zarzycka, E.; Wang, J.; Bertani, G.; Heuser, M.; Calado, R.T.; Schuh, A.C.; Yeh, S.-P.; et al. Ivosidenib and Azacitidine in IDH1 -Mutated Acute Myeloid Leukemia. N. Engl. J. Med. 2022, 386, 1519–1531. [Google Scholar] [CrossRef]
- Kattih, B.; Shirvani, A.; Klement, P.; Garrido, A.M.; Gabdoulline, R.; Liebich, A.; Brandes, M.; Chaturvedi, A.; Seeger, T.; Thol, F.; et al. IDH1/2 Mutations in Acute Myeloid Leukemia Patients and Risk of Coronary Artery Disease and Cardiac Dysfunction—A Retrospective Propensity Score Analysis. Leukemia 2021, 35, 1301–1316. [Google Scholar] [CrossRef]
- Giudice, V.; Vecchione, C.; Selleri, C. Cardiotoxicity of Novel Targeted Hematological Therapies. Life 2020, 10, 344. [Google Scholar] [CrossRef]
- Albini, A.; Pennesi, G.; Donatelli, F.; Cammarota, R.; De Flora, S.; Noonan, D.M. Cardiotoxicity of Anticancer Drugs: The Need for Cardio-Oncology and Cardio-Oncological Prevention. J. Natl. Cancer Inst. 2010, 102, 14–25. [Google Scholar] [CrossRef]
- Megías-Vericat, J.E.; Solana-Altabella, A.; Ballesta-López, O.; Martínez-Cuadrón, D.; Montesinos, P. Drug-Drug Interactions of Newly Approved Small Molecule Inhibitors for Acute Myeloid Leukemia. Ann. Hematol. 2020, 99, 1989–2007. [Google Scholar] [CrossRef]
- Auner, H.W.; Tinchon, C.; Linkesch, W.; Tiran, A.; Quehenberger, F.; Link, H.; Sill, H. Prolonged Monitoring of Troponin T for the Detection of Anthracycline Cardiotoxicity in Adults with Hematological Malignancies. Ann. Hematol. 2003, 82, 218–222. [Google Scholar] [CrossRef] [PubMed]
- Albsheer, K.; Fadul, A.; Khalafalla, A.; Abdalla, E.M.; Al-Dubai, H. Cytarabine-Induced Bradycardia: A Case Report. Cureus 2022, 14, 10. [Google Scholar] [CrossRef] [PubMed]
- Boluda, B.; Solana-Altabella, A.; Cano, I.; Martínez-Cuadrón, D.; Acuña-Cruz, E.; Torres-Miñana, L.; Rodríguez-Veiga, R.; Navarro-Vicente, I.; Martínez-Campuzano, D.; García-Ruiz, R.; et al. Incidence and Risk Factors for Development of Cardiac Toxicity in Adult Patients with Newly Diagnosed Acute Myeloid Leukemia. Cancers 2023, 15, 2267. [Google Scholar] [CrossRef] [PubMed]
- Getz, K.D.; Sung, L.; Ky, B.; Gerbing, R.B.; Leger, K.J.; Barz Leahy, A.; Sack, L.; Woods, W.G.; Alonzo, T.; Gamis, A.; et al. Occurrence of Treatment-Related Cardiotoxicity and Its Impact on Outcomes among Children Treated in the AAML0531 Clinical Trial: A Report from the Children’s Oncology Group. J. Clin. Oncol. 2019, 37, 12–21. [Google Scholar] [CrossRef]
- Maniu, D.R.; Blag, C.; Popa, G.; Bota, M.; Vlad, C.; Cainap, C.; Balacescu, O.; Pop, L.; Cainap, S.S. The Role of Biomarkers and Echocardiography in the Evaluation of Cardiotoxicity Risk in Children Treated for Leukemia. JBUON 2018, 23, 122–131. [Google Scholar]
- Siaravas, K.C.; Moula, A.I.; Tzourtzos, I.S.; Ballas, C.E.; Katsouras, C.S. Acute and Chronic Cardiovascular Adverse Events in Patients with Acute Myeloid Leukemia: A Systematic Review. Cancers 2025, 17, 541. [Google Scholar] [CrossRef]
- McGowan, J.V.; Chung, R.; Maulik, A.; Piotrowska, I.; Walker, J.M.; Yellon, D.M. Anthracycline Chemotherapy and Cardiotoxicity. Cardiovasc. Drugs Ther. 2017, 31, 63–75. [Google Scholar] [CrossRef]
- Zeidan, A.M.; Podoltsev, N.A.; Wang, X.; Zhang, C.; Bewersdorf, J.P.; Shallis, R.M.; Huntington, S.F.; Neparidze, N.; Giri, S.; Gore, S.D.; et al. Patterns of Care and Clinical Outcomes with Cytarabine-Anthracycline Induction Chemotherapy for AML Patients in the United States. Blood Adv. 2020, 4, 1615–1623. [Google Scholar] [CrossRef]
- U.S. Department of Health and Human Services. Common Terminology Criteria for Adverse Events (CTCAE) v.5.0; Cancer Therapy Evaluation Program; U.S. Department of Health and Human Services: Washington, DC, USA, 2017; p. 155.
- Freites-Martinez, A.; Santana, N.; Arias-Santiago, S.; Viera, A. Using the Common Terminology Criteria for Adverse Events (CTCAE-Version 5.0) to Evaluate the Severity of Adverse Events of Anticancer Therapies. Actas Dermosifiliogr. 2021, 112, 90–92. [Google Scholar] [CrossRef]
- Döhner, H.; Wei, A.H.; Appelbaum, F.R.; Craddock, C.; DiNardo, C.D.; Dombret, H.; Ebert, B.L.; Fenaux, P.; Godley, L.A.; Hasserjian, R.P.; et al. Diagnosis and Management of AML in Adults: 2022 Recommendations from an International Expert Panel on Behalf of the ELN. Blood 2022, 140, 1345–1377. [Google Scholar] [CrossRef]
- Mort, M.K.; Sen, J.M.; Morris, A.L.; DeGregory, K.A.; McLoughlin, E.M.; Mort, J.F.; Dunn, S.P.; Abuannadi, M.; Keng, M.K. Evaluation of Cardiomyopathy in Acute Myeloid Leukemia Patients Treated with Anthracyclines. J. Oncol. Pharm. Pract. 2020, 26, 680–687. [Google Scholar] [CrossRef]
- Linares Ballesteros, A.; Sanguino Lobo, R.; Villada Valencia, J.C.; Arévalo Leal, O.; Plazas Hernández, D.C.; Aponte Barrios, N.; Perdomo Ramírez, I. Early-Onset Cardiotoxicity Assessment Related to Anthracycline in Children with Leukemia. A Prospective Study. Colomb. Medica 2021, 52, e2034542. [Google Scholar] [CrossRef] [PubMed]
- Narayan, H.K.; Getz, K.D.; Leger, K.J. It Takes a Village: Maximizing Supportive Care and Minimizing Toxicity During Childhood Leukemia Therapy. Minimizing Cardiac Toxicity in Children with Acute Myeloid Leukemia. Hematology 2021, 1, 368–375. [Google Scholar] [CrossRef] [PubMed]
- Hegazy, M.; Ghaleb, S.; Das, B.B. Diagnosis and Management of Cancer Treatment-Related Cardiac Dysfunction and Heart Failure in Children. Children 2023, 10, 149. [Google Scholar] [CrossRef] [PubMed]
- Getz, K.D.; Miller, T.P.; Seif, A.E.; Li, Y.; Huang, Y.S.; Bagatell, R.; Fisher, B.T.; Aplenc, R. A Comparison of Resource Utilization Following Chemotherapy for Acute Myeloid Leukemia in Children Discharged versus Children That Remain Hospitalized during Neutropenia. Cancer Med. 2015, 4, 1356–1364. [Google Scholar] [CrossRef]
- Zerra, P.; Cochran, T.R.; Franco, V.I.; Lipshultz, S.E. An Expert Opinion on Pharmacologic Approaches to Reducing the Cardiotoxicity of Childhood Acute Lymphoblastic Leukemia Therapies. Expert Opin. Pharmacother. 2013, 14, 1497–1513. [Google Scholar] [CrossRef]
- Coppola, C.; Rienzo, A.; Piscopo, G.; Barbieri, A.; Arra, C.; Maurea, N. Management of QT Prolongation Induced by Anti-Cancer Drugs: Target Therapy and Old Agents. Different Algorithms for Different Drugs. Cancer Treat. Rev. 2018, 63, 135–143. [Google Scholar] [CrossRef]
- Skrypnyk, I.; Maslova, G.; Lymanets, T.; Gusachenko, I. How to Improve Quality of Life in Patients with Acute Leukemia and Comorbid Ischemic Heart Disease Treated with Anthracycline-Based Induction Chemotherapy. Exp. Oncol. 2019, 41, 353–356. [Google Scholar] [CrossRef]
Characteristic | 2L Cohort | 3L Cohort | ||
---|---|---|---|---|
Median (Range) | n (%) | Median (Range) | n (%) | |
N | 327 | 189 | ||
Age, years | 62 (21–87) | 327 | 58 (20–87) | 189 |
<65 | 187 (57) | 125 (66) | ||
≥65 | 140 (43) | 64 (34) | ||
Gender | 327 | 189 | ||
Male | 190 (58) | 110 (58) | ||
Female | 137 (42) | 79 (42) | ||
ECOG status | 320 | 180 | ||
0–1 | 273 (85) | 158 (87) | ||
≥2 | 47 (15) | 22 (13) | ||
Type of acute myeloid leukemia | 327 | 189 | ||
De novo | 211 (65) | 144 (76) | ||
Therapy related | 43 (13) | 17 (9) | ||
Previous MDS/MPN | 72 (22) | 28 (15) | ||
Extramedullary disease | 327 | 189 | ||
Yes | 19 (6) | 19 (10) | ||
No | 308 (94) | 170 (90) | ||
White blood cell count in peripheral blood, ×109/L | 2.7 (0.1–156.9) | 323 | 2.9 (0.2–253) | 188 |
Hemoglobin, g/dL | 9.8 (5–16.2) | 322 | 9.4 (5.9–15.5) | 188 |
Platelet count, ×109/L | 52 (1–704) | 322 | 31 (2–751) | 188 |
Creatinine, mg/dL | 0.8 (0.2–3.3) | 321 | 0.8 (0.2–3.4) | 187 |
Bilirubin, mg/dL | 0.5 (0.1–5.5) | 312 | 0.5 (0.2–2.4) | 180 |
Albumin, g/dL | 4 (2.1–5.5) | 282 | 4 (2.3–5) | 174 |
Lactate dehydrogenase, U/L | 339 (82–16,666) | 300 | 314 (83–5665) | 183 |
MRC Cytogenetic risk | 121 | 45 | ||
Favorable | 0 (80) | 1 (2) | ||
Intermediate | 58 (48) | 30 (65) | ||
Adverse | 63 (52) | 14 (33) | ||
FLT3-ITD mutation | 175 | 76 | ||
Positive | 38 (22) | 20 (26) | ||
Negative | 137 (78) | 56 (74) | ||
FLT3-TKD mutation | 165 | 74 | ||
Positive | 17 (10) | 9 (12) | ||
Negative | 148 (90) | 65 (88) | ||
NPM1 mutation | 149 | 77 | ||
Positive | 49 (33) | 24 (31) | ||
Negative | 100 (66) | 53 (69) | ||
IDH mutation | 234 | 64 | ||
IDH1 positive | 15 (6) | 9 (14) | ||
IDH2 positive | 23 (10) | 18 (28) | ||
Negative | 196 (84) | 37 (58) |
Therapeutic Approach | Schedule | 2L Cohort Number of Patients n = 327 (%) | 3L Cohort Number of Patients n = 189 (%) |
---|---|---|---|
Intensive chemotherapy | 72 (22) | 50 (26) | |
IDA + Ara-C (3 + 7) | 10 (3) | 2 (1) | |
Ara-C | 2 (1) | 0 | |
FLAG-IDA (fludarabine + Ara-C + IDA) | 53 (16) | 31 (16) | |
EMA (mitoxantrone + Ara-C + etoposide) | 1 (0.3) | 2 (1) | |
Allogeneic transplant | 6 (2) | 15 (8) | |
Non-intensive therapy | 46 (14) | 33 (17) | |
Azacitidine | 6 (2) | 3 (2) | |
Decitabine | 2 (1) | 2 (1) | |
LD-Ara-C or FLUGA (fludarabine + LD-Ara-C) | 34 (10) | 20 (10) | |
Gilteritinib/quizartinib/other FLT3 inhibitor in monotherapy | 1 (0.3) | 3 (2) | |
Other non-intensive | 3 (1) | 5 (3) | |
Clinical Trial | 209 (64) | 107 (57) | |
Intensive + FLT3 inhibitor/placebo | 15 (5) | 1 (1) | |
Intensive without FLT3 inhibitor | 100 (31) | 50 (26) | |
Gilteritinib/quizartinib/other FLT3 inhibitor in monotherapy | 12 (4) | 6 (3) | |
Non-intensive without FLT3 inhibitor | 82 (25) | 49 (26) |
Characteristic | 2L Cohort | 3L Cohort | ||
---|---|---|---|---|
Median (Range) | Number of Patients n = 327 (%) | Median (Range) | Number of Patients n = 189 (%) | |
Relevant cardiac comorbidity | 327 | 189 | ||
Yes | 35 (11) | 10 (5) | ||
No | 292 (89) | 179 (95) | ||
All cardiac comorbidity | 327 | 189 | ||
Yes | 112 (34) | 67 (36) | ||
No | 215 (66) | 122 (64) | ||
Prior anthracycline | 327 | 189 | ||
Yes | 227 (69) | 158 (83) | ||
No | 100 (31) | 31 (17) | ||
Prior dose of anthracycline, mg/m2 | 180 (60–660) | 330 (120–990) | ||
Baseline cardiac medication | 327 | 189 | ||
Yes | 110 (34) | 56 (30) | ||
No | 217 (66) | 133 (70) | ||
Baseline cardiac medication | 0 (0–6) | 327 | 189 | |
0 | 217 (66) | 133 (70) | ||
1–2 | 78 (24) | 42 (23) | ||
3–4 | 25 (8) | 13 (7) | ||
>4 | 5 (2) | 1 (1) | ||
Baseline electrocardiogram | 327 | 189 | ||
Normal | 153 (47) | 93 (49) | ||
Abnormal non clinically significant | 62 (19) | 42 (23) | ||
Abnormal clinically significant | 7 (2) | 3 (2) | ||
Not available | 105 (32) | 51 (27) | ||
Baseline QTcF electrocardiogram | 418 (308–521) | 217 | 420 (372–489) | 137 |
QTcF < 450 | 201 (93) | 125 (91) | ||
QTcF 450–480 | 13 (6) | 10 (7) | ||
QTcF 481–500 | 2 (1) | 2 (1) | ||
QTcF > 500 | 1 (0.4) | 0 | ||
Baseline echocardiogram | 327 | 189 | ||
Normal | 82 (25) | 56 (29) | ||
Abnormal | 16 (5) | 10 (5) | ||
Not available | 229 (70) | 123 (65) | ||
Baseline ejection fraction | 65 (43–87) | 87 | 56 | |
LVEF < 50 | 2 (2) | 0 | ||
LVEF ≥ 50 | 85 (98) | 56 (100) | ||
Heart failure at diagnosis | 327 | 189 | ||
Yes | 8 (2) | 2 (1) | ||
No | 319 (98) | 187 (99) | ||
Baseline NYHA | 0 (0–3) | 323 | 0 (0–1) | 189 |
0 | 319 (98) | 187 (99) | ||
1 | 5 (2) | 2 (1) | ||
2 | 2 (1) | 0 | ||
3 | 1 (0.3) | 0 | ||
4 | 0 | 0 | ||
Cardioischemic signs or symptoms at diagnosis | 327 | 188 | ||
Yes | 3 (1) | 1 (1) | ||
No | 324 (99) | 187 (99) |
No Cardiac Event | p Value | Fatal Cardiac Event | Non-Fatal Cardiac Event | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Characteristic | N (%) | N (%) | Cumulative Incidence | N (%) | Cumulative Incidence | |||||
At 6 Months, % | At Last FU, % | p | At 6 Months, % | At Last FU, % | p | |||||
N | 192 (58.7) | 5 (1.5) | 1.3 | 2 | 130 (39.8) | 38.6 | 40.5 | |||
Age | 192 | 5 | 130 | |||||||
<65 years | 104 (55.6) | 0.087 | 5 (2.7) | 2.3 | 3.4 | 0.058 | 78 (41.7) | 40.2 | 42.6 | 0.36 |
≥65 years | 88 (62.9) | 0 | 0 | 0 | 52 (37.1) | 36.4 | 37.1 | |||
Relevant cardiologic antecedents | 192 | 5 | 130 | |||||||
No | 174 (59.6) | 0.56 | 4 (1.4) | 1.1 | 1.9 | 0.45 | 114 (39) | 37.6 | 39.8 | 0.2 |
Yes | 18 (51.4) | 1 (2.9) | 2.9 | 2.9 | 16 (45.7) | 46.8 | 46.8 | |||
All cardiologic antecedents | 192 | 5 | 130 | |||||||
No | 135 (62.8) | 0.12 | 3 (1.4) | 1 | 1.9 | 0.7 | 77 (35.8) | 35.1 | 36.2 | 0.036 |
Yes | 57 (50.9) | 2 (1.8) | 1.8 | 1.8 | 53 (47.3) | 45.2 | 47.1 | |||
Previous anthracycline treatment | 192 | 5 | 130 | |||||||
No | 66 (66) | 0.09 | 0 | 0 | 0 | 0.15 | 34 (34) | 33 | 33 | 0.14 |
Yes | 126 (55.5) | 5 (2.2) | 1.9 | 2.8 | 96 (42.3) | 41.1 | 43 | |||
ECOG at diagnosis | 186 | 5 | 129 | |||||||
<2 | 153 (56) | 0.03 | 3 (1.1) | 0.7 | 1.6 | 0.084 | 117 (42.9) | 41.6 | 43.6 | 0.036 |
≥2 | 33 (70.2) | 2 (4.3) | 4.6 | 4.6 | 12 (25.5) | 24.2 | 26.5 | |||
FLT3-ITD status | 90 | 4 | 81 | |||||||
Negative | 72 (52.6) | 0.22 | 2 (1.5) | 0.9 | 2.8 | 0.35 | 63 (46) | 44.6 | 46.1 | 0.22 |
Positive | 18 (47.4) | 2 (5.3) | 5.3 | 5.3 | 18 (47.4) | 49.7 | 49.7 | |||
Treatment chemotherapy | 192 | 5 | 130 | |||||||
Intensive | 100 (53.2) | 0.049 | 4 (2.1) | 1.7 | 2.9 | 0.3 | 84 (44.7) | 43.5 | 45.4 | 0.02 |
Non-intensive | 92 (66.2) | 1 (0.7) | 0.7 | 0.7 | 46 (33.1) | 31.9 | 33.3 | |||
Inclusion in clinical trial | 192 | 5 | 130 | |||||||
No | 84 (71.2) | <0.001 | 3 (2.5) | 1.7 | 3.2 | 0.33 | 31 (26.3) | 24.1 | 27.2 | <0.001 |
Yes | 108 (51.7) | 2 (1) | 1.1 | 1.1 | 99 (47.4) | 46.7 | 47.6 | |||
Use of FLT3 inhibitors | 192 | 5 | 130 | |||||||
No | 173 (57.9) | 0.51 | 5 (1.7) | 1.4 | 2.2 | 0.46 | 121 (40.5) | 39.2 | 41.1 | 0.26 |
Yes | 19 (67.9) | 0 | 0 | 0 | 9 (32.1) | 32.1 | 32.1 |
All Patients | No Cardiac Event | Cardiac Event | p | |||
---|---|---|---|---|---|---|
Grade 1–2 | Grade 3–4 | Grade 5 | ||||
N (%) | N (%) | N (%) | N (%) | N (%) | ||
Response, n (%) | 187 (100) | 100 (100) | 38 (100) | 45 (100) | 4 (100) | |
ORR (CR + CRi) | 86 (45.9) | 39 (39) | 22 (57.9) | 24 (53.3) | 1 (25) | 0.021 |
PR | 8 (4.3) | 5 (5) | 2 (5.3) | 1 (2.2) | 0 (0) | |
Resistance | 73 (39) | 43 (43) | 14 (36.8) | 15 (33.3) | 1 (25) | |
Induction death | 20 (10.7) | 13 (13) | 0 (0) | 5 (11.1) | 2 (50) | |
EFS, n (%) | 112 | 66 (58.9) | 23 (20.5) | 23 (20.5) | NA | |
Median (CI95), months | 1.9 (1.7–2.7) | 1.9 (1.4–2.7) | 1.8 (1.7–6.6) | 2.4 (1.5–5.2) | NA | 0.97 |
1 year (CI95), % | 9 (5–16) | 9 (4–20) | 13 (4.5–37.5) | 8.7 (2.3–32.7) | NA | |
3 year (CI95), % | 1 (0.1–6) | 2.1 (0.8–11.9) | NA | NA | NA | |
5 years (CI95), % | 0 (NA) | 1.5 (0.2–10.6) | NA | NA | NA | |
OS, n (%) | 189 | 100 | 38 | 46 | 5 | |
Median (CI95), months | 9.4 (7.8–12.9) | 8.8 (5.9–12.8) | 21.4 (14.3–NA) | 7.6 (6.1–11.3) | 2.1 (0.1–NA) | 0.003 |
1 year (CI95), % | 44 (38–52) | 42 (33–53) | 72 (59–89) | 33 (22–49) | 25 (5–NA) | |
3 year (CI95), % | 23 (18–31) | 23 (16–34) | 38 (24–61) | 16 (8–32) | NA | |
5 years (CI95), % | 20 (14–29) | 20 (13–31) | 34 (20–58) | 16 (8–32) | NA |
All Patients | No Cardiac Event | Cardiac Event | p | |||
---|---|---|---|---|---|---|
Grade 1–2 | Grade 3–4 | Grade 5 | ||||
N (%) | N (%) | N (%) | N (%) | N (%) | ||
Response, n (%) | 102 (100) | 51 (100) | 18 (100) | 33 (100) | NA | |
ORR (CR + CRi) | 33 (32.6) | 15 (29.4) | 6 (33.3) | 12 (36.4) | NA | NA |
PR | 4 (3.9) | 2 (3.9) | 1 (5.6) | 1 (3) | NA | |
Resistance | 51 (50.5) | 25 (49) | 11 (61.1) | 15 (45.5) | NA | |
Induction death | 14 (13.7) | 9 (17.6) | 0 (0) | 5 (15.2) | NA | |
OS, n (%) | 102 | 51 | 18 | 33 | NA | |
Median (CI95), months | 5.4 (4.6–8.1) | 5.9 (3.9–10.4) | 5.4 (3–21.5) | 5 (4.2–19.3) | NA | 0.84 |
1 year (CI95), % | 31.4 (23.5–41.8) | 33.3 (22.6–49.1) | 27.8 (13.2–58.5) | 33.3 (20.6–54) | NA | |
2 year (CI95), % | 20.6 (14.1–30.1) | 23.5 (14.4–38.6) | 16.7 (5.9–33.7) | 21.2 (11–40.9) | NA | |
3 year (CI95), % | 12 (7–20.6) | 13.4 (6.7–27.2) | 11.1 (3–41) | 14.1 (5.9–33.7) | NA | |
5 years (CI95), % | 10.7 (5.9–19.2) | 13.4 (6.7–27.2) | 5.6 (8.3–37.3) | 9.4 (2.9–30.7) | NA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Torres-Miñana, L.; Boluda, B.; Solana-Altabella, A.; Rodríguez-Veiga, R.; Cano, I.; Acuña-Cruz, E.; Navarro-Vicente, I.; Lloret-Madrid, P.; Hillebrand, P.; Martínez-Campuzano, D.; et al. Cardiotoxicity in Adult Patients with Relapsed or Refractory Acute Myeloid Leukemia. Cancers 2025, 17, 2413. https://doi.org/10.3390/cancers17152413
Torres-Miñana L, Boluda B, Solana-Altabella A, Rodríguez-Veiga R, Cano I, Acuña-Cruz E, Navarro-Vicente I, Lloret-Madrid P, Hillebrand P, Martínez-Campuzano D, et al. Cardiotoxicity in Adult Patients with Relapsed or Refractory Acute Myeloid Leukemia. Cancers. 2025; 17(15):2413. https://doi.org/10.3390/cancers17152413
Chicago/Turabian StyleTorres-Miñana, Laura, Blanca Boluda, Antonio Solana-Altabella, Rebeca Rodríguez-Veiga, Isabel Cano, Evelyn Acuña-Cruz, Irene Navarro-Vicente, Pilar Lloret-Madrid, Paulina Hillebrand, David Martínez-Campuzano, and et al. 2025. "Cardiotoxicity in Adult Patients with Relapsed or Refractory Acute Myeloid Leukemia" Cancers 17, no. 15: 2413. https://doi.org/10.3390/cancers17152413
APA StyleTorres-Miñana, L., Boluda, B., Solana-Altabella, A., Rodríguez-Veiga, R., Cano, I., Acuña-Cruz, E., Navarro-Vicente, I., Lloret-Madrid, P., Hillebrand, P., Martínez-Campuzano, D., Osa-Sáez, A., Aguero, J., Mendizábal, Y., Martín-Herreros, B., Barragán, E., Sargas, C., Gil, C., Botella, C., Algarra, L., ... Montesinos, P. (2025). Cardiotoxicity in Adult Patients with Relapsed or Refractory Acute Myeloid Leukemia. Cancers, 17(15), 2413. https://doi.org/10.3390/cancers17152413