Comparative Analysis of 60Co and 192Ir Sources in High Dose Rate Brachytherapy for Cervical Cancer
Abstract
:Simple Summary
Abstract
1. Introduction
2. Dosimetric Parameters
3. Two-Dimensional Brachytherapy
4. Three-Dimensional Intracavity Brachytherapy
5. 3-Dimensional Intracavity-Interstitial Brachytherapy
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Viswanathan, A.N.; Thomadsen, B.; American Brachytherapy Society Cervical Cancer Recommendations Committee; American Brachytherapy Society. American Brachytherapy Society consensus guidelines for locally advanced carcinoma of the cervix. Part I: General principles. Brachytherapy 2012, 11, 33–46. [Google Scholar] [CrossRef] [PubMed]
- Viswanathan, A.N.; Beriwal, S.; De Los Santos, J.F.; Demanes, D.J.; Gaffney, D.; Hansen, J.; Jones, E.; Kirisits, C.; Thomadsen, B.; Erickson, B. American Brachytherapy Society consensus guidelines for locally advanced carcinoma of the cervix. Part II: High-dose-rate brachytherapy. Brachytherapy 2012, 11, 47–52. [Google Scholar] [CrossRef] [PubMed]
- Milickovic, N.; Tselis, N.; Karagiannis, E.; Ferentinos, K.; Zamboglou, N. Iridium-Knife: Another knife in radiation Oncology. Brachytherapy 2017, 16, 884–892. [Google Scholar] [CrossRef]
- Gill, B.S.; Lin, J.F.; Krivak, T.C.; Sukumvanich, P.; Laskey, R.A.; Ross, M.S.; Lesnock, J.L.; Beriwal, S. National Cancer Data Base analysis of radiation therapy consolidation modality for cervical cancer: The impact of new technological advancements. Int. J. Radiat. Oncol. Biol. Phys. 2014, 90, 1083–1090. [Google Scholar] [CrossRef]
- Han, K.; Milosevic, M.; Fyles, A.; Pintilie, M.; Viswanathan, A.N. Trends in the utilization of brachytherapy in cervical cancer in the United States. Int. J. Radiat. Oncol. Biol. Phys. 2013, 87, 111–119. [Google Scholar] [CrossRef] [PubMed]
- Xia, C.; Dong, X.; Li, H.; Cao, M.; Sun, D.; He, S.; Yang, F.; Yan, X.; Zhang, S.; Li, N.; et al. Cancer statistics in China and United States, 2022: Profiles, trends, and determinants. Chin. Med. J. 2022, 135, 584–590. [Google Scholar] [CrossRef] [PubMed]
- Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer statistics, 2022. CA Cancer J. Clin. 2022, 72, 7–33. [Google Scholar] [CrossRef]
- Pfaendler, K.S.; Tewari, K.S. Changing paradigms in the systemic treatment of advanced cervical cancer. Am. J. Obstet. Gynecol. 2016, 214, 22–30. [Google Scholar] [CrossRef]
- McLachlan, J.; Boussios, S.; Okines, A.; Glaessgen, D.; Bodlar, S.; Kalaitzaki, R.; Taylor, A.; Lalondrelle, S.; Gore, M.; Kaye, S.; et al. The Impact of Systemic Therapy Beyond First-line Treatment for Advanced Cervical Cancer. Clin. Oncol. 2017, 29, 153–160. [Google Scholar] [CrossRef]
- Berman, T.A.; Schiller, J.T. Human papillomavirus in cervical cancer and oropharyngeal cancer: One cause, two diseases. Cancer 2017, 123, 2219–2229. [Google Scholar] [CrossRef]
- Musunuru, H.B.; Pifer, P.M.; Mohindra, P.; Albuquerque, K.; Beriwal, S. Advances in management of locally advanced cervical cancer. Indian J. Med. Res. 2022, 155, 325–328. [Google Scholar] [CrossRef]
- Chargari, C.; Peignaux, K.; Escande, A.; Renard, S.; Lafond, C.; Petit, A.; Lam Cham Kee, D.; Durdux, C.; Haie-Meder, C. Radiotherapy of cervical cancer. Cancer Radiother. 2022, 26, 298–308. [Google Scholar] [CrossRef] [PubMed]
- International Commission on Radiation Units and Measurements. ICRU Report 89: Prescribing, Recording, and Reporting Brachytherapy for Cancer of the Cervix; ICRU: Bethesda, MD, USA, 2016. [Google Scholar]
- Strohmaier, S.; Zwierzchowski, G. Comparison of (60)Co and (192)Ir sources in HDR brachytherapy. J. Contemp. Brachytherapy 2011, 3, 199–208. [Google Scholar] [CrossRef] [PubMed]
- Granero, D.; Perez-Calatayud, J.; Ballester, F. Technical note: Dosimetric study of a new Co-60 source used in brachytherapy. Med. Phys. 2007, 34, 3485–3488. [Google Scholar] [CrossRef]
- Ott, O.J.; Lotter, M.; Sauer, R.; Strnad, V. Accelerated partial-breast irradiation with interstitial implants: The Clinical relevance of the calculation of skin doses. Strahlenther. Onkol. 2007, 183, 426–431. [Google Scholar] [CrossRef]
- Salminen, E.K.; Kiel, K.; Ibbott, G.S.; Joiner, M.C.; Rosenblatt, E.; Zubizarreta, E.; Wondergem, J.; Meghzifene, A. International Conference on Advances in Radiation Oncology (ICARO): Outcomes of an IAEA meeting. Radiat. Oncol. 2011, 6, 11. [Google Scholar] [CrossRef]
- Mailhot Vega, R.B., Jr.; Barbee, D.; Talcott, W.; Duckworth, T.; Shah, B.A.; Ishaq, O.F.; Small, C.; Yeung, A.R.; Perez, C.A.; Schiff, P.B.; et al. Cost in perspective: Direct assessment of American market acceptability of Co-60 in Gynecol.ogic high-dose-rate brachytherapy and contrast with experience abroad. J. Contemp. Brachytherapy 2018, 10, 503–509. [Google Scholar] [CrossRef]
- Badry, H.; Oufni, L.; Ouabi, H.; Hirayama, H. A Monte Carlo investigation of the dose distribution for (60)Co high dose rate brachytherapy source in water and in different media. Appl. Radiat. Isot. 2018, 136, 104–110. [Google Scholar] [CrossRef]
- Reddy, B.R.; Chamberland, M.J.P.; Ravikumar, M.; Varatharaj, C. Measurements and Monte Carlo calculation of radial dose and anisotropy functions of BEBIG (60)Co high-dose-rate brachytherapy source in a bounded water phantom. J. Contemp. Brachytherapy 2019, 11, 563–572. [Google Scholar] [CrossRef]
- Mozaffari, A.; Ghorbani, M. Determination of TG-43 Dosimetric Parameters for Photon Emitting Brachytherapy Sources. J. Biomed. Phys. Eng. 2019, 9, 425–436. [Google Scholar] [CrossRef]
- Richter, J.; Baier, K.; Flentje, M. Comparison of 60cobalt and 192iridium sources in high dose rate afterloading brachytherapy. Strahlenther. Onkol. 2008, 184, 187–192. [Google Scholar] [CrossRef] [PubMed]
- Park, D.W.; Kim, Y.S.; Park, S.H.; Choi, E.K.; Ahn, S.D.; Lee, S.W.; Song, S.Y.; Kim, J.H. A comparison of dose distributions of HDR intracavitary brachytherapy using different sources and treatment planning systems. Appl. Radiat. Isot. 2009, 67, 1426–1431. [Google Scholar] [CrossRef] [PubMed]
- Safigholi, H.; Meigooni, A.S.; Song, W.Y. Comparison of (192) Ir, (169) Yb, and (60) Co high-dose rate brachytherapy sources for skin cancer treatment. Med. Phys. 2017, 44, 4426–4436. [Google Scholar] [CrossRef] [PubMed]
- Farhood, B.; Ghorbani, M. Assessment of dose uniformity around high dose rate (192)Ir and (60)Co stepping sources. Radiol. Phys. Technol. 2017, 10, 454–463. [Google Scholar] [CrossRef]
- Dayyani, M.; Hoseinian-Azghadi, E.; Miri-Hakimabad, H.; Rafat-Motavalli, L.; Abdollahi, S.; Mohammadi, N. Radiobiological comparison between Cobalt-60 and Iridium-192 high-dose-rate brachytherapy sources: Part I-cervical cancer. Med. Phys. 2021, 48, 6213–6225. [Google Scholar] [CrossRef]
- Huang, R.; Zhou, Y.; Hu, S.; Ren, G.; Cui, F.; Zhou, P.K. Radiotherapy Exposure in Cancer Patients and Subsequent Risk of Stroke: A Systematic Review and Meta-Analysis. Front. Neurol. 2019, 10, 233. [Google Scholar] [CrossRef]
- Mu, H.; Sun, J.; Li, L.; Yin, J.; Hu, N.; Zhao, W.; Ding, D.; Yi, L. Ionizing radiation exposure: Hazards, prevention, and biomarker screening. Environ. Sci. Pollut. Res. Int. 2018, 25, 15294–15306. [Google Scholar] [CrossRef]
- Palmer, A.; Hayman, O.; Muscat, S. Treatment planning study of the 3D dosimetric differences between Co-60 and Ir-192 sources in high dose rate (HDR) brachytherapy for cervix cancer. J. Contemp. Brachytherapy 2012, 4, 52–59. [Google Scholar] [CrossRef]
- Ulinskas, K.; Janulionis, E.; Valuckas, K.P.; Samerdokiene, V.; Atkocius, V.; Rivard, M.J. Long-term results for Stage IIIB cervical cancer patients receiving external beam radiotherapy combined with either. HDR (252)Cf or HDR (60)Co intracavitary brachytherapy. Brachytherapy 2016, 15, 353–360. [Google Scholar] [CrossRef]
- Pesee, M.; Krusun, S.; Padoongcharoen, P. High dose rate cobalt-60 afterloading intracavitary therapy for cervical carcinoma in Srinagarind hospital—Analysis of survival. Asian Pac. J. Cancer Prev. 2010, 11, 1469–1471. [Google Scholar]
- Pesee, M.; Krusun, S.; Padoongcharoen, P. High dose rate cobalt-60 afterloading intracavitary therapy of uterine cervical carcinomas in Srinagarind hospital—Analysis of complications. Asian Pac. J. Cancer Prev. 2010, 11, 491–494. [Google Scholar] [PubMed]
- Tantivatana, T.; Rongsriyam, K. Treatment outcomes of high-dose-rate intracavitary brachytherapy for cervical cancer: A comparison of Ir-192 versus Co-60 sources. J. Gynecol. Oncol. 2018, 29, e86. [Google Scholar] [CrossRef] [PubMed]
- Rakhsha, A.; Kashi, A.S.Y.; Hoseini, S.M. Evaluation of Survival and Treatment Toxicity With High-Dose-Rate Brachytherapy with Cobalt 60 in Carcinoma of Cervix. Iran. J. Cancer Prev. 2015, 8, e3573. [Google Scholar] [CrossRef] [PubMed]
- Ntekim, A.; Adenipekun, A.; Akinlade, B.; Campbell, O. High Dose Rate Brachytherapy in the Treatment of cervical cancer: Preliminary experience with cobalt 60 Radionuclide source-A Prospective Study. Clin. Med. Insights Oncol. 2010, 4, 89–94. [Google Scholar] [CrossRef]
- Tanaka, E.; Suzuki, O.; Oh, R.J.; Takeda, T.; Teshima, T.; Inoue, T.; Inoue, T. Intracavitary brachytherapy for carcinoma of the uterine cervix—Comparison of HDR (Ir-192) and MDR (Cs-137). Radiat. Med. 2006, 24, 50–57. [Google Scholar] [CrossRef]
- Song, J.; Alyamani, N.; Bhattacharya, G.; Le, T.; E, C.; Samant, R. The Impact of High-Dose-Rate Brachytherapy: Measuring Clin.ical Outcomes in the Primary Treatment of Cervical Cancer. Adv. Radiat. Oncol. 2020, 5, 419–425. [Google Scholar] [CrossRef]
- Thakur, P.; Dogra, E.; Gupta, M.; Negi, R.R.; Fotedar, V.; Thakur, S.; Sharma, C. Comparison of iso-effective and cost-effective high-dose-rate brachytherapy treatment schedules in cervical cancer—regional cancer center experience. J. Contemp. Brachytherapy 2019, 11, 428–435. [Google Scholar] [CrossRef]
- Hochreiter, A.; Kelly, J.R.; Young, M.R.; Litkouhi, B.; Black, J.D.; Stromberger, C.; Higgins, S.; Schwartz, P.E.; Damast, S. Outcomes and relapse patterns of stage IB grade 2 or 3 endometrial cancer treated with adjuvant vaginal brachytherapy. Int. J. Gynecol. Cancer 2020, 30, 48–55. [Google Scholar] [CrossRef]
- Alecu, R.; Alecu, M. In-vivo rectal dose measurements with diodes to avoid misadministrations during intracavitary high dose rate brachytherapy for carcinoma of the cervix. Med. Phys. 1999, 26, 768–770. [Google Scholar] [CrossRef]
- Huh, H.; Kim, W.; Loh, J.J.; Lee, S.; Kim, C.Y.; Lee, S.; Shin, D.; Shin, D.; Cho, S.; Jang, J.; et al. Rectum dose analysis employing a multi-purpose brachytherapy phantom. Jpn. J. Clin. Oncol. 2007, 37, 391–398. [Google Scholar] [CrossRef]
- Waldhausl, C.; Wambersie, A.; Potter, R.; Georg, D. In-vivo dosimetry for gynaecological brachytherapy: Physical and Clinical considerations. Radiother. Oncol. 2005, 77, 310–317. [Google Scholar] [CrossRef]
- Zaman, Z.K.; Ung, N.M.; Malik, R.A.; Ho, G.F.; Phua, V.C.; Jamalludin, Z.; Baharuldin, M.T.; Ng, K.H. Comparison of planned and measured rectal dose in-vivo during high dose rate Cobalt-60 brachytherapy of cervical cancer. Phys. Med. 2014, 30, 980–984. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.L.; Yang, Y.C.; Chao, K.S.; Wu, M.H.; Tai, H.C.; Chen, T.C.; Huang, M.C.; Chen, J.R.; Su, T.H.; Chen, Y.J. Correlation of traditional point a with anatomic location of uterine artery and ureter in cancer of the uterine cervix. Int. J. Radiat. Oncol. Biol. Phys. 2007, 69, 498–503. [Google Scholar] [CrossRef] [PubMed]
- Katz, A.; Eifel, P.J. Quantification of intracavitary brachytherapy parameters and correlation with outcome in patients with carcinoma of the cervix. Int. J. Radiat. Oncol. Biol. Phys. 2000, 48, 1417–1425. [Google Scholar] [CrossRef]
- Kim, R.Y.; Pareek, P. Radiography-based treatment planning compared with computed tomography (CT)-based treatment planning for intracavitary brachytherapy in cancer of the cervix: Analysis of dose-volume histograms. Brachytherapy 2003, 2, 200–206. [Google Scholar] [CrossRef]
- Datta, N.R.; Basu, R.; Das, K.J.; Rajasekar, D.; Pandey, C.M.; Singh, U.; Ayyagari, S. Problems and uncertainties with multiple point A’s during multiple high-dose-rate intracavitary brachytherapy in carcinoma of the cervix. Clin. Oncol. 2004, 16, 129–137. [Google Scholar] [CrossRef]
- Hashemi, F.A.; Mansouri, S.; Aghili, M.; Esmati, E.; Babaei, M.; Saeedian, A.; Moalej, S.; Jaberi, R. A comparison between 2D and 3D planning of high-dose-rate vaginal cuff brachytherapy in patients with stage I-II endometrial cancer using cobalt-60. J. Contemp. Brachytherapy 2021, 13, 526–532. [Google Scholar] [CrossRef]
- Suzumura, E.A.; Gama, L.M.; Jahn, B.; Campolina, A.G.; Carvalho, H.A.; de Soarez, P.C. Effects of 3D image-guided brachytherapy compared to 2D conventional brachytherapy on clinical outcomes in patients with cervical cancer: A systematic review and meta-analyses. Brachytherapy 2021, 20, 710–737. [Google Scholar] [CrossRef]
- Derks, K.; Steenhuijsen, J.L.G.; van den Berg, H.A.; Houterman, S.; Cnossen, J.; van Haaren, P.; De Jaeger, K. Impact of brachytherapy technique (2D versus 3D) on outcome following radiotherapy of cervical cancer. J. Contemp. Brachytherapy 2018, 10, 17–25. [Google Scholar] [CrossRef]
- Kim, Y.J.; Kang, H.C.; Kim, Y.S. Impact of intracavitary brachytherapy technique (2D versus 3D) on outcomes of cervical cancer: A systematic review and meta-analysis. StrahlenTher. Onkol. 2020, 196, 973–982. [Google Scholar] [CrossRef]
- Kim, H.; Beriwal, S.; Houser, C.; Huq, M.S. Dosimetric analysis of 3D image-guided HDR brachytherapy planning for the treatment of cervical cancer: Is point A-based dose prescription still valid in image-guided brachytherapy? Med. Dosim. 2011, 36, 166–170. [Google Scholar] [CrossRef] [PubMed]
- Potter, R.; Georg, P.; Dimopoulos, J.C.; Grimm, M.; Berger, D.; Nesvacil, N.; Georg, D.; Schmid, M.P.; Reinthaller, A.; Sturdza, A.; et al. Clinical outcome of protocol based image (MRI) guided adaptive brachytherapy combined with 3D conformal radiotherapy with or without chemotherapy in patients with locally advanced cervical cancer. Radiother. Oncol. 2011, 100, 116–123. [Google Scholar] [CrossRef] [PubMed]
- Lindegaard, J.C.; Fokdal, L.U.; Nielsen, S.K.; Juul-Christensen, J.; Tanderup, K. MRI-guided adaptive radiotherapy in locally advanced cervical cancer from a Nordic perspective. Acta Oncol. 2013, 52, 1510–1519. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, A.; Datta, N.R. Brachytherapy in cancer cervix: Time to move ahead from point A? World J. Clin. Oncol. 2014, 5, 764–774. [Google Scholar] [CrossRef]
- Someya, M.; Hasegawa, T.; Tsuchiya, T.; Kitagawa, M.; Gocho, T.; Fukushima, Y.; Hori, M.; Miura, K.; Takada, Y.; Nakata, K.; et al. Retrospective DVH analysis of point A based intracavitary brachytherapy for uterine cervical cancer. J. Radiat. Res. 2020, 61, 265–274. [Google Scholar] [CrossRef]
- Bandyopadhyay, A.; Ghosh, A.K.; Chhatui, B.; Das, D. Dosimetric and Clin.ical outcomes of CT based HR-CTV delineation for HDR intracavitary brachytherapy in carcinoma cervix—A retrospective study. Rep. Pract. Oncol. Radiother. 2021, 26, 170–178. [Google Scholar] [CrossRef]
- Shukla, A.K.; Jangid, P.K.; Rajpurohit, V.S.; Verma, A.; Dangayach, S.K.; Gagrani, V.; Rathore, N.K. Dosimetric comparison of (60)Co and (192)Ir high dose rate source used in brachytherapy treatment of cervical cancer. J. Cancer Res. Ther. 2019, 15, 1212–1215. [Google Scholar] [CrossRef]
- Moren, B.; Larsson, T.; Tedgren, A.C. Optimization in treatment planning of high dose-rate brachytherapy—Review and analysis of mathematical models. Med. Phys. 2021, 48, 2057–2082. [Google Scholar] [CrossRef]
- Sinnatamby, M.; Kandasamy, S.; Karunanidhi, G.; Neelakandan, V.; Ramapandian, S.; Kannan, M.; Sampath, E. Image-Guided Brachytherapy a Comparison Between 192Ir and 60Co Sources in Carcinoma Uterine Cervix. Gulf J. Oncol. 2022, 1, 7–14. [Google Scholar]
- Gurjar, O.P.; Batra, M.; Bagdare, P.; Kaushik, S.; Tyagi, A.; Naik, A.; Bhandari, V.; Gupta, K.L. Dosimetric analysis of Co-60 source based high dose rate (HDR) brachytherapy: A case series of ten patients with carcinoma of the uterine cervix. Rep. Pract. Oncol. Radiother. 2016, 21, 201–206. [Google Scholar] [CrossRef]
- Tormo Ferrero, V.; Duque Ugarte, R.; Berenguer Frances, M.A.; Cardenal Macia, R. Gynecol.ogical brachytherapy for postoperative endometrial cancer: Dosimetric analysis (Ir-192 vs. Co-60). Clin. Transl. Oncol. 2017, 19, 1409–1413. [Google Scholar] [CrossRef] [PubMed]
- Mobit, P.N.; Nguyen, A.; Packianathan, S.; He, R.; Yang, C.C. Dosimetric comparison of brachytherapy sources for high-dose-rate treatment of endometrial cancer: (192)Ir, (60)Co and an electronic brachytherapy source. Br. J. Radiol. 2016, 89, 20150449. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yadav, S.; Singh, O.P.; Choudhary, S.; Saroj, D.K.; Yogi, V.; Goswami, B. Estimation and comparison of integral dose to target and organs at risk in three-dimensional computed tomography image-based treatment planning of carcinoma uterine cervix with two high-dose-rate brachytherapy sources: (60)Co and (192)Ir. J. Cancer Res. Ther. 2021, 17, 191–197. [Google Scholar] [CrossRef] [PubMed]
- Boeck, L.D.; Belin, J.; Egyed, W. Dose optimization in high-dose-rate brachytherapy: A literature review of quantitative models from 1990 to 2010. Oper. Res. Health Care 2014, 3, 80–90. [Google Scholar] [CrossRef]
- Atasever Akkas, E.; Altundag, M.B. Long-term clinical outcome and dosimetric comparison of tandem and ring versus tandem and ovoids intracavitary application in cervical cancer. J. BUON 2021, 26, 698–706. [Google Scholar]
- Wang, W.; Meng, Q.; Hou, X.; Lian, X.; Yan, J.; Sun, S.; Liu, Z.; Miao, Z.; Wang, D.; Liu, X.; et al. Efficacy and toxicity of image-guided intensity-modulated radiation therapy combined with dose-escalated brachytherapy for stage IIB cervical cancer. Oncotarget 2017, 8, 102965–102973. [Google Scholar] [CrossRef]
- Kusada, T.; Toita, T.; Ariga, T.; Kudaka, W.; Maemoto, H.; Makino, W.; Ishikawa, K.; Heianna, J.; Nagai, Y.; Aoki, Y.; et al. Definitive radiotherapy consisting of whole pelvic radiotherapy with no central shielding and CT-based intracavitary brachytherapy for cervical cancer: Feasibility, toxicity, and oncologic outcomes in Japanese patients. Int. J. Clin. Oncol. 2020, 25, 1977–1984. [Google Scholar] [CrossRef]
- Tanderup, K.; Eifel, P.J.; Yashar, C.M.; Potter, R.; Grigsby, P.W. Curative radiation therapy for locally advanced cervical cancer: Brachytherapy is NOT optional. Int. J. Radiat. Oncol. Biol. Phys. 2014, 88, 537–539. [Google Scholar] [CrossRef]
- Barraclough, L.H.; Swindell, R.; Livsey, J.E.; Hunter, R.D.; Davidson, S.E. External beam boost for cancer of the cervix uteri when intracavitary therapy cannot be performed. Int. J. Radiat. Oncol. Biol. Phys. 2008, 71, 772–778. [Google Scholar] [CrossRef]
- Dimopoulos, J.C.; Kirisits, C.; Petric, P.; Georg, P.; Lang, S.; Berger, D.; Potter, R. The Vienna applicator for combined intracavitary and interstitial brachytherapy of cervical cancer: Clinical feasibility and preliminary results. Int. J. Radiat. Oncol. Biol. Phys. 2006, 66, 83–90. [Google Scholar] [CrossRef]
- Liu, Z.S.; Guo, J.; Zhao, Y.Z.; Lin, X.; Zhang, B.Y.; Zhang, C.; Wang, H.Y.; Yu, L.; Ren, X.J.; Wang, T.J. Computed Tomography-Guided interstitial Brachytherapy for Locally Advanced Cervical Cancer: Introduction of the Technique and a Comparison of Dosimetry with Conventional Intracavitary Brachytherapy. Int. J. Gynecol. Cancer 2017, 27, 768–775. [Google Scholar] [CrossRef] [PubMed]
- Dang, Y.Z.; Li, P.; Li, J.P.; Bai, F.; Zhang, Y.; Mu, Y.F.; Li, W.W.; Wei, L.C.; Shi, M. The Efficacy and Late Toxicities of Computed Tomography-based Brachytherapy with intracavitary and interstitial Technique in Advanced Cervical Cancer. J. Cancer 2018, 9, 1635–1641. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Zhang, F.; Hu, K.; Hou, X. Image-guided, intensity-modulated radiation therapy in definitive radiotherapy for 1433 patients with cervical cancer. Gynecol. Oncol. 2018, 151, 444–448. [Google Scholar] [CrossRef]
- Mohamed, S.; Kallehauge, J.; Fokdal, L.; Lindegaard, J.C.; Tanderup, K. Parametrial boosting in locally advanced cervical cancer: Combined intracavitary/interstitial brachytherapy vs. intracavitary brachytherapy plus external beam radiotherapy. Brachytherapy 2015, 14, 23–28. [Google Scholar] [CrossRef]
- Frohlich, G.; Vizkeleti, J.; Nguyen, A.N.; Major, T.; Polgar, C. Comparative analysis of image-guided adaptive interstitial brachytherapy and intensity-modulated arc therapy versus conventional treatment techniques in cervical cancer using biological dose summation. J. Contemp. Brachytherapy 2019, 11, 69–75. [Google Scholar] [CrossRef] [PubMed]
- Narayan, K.; van Dyk, S.; Bernshaw, D.; Khaw, P.; Mileshkin, L.; Kondalsamy-Chennakesavan, S. Ultrasound guided conformal brachytherapy of cervix cancer: Survival, patterns of failure, and late complications. J. Gynecol. Oncol. 2014, 25, 206–213. [Google Scholar] [CrossRef]
- Sinnatamby, M.; Nagarajan, V.; Kanipakam Sathyanarayana, R.; Karunanidhi, G.; Singhavajala, V. Study of the dosimetric differences between (192)Ir and (60)Co sources of high dose rate brachytherapy for breast interstitial implant. Rep. Pract. Oncol. Radiother. 2016, 21, 453–459. [Google Scholar] [CrossRef]
- Kumar, M.; Thangaraj, R.; Alva, R.C.; Koushik, K.; Ponni, A.; Janaki, M.G. Interstitial high-dose-rate brachytherapy using cobalt-60 source for cervical cancer: Dosimetric and clinical outcomes from a single institute. J. Contemp. Brachytherapy 2020, 12, 351–355. [Google Scholar] [CrossRef]
- Tiwari, R.; Narayanan, G.S.; Narayanan, S.; Suresh Kumar, P. Long-term effectiveness and safety of image-based, transperineal combined intracavitary and interstitial brachytherapy in treatment of locally advanced cervical cancer. Brachytherapy 2020, 19, 73–80. [Google Scholar] [CrossRef]
- Fallon, J.; Park, S.J.; Yang, L.; Veruttipong, D.; Zhang, M.; Van, T.; Wang, P.C.; Fekete, A.M.; Cambeiro, M.; Kamrava, M.; et al. Long term results from a prospective database on high dose rate (HDR) interstitial brachytherapy for primary cervical carcinoma. Gynecol. Oncol. 2016, 144, 21–27. [Google Scholar] [CrossRef]
- Murakami, N.; Kobayashi, K.; Shima, S.; Tsuchida, K.; Kashihara, T.; Tselis, N.; Umezawa, R.; Takahashi, K.; Inaba, K.; Ito, Y.; et al. A hybrid technique of intracavitary and interstitial brachytherapy for locally advanced cervical cancer: Initial outcomes of a single-institute experience. BMC Cancer 2019, 19, 221. [Google Scholar] [CrossRef] [PubMed]
- Le Guyader, M.; Kee, D.L.C.; Thamphya, B.; Schiappa, R.; Gautier, M.; Chand-Fouche, M.E.; Hannoun-Levi, J.M. High-dose-rate brachytherapy boost for locally advanced cervical cancer: Oncological outcome and toxicity analysis of 4 fractionation schemes. Clin. Transl. Radiat. Oncol. 2022, 32, 15–23. [Google Scholar] [CrossRef] [PubMed]
CTV D90/Gy | Bladder D2cc/Gy | Rectum D2cc/Gy | Intestines D2cc/Gy | |
---|---|---|---|---|
Co | 6 | 4.70 ± 0.29 | 4.41 ± 0.68 | 3.57 ± 1.12 |
Ir | 6 | 4.81 ± 0.28 | 4.49 ± 0.68 | 3.66 ± 1.13 |
p value | p < 0.05 | p < 0.05 | p < 0.05 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wen, A.; Wang, X.; Wang, B.; Yan, C.; Luo, J.; Wang, P.; Li, J. Comparative Analysis of 60Co and 192Ir Sources in High Dose Rate Brachytherapy for Cervical Cancer. Cancers 2022, 14, 4749. https://doi.org/10.3390/cancers14194749
Wen A, Wang X, Wang B, Yan C, Luo J, Wang P, Li J. Comparative Analysis of 60Co and 192Ir Sources in High Dose Rate Brachytherapy for Cervical Cancer. Cancers. 2022; 14(19):4749. https://doi.org/10.3390/cancers14194749
Chicago/Turabian StyleWen, Aiping, Xianliang Wang, Bingjie Wang, Chuanjun Yan, Jingyue Luo, Pei Wang, and Jie Li. 2022. "Comparative Analysis of 60Co and 192Ir Sources in High Dose Rate Brachytherapy for Cervical Cancer" Cancers 14, no. 19: 4749. https://doi.org/10.3390/cancers14194749
APA StyleWen, A., Wang, X., Wang, B., Yan, C., Luo, J., Wang, P., & Li, J. (2022). Comparative Analysis of 60Co and 192Ir Sources in High Dose Rate Brachytherapy for Cervical Cancer. Cancers, 14(19), 4749. https://doi.org/10.3390/cancers14194749