Transfer of Tactile Sensors Using Stiction Effect Temporary Handling
Abstract
:1. Introduction
2. Design Principle
2.1. Design of Tactile Sensor
2.2. Design of Stiction-Contact Structures
2.3. Design of Test Structures
3. Fabrication
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ishihara, T.; Suzuki, K.; Suwazono, S.; Hirata, M.; Tanigawa, H. CMOS integrated silicon pressure sensor. IEEE J. Solid-State Circuits 1987, 22, 151–155. [Google Scholar] [CrossRef]
- Lo, C.-C.; Chen, F.; Fedder, G.K. Integrated HF CMOS-MEMS square-frame resonators with on-chip electronics and electrothermal narrow gap mechanism. In Proceedings of the IEEE International Conference on Solid-State Sensors, Seoul, Korea, 5–9 June 2005; pp. 2074–2077. [Google Scholar]
- Tsai, M.H.; Liu, Y.C.; Liang, K.C.; Fang, W. Monolithic CMOS-MEMS pure oxide tri-axis accelerometers for temperature stabilization and performance enhancement. J. Microelectromech. Syst. 2015, 24, 1916–1927. [Google Scholar] [CrossRef]
- Merdassi, A.; Yang, P.; Chodavarapu, V. A wafer level vacuum encapsulated capacitive accelerometer fabricated in an unmodified commercial MEMS process. Sensors 2015, 15, 7349–7359. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Niklaus, F.; Andreas, C.F. Heterogeneous 3D integration of MOEMS and ICs. In Proceedings of the IEEE International Conference on Optical Mems & Nanophotonics, Singapore, 31 July–4 August 2016; pp. 1–2. [Google Scholar]
- Yang, H.S.; Bakir, M.S. Interconnect Technologies for Heterogeneous 3D Integration: CMOS and MEMS. Mater. Res. Soc. Symp. Proc. 2010, 1249, 1249–1261. [Google Scholar] [CrossRef]
- Qu, H. CMOS MEMS Fabrication Technologies and Devices. Micromachines 2016, 7, 14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andreas, C.F.; Fredrik, F.; Martin, L.; Simon, J.B.; Stemme, G.; Roxhed, N.; Niklaus, F. Integrating MEMS and ICs. Microsyst. Nanoeng. 2015, 1, 15505. [Google Scholar]
- Uranga, A.; Verd, J.; Barniol, N. CMOS-MEMS resonators: From devices to applications. Microelectron. Eng. 2015, 132, 58–73. [Google Scholar] [CrossRef]
- Fedder, G.K.; Howe, R.T.; Liu, T.J.K.; Quevy, E.P. Technologies for cofabricating MEMS and electronics. Proc. IEEE 2008, 96, 306–322. [Google Scholar] [CrossRef]
- Basavanhally, N.; Lopez, D.; Aksyuk, V.; Ramsey, D.; Bower, E.; Cirelli, R.; Ferry, E.; Frahm, R.; Gates, J.; Klemens, F.; et al. High-Density Solder Bump Interconnect for MEMS Hybrid Integration. IEEE Trans. Adv. Packag. 2007, 30, 622–628. [Google Scholar] [CrossRef]
- Cohn, M.B.; Böhringer, K.F.; Noworolski, J.M.; Singh, A.; Keller, C.G.; Goldberg, K.Y.; Howe, R.T. Microassembly technologies for MEMS. Proc. SPIE Micromach. Microfabr. 1998, 3513, 2–16. [Google Scholar]
- Singh, A.; Horsley, D.A.; Cohn, M.B.; Pisano, A.P.; Howe, R.T. Batch transfer of microstructures using flip-chip solder bonding. IEEE J. Microelectomechanical Syst. 1999, 8, 27–33. [Google Scholar] [CrossRef]
- Fischer, A.C.; Korvink, J.G.; Roxhed, N.; Stemme, G.; Wallrabe, U.; Niklaus, F. Unconventional applications of wire bonding create opportunities for microsystem integration. J. Micromechanics Microengineering 2013, 23, 083001. [Google Scholar] [CrossRef]
- Waber, T.; Pahl, W.; Schmidt, M.; Feiertag, G.; Stufler, S.; Dudek, R.; Leidl, A. Flip-chip packaging of piezoresistive barometric pressure sensors. Proc. SPIE 2013, 8763, 87632D1–87632D8. [Google Scholar]
- Oouchi, A. Plastic molded package technology for MEMS sensor evolution of MEMS sensor package. In Proceedings of the 2014 International Conference on Electronics Packaging (ICEP), Toyama, Japan, 23–25 April 2014; pp. 371–375. [Google Scholar]
- Baltes, H.; Brand, O. CMOS-based microsensors and packaging. Sens. Actuators A Phys. 2001, 92, 1–9. [Google Scholar] [CrossRef]
- Liu, M.C.; Dai, C.L.; Chan, C.H.; Wu, C.C. Manufacture of a polyaniline nanofiber ammonia sensor integrated with a readout circuit using the CMOS-MEMS technique. Sensors 2009, 9, 869–880. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baltes, H.; Brand, O.; Hierlemann, A.; Lange, D.; Hagleitner, C. CMOS MEMS—Present and Future. In Proceedings of the Fifteenth IEEE International Conference on Micro Electro Mechanical Systems, Las Vegas, NV, USA, 24 January 2002; pp. 459–466. [Google Scholar]
- Toshifumi, K.; Daisuke, Y.; Takaaki, M.; Motohashi, G.; Kagaya, K.; Ito, H.; Ishihara, N.; Toshiyoshi, H.; Machida, K.; Masu, K.; et al. Novel Sensor Structure and Its Evaluation for Integrated Complementary Metal Oxide Semiconductor Microelectromechanical Systems Accelerometer. Jpn. J. Appl. Phys. 2013, 52, 06GL04. [Google Scholar]
- Baltes, H.; Brand, O.; Fedder, G.K.; Hierold, C.; Korvink, J.G.; Tabata, O. CMOS—MEMS. Adv. Micro Nanosyst. 2005, 2, 43–56. [Google Scholar]
- Witvrouw, A. CMOS-MEMS Integration: Why, How, and What? In Proceedings of the IEEE ACM International Conference on Computer-Aided Design, San Jose, CA, USA, 5–9 November 2006; pp. 826–827. [Google Scholar]
- Yang, H.S.; Bakir, M.S. 3D integration of CMOS and MEMS using mechanically flexible interconnects (MFI) and through silicon vias (TSV). In Proceedings of the Electronic Components and Technology Conference, Las Vegas, NV, USA, 1–4 June 2010; pp. 822–828. [Google Scholar]
- Fearing, R.S. Survey of sticking effects for Micro parts handling. IEEE Int. Conf. Intell. Robot. Syst. 1995, 2, 212–217. [Google Scholar]
- Chuang, W.H.; Luger, T.; Fetting, R.K.; Ghodssi, R. Mechanical Property Characterization of LPCVD Silicon Nitride Thin Films at Cryogenic Temperatures. J. Microelectromechanical Syst. 2004, 13, 870–879. [Google Scholar] [CrossRef]
- Alley, R.L.; Cuan, G.J.; Howe, R.T.; Komvopoulos, K. The effect of release-etch processing on surface microstructure stiction. In Proceedings of the Tech Digest IEEE Solid-state Sensor & Actuator Workshop, Hilton Head, SC, USA, 22–25 June 1992; pp. 202–207. [Google Scholar]
- Rob, L.; Tilmans, A.C.; Elders, J.; Elwenspoek, M. Stiction of surface micromachined structures after rinsing and drying: Model and investigation of adhesion mechanisms. Sens. Actuators A Phys. 1994, 43, 230–238. [Google Scholar]
- Scheeper, P.R.; Voorthuyzen, J.A.; Olthuis, W.; Bergveld, P. Investigation of attractive forces between PECVD silicon nitride microstructures and an oxidized silicon substrate. Sens. Actuators A Phys. 1992, 30, 231–239. [Google Scholar] [CrossRef] [Green Version]
- Krupp, H. Particle adhesion theory and experiment. Adv. Coll. Interf. Sci. 1967, 1, 111–239. [Google Scholar]
- Haisma, J.; Spierings, G.A.C.M.; Biermann, U.K.P.; Pals, J.A. Silicon-on-Insulator wafer bonding-wafer thinning technological evaluations. Jpn. J. Appl. Phys. 1989, 28, 1426–1443. [Google Scholar] [CrossRef]
- Jing, E.; Xiong, B.; Wang, Y.L. Low-temperature Au/a-Si wafer bonding. J. Micromach. Microeng. 2011, 21, 015013. [Google Scholar] [CrossRef]
- Aron, M.; Kwok, C.Y. Evaporated Thick Polysilicon Film with Low Stress and Low Thermal Budget. J. Microelectromechanical Syst. 2013, 22, 825–827. [Google Scholar]
Number | Measured Mass (mg) | Pressure Applied on Transferred Device (kPa) |
---|---|---|
1 | 9.2 | 3.1 |
2 | 17.2 | 5.9 |
3 | 26.7 | 9.1 |
4 | 35.9 | 12.2 |
5 | 43.3 | 14.7 |
6 | 50.2 | 17.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhong, P.; Sun, K.; Zheng, C.; Yang, H.; Li, X. Transfer of Tactile Sensors Using Stiction Effect Temporary Handling. Micromachines 2021, 12, 1330. https://doi.org/10.3390/mi12111330
Zhong P, Sun K, Zheng C, Yang H, Li X. Transfer of Tactile Sensors Using Stiction Effect Temporary Handling. Micromachines. 2021; 12(11):1330. https://doi.org/10.3390/mi12111330
Chicago/Turabian StyleZhong, Peng, Ke Sun, Chaoyue Zheng, Heng Yang, and Xinxin Li. 2021. "Transfer of Tactile Sensors Using Stiction Effect Temporary Handling" Micromachines 12, no. 11: 1330. https://doi.org/10.3390/mi12111330
APA StyleZhong, P., Sun, K., Zheng, C., Yang, H., & Li, X. (2021). Transfer of Tactile Sensors Using Stiction Effect Temporary Handling. Micromachines, 12(11), 1330. https://doi.org/10.3390/mi12111330