Abstract
In recent years, diseases, environmental pollution, and food safety issues have seriously threatened global health, generating international concern. Many existing detection strategies used to deal with the above problems have high accuracy and sensitivity, but usually rely on large-sized, complex instruments and professional technicians, which are not suitable for on-site testing. Therefore, it is imperative to develop highly sensitive, rapid, and portable analytical methods. Recently, microfluidic paper-based analytical devices (μPADs) have been recognized as a highly promising microfluidic device substrate to deal with the issues existing in medical, environmental, and food safety, etc., due to their advantages, including environmental-friendliness, high flexibility, low cost, and mature technology. This review comprehensively summarizes the recent advances in μPADs. We first overview the development of paper-based materials and their core fabrication techniques, followed by a detailed discussion on the material selection and detection mechanisms of the devices. The review also provides an assessment of the application achievements of μPADs in medical diagnostics, environmental analysis, and food safety monitoring. Finally, current challenges in the field are summarized and future research directions and prospects are proposed.