Fabrication and Dose–Response Simulation of Soft Dual-Sided Deep Brain Stimulation Electrode
Abstract
1. Introduction
2. Materials and Methods
2.1. Electrode Structure Design and Manufacturing
2.2. Electrode Performance Characterization
- CV parameters: A triangular waveform with a scan rate of 50 mV/s was applied to establish the electrode’s safe water window.
- EIS parameters: Impedance spectra were acquired over a frequency range of 1 Hz to 100 kHz with an applied sinusoidal AC signal amplitude of 10 mV RMS to characterize the electrode’s impedance changes across frequencies.
2.3. Electrical Stimulation Model and Dose–Response Analysis
3. Results and Discussion
3.1. Electrochemical Performance of Electrodes
3.2. Electrode Implantation Injury and Directionality Comparison
- Single-sided electrode: 16.31 mm3;
- Dual-sided electrode: 24.67 mm3.
3.3. Dose–Response Analysis Prediction Model
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
No. | X1 (Pw/μs) | X2 (f/Hz) | X3 (I/mA) | Y (VTA/mm3) |
---|---|---|---|---|
1 | 200 | 150 | 0.1 | 10.77 |
2 | 200 | 150 | 0.5 | 24.4 |
3 | 100 | 150 | 1.0 | 34.51 |
4 | 60 | 100 | 1.0 | 24.64 |
5 | 150 | 100 | 1.0 | 34.59 |
6 | 100 | 100 | 0.5 | 24.37 |
7 | 60 | 100 | 0.8 | 21.88 |
8 | 200 | 50 | 1.0 | 34.605 |
9 | 60 | 50 | 0.8 | 21.89 |
10 | 200 | 100 | 1.0 | 34.61 |
11 | 60 | 150 | 1.0 | 24.63 |
12 | 150 | 100 | 0.8 | 31.01 |
13 | 60 | 50 | 1.0 | 24.69 |
14 | 150 | 50 | 1.0 | 34.62 |
15 | 150 | 50 | 0.1 | 10.71 |
16 | 60 | 100 | 0.5 | 17.25 |
17 | 100 | 150 | 0.5 | 24.31 |
18 | 200 | 100 | 0.8 | 31.03 |
19 | 150 | 150 | 0.1 | 10.69 |
20 | 150 | 150 | 1.0 | 34.61 |
21 | 60 | 150 | 0.1 | 10.65 |
22 | 200 | 50 | 0.1 | 10.85 |
23 | 100 | 150 | 0.8 | 30.96 |
24 | 200 | 50 | 0.8 | 31.04 |
25 | 150 | 50 | 0.8 | 31.02 |
26 | 100 | 50 | 0.8 | 31.01 |
27 | 100 | 150 | 0.1 | 10.68 |
28 | 200 | 150 | 1.0 | 34.54 |
29 | 100 | 100 | 0.8 | 30.97 |
30 | 200 | 50 | 0.5 | 24.41 |
31 | 60 | 50 | 0.1 | 10.66 |
32 | 60 | 50 | 0.5 | 17.26 |
33 | 150 | 150 | 0.8 | 30.99 |
34 | 100 | 100 | 1.0 | 34.56 |
35 | 100 | 100 | 0.1 | 10.7 |
36 | 150 | 100 | 0.1 | 10.78 |
37 | 60 | 150 | 0.8 | 21.87 |
38 | 200 | 100 | 0.1 | 10.81 |
39 | 150 | 100 | 0.5 | 24.38 |
40 | 150 | 150 | 0.5 | 24.37 |
41 | 100 | 50 | 0.1 | 17.03 |
42 | 200 | 150 | 0.8 | 31.02 |
43 | 100 | 50 | 0.5 | 24.37 |
44 | 60 | 100 | 0.1 | 7.6 |
45 | 150 | 50 | 0.5 | 24.39 |
46 | 200 | 100 | 0.5 | 24.4 |
47 | 60 | 150 | 0.5 | 17.24 |
48 | 100 | 50 | 1.0 | 34.58 |
References
- Perlmutter, J.S.; Mink, J.W. Deep brain stimulation. Annu. Rev. Neurosci. 2006, 29, 229–257. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, F.B.; Duarte, G.S.; Prescott, D.; Ferreira, J.; Costa, J. Deep brain stimulation for dystonia. Cochrane Database Syst. Rev. 2019, 1, CD012405. [Google Scholar] [CrossRef] [PubMed]
- Limousin, P.; Foltynie, T. Long-term outcomes of deep brain stimulation in Parkinson disease. Nat. Rev. Neurol. 2019, 15, 234–242. [Google Scholar] [CrossRef] [PubMed]
- Rapinesi, C.; Kotzalidis, G.D.; Ferracuti, S.; Sani, G.; Girardi, P.; Del Casale, A. Brain stimulation in obsessive-compulsive disorder (OCD): A systematic review. Curr. Neuropharmacol. 2019, 17, 787–807. [Google Scholar] [CrossRef]
- Slopsema, J.P.; Canna, A.; Uchenik, M.; Lehto, L.J.; Krieg, J.; Wilmerding, L.; Koski, D.M.; Kobayashi, N.; Dao, J.; Blumenfeld, M.; et al. Orientation-selective and directional deep brain stimulation in swine assessed by functional MRI at 3T. NeuroImage 2021, 224, 117357. [Google Scholar] [CrossRef]
- Ng, P.R.; Bush, A.; Vissani, M.; McIntyre, C.C.; Richardson, R.M. Biophysical Principles and Computational Modeling of Deep Brain Stimulation. Neuromodulation Technol. Neural Interface 2024, 27, 422–439. [Google Scholar] [CrossRef]
- Sahasrabuddhe, K.A.-O.; Khan, A.A.-O.; Singh, A.A.-O.; Stern, T.A.-O.; Ng, Y.A.-O.; Tadić, A.A.-O.; Orel, P.A.-O.; LaReau, C.A.-O.; Pouzzner, D.A.-O.; Nishimura, K.A.-O.; et al. The Argo: A high channel count recording system for neural recording in vivo. J. Neural Eng. 2021, 18, 015002. [Google Scholar] [CrossRef]
- Lawrence, S.M.; Dhillon, G.S.; Horch, K.W. Fabrication and characteristics of an implantable, polymer-based, intrafascicular electrode. J. Neurosci. Methods 2003, 131, 9–26. [Google Scholar] [CrossRef]
- Sait, R.A.; Cross, R.B.M. Synthesis and characterization of sputtered titanium nitride as a nucleation layer for novel neural electrode coatings. Appl. Surf. Sci. 2017, 424, 290–298. [Google Scholar] [CrossRef]
- Yoon, T.H.; Hwang, E.J.; Shin, D.Y.; Park, S.I.; Oh, S.J.; Jung, S.C.; Shin, H.C.; Kim, S.J. A micromachined silicon depth probe for multichannel neural recording. IEEE Trans. Biomed. Eng. 2000, 47, 1082–1087. [Google Scholar] [CrossRef]
- HajjHassan, M.; Chodavarapu, V.; Musallam, S. NeuroMEMS: Neural Probe Microtechnologies. Sensors 2008, 8, 6704–6726. [Google Scholar] [CrossRef]
- Lecomte, A.; Descamps, E.; Bergaud, C. A review on mechanical considerations for chronically-implanted neural probes. J. Neural Eng. 2018, 15, 031001. [Google Scholar] [CrossRef]
- Campbell, A.; Wu, C. Chronically Implanted Intracranial Electrodes: Tissue Reaction and Electrical Changes. Micromachines 2018, 9, 430. [Google Scholar] [CrossRef] [PubMed]
- Polikov, V.S.; Tresco, P.A.; Reichert, W.M. Response of brain tissue to chronically implanted neural electrodes. J. Neurosci. Methods 2005, 148, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Kim, E.G.R.; John, J.K.; Tu, H.; Zheng, Q.; Loeb, J.; Zhang, J.; Xu, Y. A hybrid silicon–parylene neural probe with locally flexible regions. Sens. Actuators B Chem. 2014, 195, 416–422. [Google Scholar] [CrossRef]
- Lee, H.; Lee, S.; Lee, S.; Lee, J.; Chou, N.; Shin, H. A Highly Efficient Low-Cost Flexible Neural Probe for Scalable Mass Fabrication. ACS Omega 2025, 10, 10733–10740. [Google Scholar] [CrossRef]
- McCreery, D.; Pikov, V.; Troyk, P.R. Neuronal loss due to prolonged controlled-current stimulation with chronically implanted microelectrodes in the cat cerebral cortex. J. Neural Eng. 2010, 7, 036005. [Google Scholar] [CrossRef]
- Zhao, J. Brain-Computer Interface: A Revolutionary Technology Expanding the Frontiers of the Human Brain and the Future of Neurosurgery. Med. J. Peking Union Med. Coll. Hosp. 2025, 16, 269–276. [Google Scholar] [CrossRef]
- Lago, N.; Ceballos, D.; J Rodríguez, F.; Stieglitz, T.; Navarro, X. Long term assessment of axonal regeneration through polyimide regenerative electrodes to interface the peripheral nerve. Biomaterials 2005, 26, 2021–2031. [Google Scholar] [CrossRef]
- Chitrakar, C.; Hedrick, E.; Adegoke, L.; Ecker, M. Flexible and Stretchable Bioelectronics. Materials 2022, 15, 1664. [Google Scholar] [CrossRef]
- Someya, T.; Bao, Z.; Malliaras, G.G. The rise of plastic bioelectronics. Nature 2016, 540, 379–385. [Google Scholar] [CrossRef] [PubMed]
- Gunalan, K.; Howell, B.; McIntyre, C.C. Quantifying axonal responses in patient-specific models of subthalamic deep brain stimulation. NeuroImage 2018, 172, 263–277. [Google Scholar] [CrossRef] [PubMed]
- Warman, E.N.; Grill, W.M.; Durand, D. Modeling the effects of electric fields on nerve fibers: Determination of excitation thresholds. IEEE Trans. Biomed. Eng. 1992, 39, 1244–1254. [Google Scholar] [CrossRef] [PubMed]
- Moffitt, M.A.; McIntyre, C.C.; Grill, W.M. Prediction of myelinated nerve fiber stimulation thresholds: Limitations of linear models. IEEE Trans. Biomed. Eng. 2004, 51, 229–236. [Google Scholar] [CrossRef]
- Peterson, E.J.; Izad, O.; Tyler, D.J. Predicting myelinated axon activation using spatial characteristics of the extracellular field. J. Neural Eng. 2011, 8, 046030. [Google Scholar] [CrossRef]
- Duffley, G.; Anderson, D.N.; Vorwerk, J.; Dorval, A.D.; Butson, C.R. Evaluation of methodologies for computing the deep brain stimulation volume of tissue activated. J. Neural Eng. 2019, 16, 066024. [Google Scholar] [CrossRef]
- Butson, C.R.; McIntyre, C.C. Role of electrode design on the volume of tissue activated during deep brain stimulation. J. Neural Eng. 2005, 3, 1. [Google Scholar] [CrossRef]
- Vidya, M.; Divya, M.S.; Priyadarshini, N.; Rajkumar, E.R. Computational Modelling and Analysis of Thermal Characteristics of DBS Electrode in Application to Parkinson’s Disease. In Proceedings of the 2014 International Conference on Advances in Electrical Engineering (ICAEE), Vellore, India, 9 January 2014; pp. 1–4. [Google Scholar]
- Zhang, Y.; Pardridge, W.M. Near complete rescue of experimental Parkinson’s disease with intravenous, non-viral GDNF gene therapy. Pharm. Res. 2009, 26, 1059–1063. [Google Scholar] [CrossRef]
- Frederick, R.A.-O.; Meliane, I.A.-O.; Joshi-Imre, A.A.-O.; Troyk, P.A.-O.X.; Cogan, S.A.-O. Activated iridium oxide film (AIROF) electrodes for neural tissue stimulation. J. Neural Eng. 2020, 17, 056001. [Google Scholar] [CrossRef]
- Lewandowska, M.K.; Bakkum, D.J.; Rompani, S.B.; Hierlemann, A. Recording large extracellular spikes in microchannels along many axonal sites from individual neurons. PLoS ONE 2015, 10, e0118514. [Google Scholar] [CrossRef]
- Humayun, M.; Propst, R.; de Juan, E., Jr.; McCormick, K.; Hickingbotham, D. Bipolar surface electrical stimulation of the vertebrate retina. Arch. Ophthalmol. 1994, 112, 110–116. [Google Scholar] [CrossRef] [PubMed]
- Ersöz, A.; Kim, I.; Han, M. Maximizing Charge Injection Limits of Iridium Oxide Electrodes with a Programmable Anodic Bias Circuit. In Proceedings of the 2021 10th International IEEE/EMBS Conference on Neural Engineering (NER), Virtual, 4–6 May 2021; pp. 540–543. [Google Scholar]
- Gutowski, S.M.; Templeman, K.L.; South, A.B.; Gaulding, J.C.; Shoemaker, J.T.; LaPlaca, M.C.; Bellamkonda, R.V.; Lyon, L.A.; García, A.J. Host response to microgel coatings on neural electrodes implanted in the brain. J. Biomed. Mater. Res. Part A 2014, 102, 1486–1499. [Google Scholar] [CrossRef] [PubMed]
- Wu, D.D.; Zhang, W.G.; Merceron, G.; Luo, Y. Mechanical simulation of neural electrode-brain tissue interface under different micro-motion conditions. Zhejiang Daxue Xuebao (Gongxue Ban)/J. Zhejiang Univ. (Eng. Sci.) 2013, 47, 256–260+307. [Google Scholar] [CrossRef]
- Gilletti, A.; Muthuswamy, J. Brain micromotion around implants in the rodent somatosensory cortex. J. Neural Eng. 2006, 3, 189–195. [Google Scholar] [CrossRef]
- O’Sullivan, K.P.; Coats, B. Coupled Eulerian–Lagrangian model prediction of neural tissue strain during microelectrode insertion. J. Neural Eng. 2024, 21, 046055. [Google Scholar] [CrossRef]
- Zhu, R.; Huang, G.L.; Yoon, H.; Smith, C.; Varadan, V. Biomechanical Strain Analysis at the Interface of Brain and Nanowire Electrodes on a Neural Probe. J. Nanotechnol. Eng. Med. 2011, 2, 031001–031006. [Google Scholar] [CrossRef]
- Hamzavi, N.; Tsang, W.M.; Shim, V.P.W. Nonlinear elastic brain tissue model for neural probe-tissue mechanical interaction. In Proceedings of the 2013 6th International IEEE/EMBS Conference on Neural Engineering (NER), San Diego, CA, USA, 6–8 November 2013; pp. 1119–1122. [Google Scholar]
- Popovych, O.V.; Tass, P.A. Adaptive delivery of continuous and delayed feedback deep brain stimulation-a computational study. Sci. Rep. 2019, 9, 10585. [Google Scholar] [CrossRef]
- Johansson, J.D.; Alonso, F.; Wårdell, K. Modelling Details for Electric Field Simulations of Deep Brain Stimulation. In Proceedings of the World Congress on Medical Physics and Biomedical Engineering 2018, Prague, Czech Republic, 3–8 June 2018; pp. 645–648. [Google Scholar]
- Astrom, M.; Diczfalusy, E.; Martens, H.; Wardell, K. Relationship between neural activation and electric field distribution during deep brain stimulation. IEEE Trans. Biomed. Eng. 2014, 62, 664–672. [Google Scholar] [CrossRef]
- Hemm-Ode, S.; Pison, D.; Alonso, F.; Shah, A.; Coste, J.; Lemaire, J.-J.; Wårdell, K. Patient-Specific Electric Field Simulations and Acceleration Measurements for Objective Analysis of Intraoperative Stimulation Tests in the Thalamus. Front. Hum. Neurosci. 2016, 10, 577. [Google Scholar] [CrossRef]
- Alonso, F.; Latorre, M.; Göransson, N.; Zsigmond, P.; Wårdell, K. Investigation into Deep Brain Stimulation Lead Designs: A Patient-Specific Simulation Study. Brain Sci. 2016, 6, 39. [Google Scholar] [CrossRef]
- Horn, A.; Reich, M.; Vorwerk, J.; Li, N.; Wenzel, G.; Fang, Q.; Schmitz-Hübsch, T.; Nickl, R.; Kupsch, A.; Volkmann, J.; et al. Connectivity Predicts deep brain stimulation outcome in Parkinson disease. Ann. Neurol. 2017, 82, 67–78. [Google Scholar] [CrossRef]
- Neumann, W.-J.; Staub, F.; Horn, A.; Schanda, J.; Mueller, J.; Schneider, G.-H.; Brown, P.; Kühn, A.A. Deep Brain Recordings Using an Implanted Pulse Generator in Parkinson’s Disease. Neuromodulation J. Int. Neuromodulation Soc. 2016, 19, 20–24. [Google Scholar] [CrossRef]
- Available online: https://www.medtronic.com/us-en/healthcare-professionals/products/neurological/deep-brain-stimulation-systems/activa-rc.html (accessed on 8 September 2017).
Parameter | Description | Unit | Magnitude | Note |
---|---|---|---|---|
k | Conductivity of tissue | W/(m·°C) | 2 | |
c | Specific heat of tissue | J/(kg·°C) | 1800 | |
ρ | Density of tissue | kg/m3 | 998 | |
cb | Specific heat of blood | J/(kg·°C) | 3600 | |
wb | Blood perfusion rate | s−1 | 0.0005 | |
Qm | Metabolic heat generation | W/m3 | 4200 | |
σ | Specific conductivity | S/m | 0.33 | |
ε | Permittivity | 1 | 1 × 106 | 100~1000 Hz |
X1 (I/mA) | X2 (f/Hz) | X3 (Pw/μs) |
---|---|---|
0.1 | 50 | 60 |
0.5 | 100 | 100 |
0.8 | 150 | 150 |
1.0 | - | 200 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Tong, B.; Ni, C.; Yang, D.; Fu, G.; Huang, L. Fabrication and Dose–Response Simulation of Soft Dual-Sided Deep Brain Stimulation Electrode. Micromachines 2025, 16, 945. https://doi.org/10.3390/mi16080945
Zhang J, Tong B, Ni C, Yang D, Fu G, Huang L. Fabrication and Dose–Response Simulation of Soft Dual-Sided Deep Brain Stimulation Electrode. Micromachines. 2025; 16(8):945. https://doi.org/10.3390/mi16080945
Chicago/Turabian StyleZhang, Jian, Bei Tong, Changmao Ni, Dengfei Yang, Guoting Fu, and Li Huang. 2025. "Fabrication and Dose–Response Simulation of Soft Dual-Sided Deep Brain Stimulation Electrode" Micromachines 16, no. 8: 945. https://doi.org/10.3390/mi16080945
APA StyleZhang, J., Tong, B., Ni, C., Yang, D., Fu, G., & Huang, L. (2025). Fabrication and Dose–Response Simulation of Soft Dual-Sided Deep Brain Stimulation Electrode. Micromachines, 16(8), 945. https://doi.org/10.3390/mi16080945