Abstract
A stripline-type circulator is essential for the initial low-power characterization of vacuum electron devices such as magnetrons, enabling accurate measurements of startup behavior, oscillation frequency, and mode structure while minimizing reflections and protecting diagnostic equipment. In this study, two broadband S-band stripline circulator prototypes operating in the 2–4 GHz and 3–4 GHz bands were designed, fabricated, and experimentally characterized. A unified design methodology was implemented by using the same ferrite material and coupling angle in both structures, providing procurement simplicity, cost reduction, and technological standardization. This approach also enabled a direct assessment of how bandwidth variations influence circulator behavior. The design goals targeted a transmission efficiency above 90%, isolation exceeding 15 dB, and a voltage standing-wave ratio (VSWR) of 1.2:1. Experimental evaluations, including magnetic field mapping, low-power S-parameter measurements, and high-power tests, confirmed that both prototypes satisfy these specifications, consistently achieving at least 90% transmission across their respective operating bands. Additionally, a comparative analysis between a locally fabricated ferrite and a commercial ferrite sample was conducted, revealing the influence of material properties on transmission stability and high-power behavior. The results demonstrate that broadband stripline circulators employing a common ferrite material can be adapted to different S-band applications, offering a practical, cost-effective, and reliable solution for RF systems.