Comprehensive Insight into Microcystin-Degrading Mechanism of Sphingopyxis sp. m6 Based on Mlr Enzymes
Abstract
1. Introduction
2. Results
2.1. Phylogenetic Analysis of mlr Genes in Sphingopyxis sp. m6
2.2. Characters of Mlr Enzymes in Sphingopyxis sp. m6
2.3. Heterologous Expression and Enzymatic Activity of Mlr Enzymes
2.4. Knockout Mutant of mlr Genes and Degrading Function Determination
2.5. Degradation Process of MC-LR by mlr Knockout Mutants
3. Discussion
4. Conclusions
5. Materials and Methods
5.1. Bacterial Strains and Reagents
5.2. Bioinformatic Analysis of Mlr Enzymes
5.3. Heterologous Expression of Mlr Enzymes
5.4. Protein Purification and Enzymatic Activity
5.5. Markerless Knockout Mutant of mlr Genes
5.6. Degrading Function of Knockout Mutants
5.7. Determination of MC-LR and Degrading Products
5.8. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yoshida, T.; Makita, Y.; Nagata, S.; Tsutsumi, T.; Yoshida, F.; Sekijima, M.; Tamura, S.; Ueno, Y. Acute oral toxicity of microcystin-LR, a cyanobacterial hepatotoxin, in mice. Nat. Toxins 1997, 5, 91–95. [Google Scholar] [CrossRef]
- Huisman, J.; Codd, G.A.; Paerl, H.W.; Ibelings, B.W.; Verspagen, J.M.H.; Visser, P.M. Cyanobacterial blooms. Nat. Rev. Microbiol. 2018, 16, 471–483. [Google Scholar] [CrossRef]
- Paerl, H.W.; Huisman, J. Climate. Blooms like it hot. Science 2008, 320, 57–58. [Google Scholar] [CrossRef]
- Hautala, H.; Lamminmaki, U.; Spoof, L.; Nybom, S.; Meriluoto, J.; Vehniainen, M. Quantitative PCR detection and improved sample preparation of microcystin-producing Anabaena, Microcystis and Planktothrix. Ecotoxicol. Environ. Saf. 2013, 87, 49–56. [Google Scholar] [CrossRef] [PubMed]
- Haida, M.; El Khalloufi, F.; Mugani, R.; Essadki, Y.; Campos, A.; Vasconcelos, V.; Oudra, B. Microcystin contamination in irrigation water and health risk. Toxins 2024, 16, 196. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.L.; Li, Y.W.; Xie, L.S.; Guo, J.J.; Xiang, L.; Mo, C.H. Sorption of microcystin-RR onto surface soils: Characteristics and influencing factors. J. Hazard. Mater. 2022, 431, 128571. [Google Scholar] [CrossRef] [PubMed]
- Shi, J.H.; Olson, N.E.; Birbeck, J.A.; Pan, J.; Peraino, N.J.; Holen, A.L.; Ledsky, I.R.; Jacquemin, S.J.; Marr, L.C.; Schmale, D.G.; et al. Aerosolized cyanobacterial harmful algal bloom toxins: Microcystin congeners quantified in the atmosphere. Environ. Sci. Technol. 2023, 57, 21801–21814. [Google Scholar] [CrossRef]
- Singh, S.; Rai, P.K.; Chau, R.; Ravi, A.K.; Neilan, B.A.; Asthana, R.K. Temporal variations in microcystin-producing cells and microcystin concentrations in two fresh water ponds. Water Res. 2015, 69, 131–142. [Google Scholar] [CrossRef]
- Li, T.; Fan, X.; Cai, M.; Jiang, Y.; Wang, Y.; He, P.; Ni, J.; Mo, A.; Peng, C.; Liu, J. Advances in investigating microcystin-induced liver toxicity and underlying mechanisms. Sci. Total Environ. 2023, 905, 167167. [Google Scholar] [CrossRef]
- Paerl, H.W.; Otten, T.G. Environmental science. Blooms bite the hand that feeds them. Science 2013, 342, 433–434. [Google Scholar] [CrossRef]
- Wang, Y.Q.; Zhou, X.D.; Yang, Y.; Liu, J.; Yang, F. Research progress of microcystin-LR toxicity to the intestine, liver, and kidney and its mechanism. Environ. Int. 2025, 201, 109547. [Google Scholar] [CrossRef]
- Al Haffar, M.; Fajloun, Z.; Azar, S.; Sabatier, J.M.; Khattar, Z. Lesser-Known Cyanotoxins: A Comprehensive Review of Their Health and Environmental Impacts. Toxins 2024, 16, 551. [Google Scholar] [CrossRef]
- Li, J.; Li, R.; Li, J. Current research scenario for microcystins biodegradation—A review on fundamental knowledge, application prospects and challenges. Sci. Total Environ. 2017, 595, 615–632. [Google Scholar] [CrossRef]
- Yang, F.; Huang, F.; Feng, H.; Wei, J.; Massey, I.Y.; Liang, G.; Zhang, F.; Yin, L.; Kacew, S.; Zhang, X.; et al. A complete route for biodegradation of potentially carcinogenic cyanotoxin microcystin-LR in a novel indigenous bacterium. Water Res. 2020, 174, 115638. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Yi, Z.; Zhang, P.; Xiong, Z.; Zhang, G.; Zhang, W. Comprehensive strategies for microcystin degradation: A review of the physical, chemical, and biological methods and genetic engineering. J. Environ. Manag. 2024, 365, 121707. [Google Scholar] [CrossRef] [PubMed]
- Kormas, K.A.; Lymperopoulou, D.S. Cyanobacterial toxin degrading bacteria: Who are they? Biomed. Res. Int. 2013, 2013, 463894. [Google Scholar] [CrossRef] [PubMed]
- Dziga, D.; Wasylewski, M.; Wladyka, B.; Nybom, S.; Meriluoto, J. Microbial degradation of microcystins. Chem. Res. Toxicol. 2013, 26, 841–852. [Google Scholar] [CrossRef]
- Ding, Q.; Song, X.L.; Yuan, M.X.; Sun, R.L.; Zhang, J.; Yin, L.H.; Pu, Y.P. Multiple pathways for the anaerobic biodegradation of microcystin-LR in the enriched microbial communities from Lake Taihu. Environ. Pollut. 2022, 297, 118787. [Google Scholar] [CrossRef]
- Ding, Q.; Song, X.; Yuan, M.; Xu, K.; Huang, J.; Sun, R.; Zhang, J.; Yin, L.; Pu, Y. Microcystin-LR exposure enhances toxin-degrading capacity and reduces metabolic diversity of sediment microbial communities. Environ. Pollut. 2022, 311, 119947. [Google Scholar] [CrossRef]
- Wu, H.A.; Zhou, J.H.; Zhang, S.; Gao, Y.; Wang, C.K.; Cong, H.B.; Feng, S.Y. Contributions of the bacterial communities to the microcystin degradation and nutrient transformations during aerobic composting of algal sludge. J. Environ. Manag. 2024, 370, 122559. [Google Scholar] [CrossRef]
- Santos, A.A.; Garrute, F.; Magalhaes, V.F.; Pacheco, A.B.F. Microcystin removal by microbial communities from a coastal lagoon: Influence of abiotic factors, bacterioplankton composition and estimated functions. Harmful Algae 2024, 135, 102646. [Google Scholar] [CrossRef]
- Zhang, J.; Lu, Q.; Ding, Q.; Yin, L.; Pu, Y. A novel and native microcystin-degrading bacterium of Sphingopyxis sp. isolated from Lake Taihu. Int. J. Environ. Res. Public Health 2017, 14, 1187. [Google Scholar] [CrossRef]
- Bourne, D.G.; Jones, G.J.; Blakeley, R.L.; Jones, A.; Negri, A.P.; Riddles, P. Enzymatic pathway for the bacterial degradation of the cyanobacterial cyclic peptide toxin microcystin LR. Appl. Environ. Microbiol. 1996, 62, 4086–4094. [Google Scholar] [CrossRef] [PubMed]
- Bourne, D.G.; Riddles, P.; Jones, G.J.; Smith, W.; Blakeley, R.L. Characterisation of a gene cluster involved in bacterial degradation of the cyanobacterial toxin microcystin LR. Environ. Toxicol. 2001, 16, 523–534. [Google Scholar] [CrossRef] [PubMed]
- Dziga, D.; Wasylewski, M.; Szetela, A.; Bochenska, O.; Wladyka, B. Verification of the role of MlrC in microcystin biodegradation by studies using a heterologously expressed enzyme. Chem. Res. Toxicol. 2012, 25, 1192–1194. [Google Scholar] [CrossRef] [PubMed]
- Shimizu, K.; Maseda, H.; Okano, K.; Kurashima, T.; Kawauchi, Y.; Xue, Q.; Utsumi, M.; Zhang, Z.; Sugiura, N. Enzymatic pathway for biodegrading microcystin LR in Sphingopyxis sp. C-1. J. Biosci. Bioeng. 2012, 114, 630–634. [Google Scholar] [CrossRef]
- Wang, R.P.; Yue, S.Z.; Yu, J.F.; Li, J.; Li, J.M. Analysis of structure and function of MlrD involved in microcystin transport. Chin. J. Bioinform. 2022, 21, 218–225. [Google Scholar]
- Zhu, F.P.; Han, Z.L.; Duan, J.L.; Shi, X.S.; Wang, T.T.; Sheng, G.P.; Wang, S.G.; Yuan, X.Z. A novel pathway for the anaerobic biotransformation of microcystin-LR using enrichment cultures. Environ. Pollut. 2019, 247, 1064–1070. [Google Scholar] [CrossRef]
- Ding, Q.; Liu, K.Y.; Xu, K.; Sun, R.L.; Zhang, J.; Yin, L.H.; Pu, Y.P. Further understanding of degradation pathways of microcystin-LR by an indigenous Sphingopyxis sp. in environmentally relevant pollution concentrations. Toxins 2018, 10, 536. [Google Scholar] [CrossRef]
- Yuan, M.; Ding, Q.; Sun, R.; Zhang, J.; Yin, L.; Pu, Y. Biodegradation of nodularin by a microcystin-degrading bacterium: Performance, degradation pathway, and potential application. Toxins 2021, 13, 813. [Google Scholar] [CrossRef]
- Liu, K.; Ding, Q.; Yuan, M.; Pu, Y. Biodegradation of Microcystin-RR by Sphingopyxis sp. and its influencing factors. J. Southeast Univ. Nat. Sci. Ed. 2021, 51, 496–502. [Google Scholar]
- Morón-López, J.; Nieto-Reyes, L.; El-Shehawy, R. Assessment of the influence of key abiotic factors on the alternative microcystin degradation pathway(s): A detailed comparison with the route. Sci. Total Environ. 2017, 599, 1945–1953. [Google Scholar] [CrossRef]
- Zhang, X.; Yang, F.; Chen, L.; Feng, H.; Yin, S.Q.; Chen, M.S. Insights into ecological roles and potential evolution of Mlr-dependent microcystin-degrading bacteria. Sci. Total Environ. 2020, 710, 136401. [Google Scholar] [CrossRef]
- Xu, Q.; Fan, J.; Yan, H.; Ahmad, S.; Zhao, Z.; Yin, C.; Liu, X.; Liu, Y.; Zhang, H. Structural basis of microcystinase activity for biodegrading microcystin-LR. Chemosphere 2019, 236, 124281. [Google Scholar] [CrossRef]
- Dexter, J.; McCormick, A.J.; Fu, P.; Dziga, D. Microcystinase—A review of the natural occurrence, heterologous expression, and biotechnological application of MlrA. Water Res. 2021, 189, 116646. [Google Scholar] [CrossRef] [PubMed]
- Yuan, M. The Study on Degradation and Mechanism of Nodularin by Sphingopyxis sp. Master’s Thesis, Southeast University, Nanjing, China, 2022. [Google Scholar]
- Bourne, D.G.; Blakeley, R.L.; Riddles, P.; Jones, G.J. Biodegradation of the cyanobacterial toxin microcystin LR in natural water and biologically active slow sand filters. Water Res. 2006, 40, 1294–1302. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Song, L.R.; Peng, L.; Wan, N.; Zhang, X.M.; Gan, N.Q. Reduction in microcystin concentrations in large and shallow lakes: Water and sediment-interface contributions. Water Res. 2008, 42, 763–773. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Yang, X.; Yang, L.; Xiao, B.; Wu, X.; Wang, J.; Wan, H. An effective pathway for the removal of microcystin LR via anoxic biodegradation in lake sediments. Water Res. 2010, 44, 1884–1892. [Google Scholar] [CrossRef]
- Wei, J.; Pengji, Z.; Zhang, J.; Peng, T.; Luo, J.; Yang, F. Biodegradation of MC-LR and its key bioactive moiety Adda by Sphingopyxis sp. YF1: Comprehensive elucidation of the mechanisms and pathways. Water Res. 2023, 229, 119397. [Google Scholar] [CrossRef]
- Wei, J.; Huang, F.; Feng, H.; Massey, I.Y.; Clara, T.; Long, D.; Cao, Y.; Luo, J.; Yang, F. Characterization and mechanism of linearized-microcystinase involved in bacterial degradation of microcystins. Front. Microbiol. 2021, 12, 646084. [Google Scholar] [CrossRef]
- Cai, D.; Wei, J.; Huang, F.; Feng, H.; Peng, T.; Luo, J.; Yang, F. The detoxification activities and mechanisms of microcystinase towards MC-LR. Ecotoxicol. Environ. Saf. 2022, 236, 113436. [Google Scholar] [CrossRef]
- Maseda, H.; Shimizu, K.; Doi, Y.; Inamori, Y.; Utsumi, M.; Sugiura, N.; Kobayashi, M. MlrA located in the inner membrane is essential for initial degradation of microcystin in Sphingopyxis sp. C-1. Jpn. J. Water Treat. Biol. 2012, 48, 99–107. [Google Scholar] [CrossRef]
- Sun, H. Bioinformatics Analysis and Heterologous Expression of Microcystin Transporter. Master’s Thesis, Jiangxi University of Science and Technology, Ganzhou, China, 2022. [Google Scholar]
- Dziga, D.; Wladyka, B.; Zielinska, G.; Meriluoto, J.; Wasylewski, M. Heterologous expression and characterisation of microcystinase. Toxicon 2012, 59, 578–586. [Google Scholar] [CrossRef]
- Xu, Q.Q.; Ma, H.F.; Zhang, H.Y.; Fan, J.H.; Yin, C.H.; Liu, X.L.; Liu, Y.; Wang, H.S.; Yan, H. Purification and activity of the first recombinant enzyme for biodegrading hepatotoxin by Sphingopyxis sp. USTB-05. Algal Res. 2020, 47, 101863. [Google Scholar] [CrossRef]
- Yan, H.; Wang, J.; Chen, J.; Wei, W.; Wang, H.; Wang, H. Characterization of the first step involved in enzymatic pathway for microcystin-RR biodegraded by Sphingopyxis sp. USTB-05. Chemosphere 2012, 87, 12–18. [Google Scholar] [CrossRef]
- Yan, H.; Wang, H.; Wang, J.; Yin, C.; Ma, S.; Liu, X.; Yin, X. Cloning and expression of the first gene for biodegrading microcystin LR by Sphingopyxis sp. USTB-05. J. Environ. Sci. 2012, 24, 1816–1822. [Google Scholar] [CrossRef]
- Dziga, D.; Zielinska, G.; Wladyka, B.; Bochenska, O.; Maksylewicz, A.; Strzalka, W.; Meriluoto, J. Characterization of enzymatic activity of MlrB and MlrC Proteins involved in bacterial degradation of cyanotoxins microcystins. Toxins 2016, 8, 76. [Google Scholar] [CrossRef]
- Miyachi, A.; Kondo, F.; Kurita, M.; Tsuji, K.; Harada, K. Microbial degradation of linear peptides by strain B-9 of Sphingosinicella and its application in peptide quantification using liquid chromatography-mass spectrometry. J. Biosci. Bioeng. 2015, 119, 724–728. [Google Scholar] [CrossRef]
- Kato, H.; Tsuji, K.; Harada, K. Microbial degradation of cyclic peptides produced by bacteria. J. Antibiot. 2009, 62, 181–190. [Google Scholar] [CrossRef]
- Jin, H.; Hiraoka, Y.; Okuma, Y.; Hashimoto, E.H.; Kurita, M.; Anas, A.R.J.; Uemura, H.; Tsuji, K.; Harada, K.I. Microbial degradation of amino acid-containing compounds using the microcystin-degrading bacterial strain B-9. Mar. Drugs 2018, 16, 50. [Google Scholar] [CrossRef]
- Santos, A.A.; Soldatou, S.; de Magalhaes, V.F.; Azevedo, S.; Camacho-Munoz, D.; Lawton, L.A.; Edwards, C. Degradation of multiple peptides by microcystin-degrader Paucibacter toxinivorans (2C20). Toxins 2021, 13, 265. [Google Scholar] [CrossRef] [PubMed]
Enzyme | Signal Peptide | TM Helices | pI | MW (Da) | Subcellular Localization | Conserved Catalytic Domain |
---|---|---|---|---|---|---|
MlrA | Y | 8 | 9.32 | 36, 317.07 | Cell inner membrane | Type II CAAX prenyl endopeptidase Rce1-like |
MlrB | Y | 0 | 6.78 | 59, 075.15 | Periplasm | Serine hydrolase domain-containing protein |
MlrC | N | 0 | 7.06 | 57, 152.61 | Cytoplasm | M81 family metallopeptidase |
MlrD | N | 12 | 9.19 | 45, 001.83 | Cell inner membrane | MFS transporter, dipeptide/tripeptide permease |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ding, Q.; Liu, T.; Li, Z.; Sun, R.; Zhang, J.; Yin, L.; Pu, Y. Comprehensive Insight into Microcystin-Degrading Mechanism of Sphingopyxis sp. m6 Based on Mlr Enzymes. Toxins 2025, 17, 446. https://doi.org/10.3390/toxins17090446
Ding Q, Liu T, Li Z, Sun R, Zhang J, Yin L, Pu Y. Comprehensive Insight into Microcystin-Degrading Mechanism of Sphingopyxis sp. m6 Based on Mlr Enzymes. Toxins. 2025; 17(9):446. https://doi.org/10.3390/toxins17090446
Chicago/Turabian StyleDing, Qin, Tongtong Liu, Zhuoxiao Li, Rongli Sun, Juan Zhang, Lihong Yin, and Yuepu Pu. 2025. "Comprehensive Insight into Microcystin-Degrading Mechanism of Sphingopyxis sp. m6 Based on Mlr Enzymes" Toxins 17, no. 9: 446. https://doi.org/10.3390/toxins17090446
APA StyleDing, Q., Liu, T., Li, Z., Sun, R., Zhang, J., Yin, L., & Pu, Y. (2025). Comprehensive Insight into Microcystin-Degrading Mechanism of Sphingopyxis sp. m6 Based on Mlr Enzymes. Toxins, 17(9), 446. https://doi.org/10.3390/toxins17090446