Potential Linkage Between Zebra Mussel Establishment, Cyanobacterial Community Composition, and Microcystin Levels in United States Lakes
Abstract
1. Introduction
2. Results
2.1. Cyanobacterial Community Structure in U.S. Lakes
2.2. Zebra Mussel Establishment and Cyanobacterial Community Structure
2.3. Zebra Mussels and Cyanobacterial Blooms
2.4. Analysis of Potential Pathways Whereby Zebra Mussels Affect Microcystin Level
3. Discussion
4. Conclusions
- Cyanobacterial community structure was different in lakes located in areas where zebra mussels were established compared with lakes located in areas where they were not;
- Cyanobacterial community structure and cyanobacterial biodiversity were positively correlated with microcystin levels;
- Microcystin levels and cyanobacteria abundance were significantly higher in lakes located in areas where zebra mussels were established compared with lakes located in areas where they were not;
- Total phosphorus levels were significantly lower in lakes located in areas where zebra mussels were established compared with lakes located in areas where they were not; possibly due to the nutrient removal ability of zebra mussels;
- There appeared to be a positive effect of zebra mussel establishment on microcystin occurrence, after controlling for total nitrogen and phosphorus levels. Alternatively, zebra mussel establishment can remove phosphorus and thereby suppress microcystin occurrence;
- Three possible ways in which zebra mussel establishment could influence microcystin levels were proposed and quantified. The first was a negative effect caused by phosphorus removal, which would reduce microcystin production whereas the second and third ways were assumed to be due to increase in cyanobacterial abundance and toxic cyanobacteria, which would result in a net positive effect on microcystin production.
5. Materials and Methods
5.1. Cyanobacteria Data
5.2. Zebra Mussel Data
5.3. Statistical Methods
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
NLA | National Lakes Assessment |
SIMPER | similarity percentage analysis |
PERMANOVA | Permutational Multivariate Analysis of Variance |
HU | hydrologic unit |
References
- Watson, S.B.; McCauley, E.; Downing, J.A. Patterns in phytoplankton taxonomic composition across temperate lakes of differing nutrient status. Limnol. Oceanogr. 1997, 42, 487–495. [Google Scholar] [CrossRef]
- Verspagen, J.M.H.; Ji, X.; Liu, Q.-X.; Huisman, J. Large-scale variation in phytoplankton community composition of >1000 lakes across the USA. Environ. Res. Ecol. 2022, 1, 015001. [Google Scholar] [CrossRef]
- Carmichael, W.W. Health Effects of Toxin-Producing Cyanobacteria: “The CyanoHABs”. Hum. Ecol. Risk Assess. Int. J. 2001, 7, 1393–1407. [Google Scholar] [CrossRef]
- Chorus, I. Cyanotoxins: Occurrence, Causes, Consequences; Springer: Berlin, Germany, 2001. [Google Scholar]
- Cheung, M.Y.; Liang, S.; Lee, J. Toxin-producing cyanobacteria in freshwater: A review of the problems, impact on drinking water safety, and efforts for protecting public health. J. Microbiol. 2013, 51, 1–10. [Google Scholar] [CrossRef]
- Carmichael, W.W.; Azevedo, S.M.; An, J.S.; Molica, R.J.; Jochimsen, E.M.; Lau, S.; Rinehart, K.L.; Shaw, G.R.; Eaglesham, G.K. Human fatalities from cyanobacteria: Chemical and biological evidence for cyanotoxins. Environ. Health Perspect. 2001, 109, 663–668. [Google Scholar] [CrossRef] [PubMed]
- Ueno, Y.; Nagata, S.; Tsutsumi, T.; Hasegawa, A.; Watanabe, M.F.; Park, H.-D.; Chen, G.-C.; Chen, G.; Yu, S.-Z. Detection of microcystins, a blue-green algal hepatotoxin, in drinking water sampled in Haimen and Fusui, endemic areas of primary liver cancer in China, by highly sensitive immunoassay. Carcinogenesis 1996, 17, 1317–1321. [Google Scholar] [CrossRef] [PubMed]
- Sivonen, K.; Jones, J. Cyanobacterial Toxins. In Toxic Cyanobacteria in Water: A Guide to Their Public Health Consequences, Monitoring and Management, 1st ed.; Chorus, I., Bartram, J., Eds.; E & FN Spon: London, UK; New York, NY, USA, 1999; pp. 43–112. [Google Scholar]
- Fristachi, A.; Sinclair, J.L.; Hall, S.; Berkman, J.A.H.; Boyer, G.; Burkholder, J.; Burns, J.; Carmichael, W.; DuFour, A.; Frazier, W.; et al. Occurrence of Cyanobacterial Harmful Algal Blooms Workgroup Report. In Cyanobacterial Harmful Algal Blooms: State of the Science and Research Needs; Hudnell, H.K., Ed.; Advances in Experimental Medicine and Biology, Volume 619; Springer: New York, NY, USA, 2008; pp. 45–103. [Google Scholar]
- Hisbergues, M.; Christiansen, G.; Rouhiainen, L.; Sivonen, K.; Börner, T. PCR-based identification of microcystin-producing genotypes of different cyanobacterial genera. Arch. Microbiol. 2003, 180, 402–410. [Google Scholar] [CrossRef]
- Kim, J.; Lee, J.; Marion, J.M.; Park, J. Key drivers of microcystin-producing cyanobacteria in South Korean eutrophic waters determined with data-driven models. J. Environ. Manag. 2025, 392, 126616. [Google Scholar] [CrossRef]
- Lower, E.; Sturtevant, R.; Iott, S.; Martinez, F.; Rutherford, E.; Mason, D.M.; Redinger, J.; Elgin, A.K. The Great Lakes’ most unwanted: Characterizing the impacts of the top ten Great Lakes aquatic invasive species. J. Great Lakes Res. 2024, 50, 102365. [Google Scholar] [CrossRef]
- Karatayev, A.Y.; Burlakova, L.E. What we know and don’t know about the invasive zebra (Dreissena polymorpha) and quagga (Dreissena rostriformis bugensis) mussels. Hydrobiologia 2025, 852, 1029–1102. [Google Scholar] [CrossRef]
- Gazulha, V.; Mansur, M.C.D.; Cybis, L.F.; Azevedo, S.M.F.O. Feeding behavior of the invasive bivalve Limnoperna fortunei (Dunker, 1857) under exposure to toxic cyanobacteria Microcystis aeruginosa. Braz. J. Biol. 2012, 72, 41–49. [Google Scholar] [CrossRef]
- Nichollos, K.H.; Hopkins, G.J. Recent Changes in Lake Erie (North Shore) Phytoplankton: Cumulative Impacts of Phosphorus Loading Reductions and the Zebra Mussel Introduction. J. Great Lakes Res. 1993, 19, 637–647. [Google Scholar] [CrossRef]
- Fahnenstiel, G.L.; Bridgeman, T.B.; Lang, G.A.; McCormick, M.J.; Nalepa, T.F. Phytoplankton Productivity in Saginaw Bay, Lake Huron: Effects of Zebra Mussel (Dreissena polymorpha) Colonization. J. Great Lakes Res. 1995, 21, 464–475. [Google Scholar] [CrossRef]
- Heath, R.T.; Fahnenstiel, G.L.; Gardner, W.S.; Cavaletto, J.F.; Hwang, S.-J. Ecosystem-Level Effects of Zebra Mussels (Dreissena polymorpha): An Enclosure Experiment in Saginaw Bay, Lake Huron. J. Great Lakes Res. 1995, 21, 501–516. [Google Scholar] [CrossRef]
- Roditi, H.A.; Caraco, N.F.; Cole, J.J.; Strayer, D.L. Filtration of Hudson River water by the zebra mussel (Dreissena polymorpha). Estuaries 1996, 19, 824–832. [Google Scholar] [CrossRef]
- Caraco, N.F.; Cole, J.J.; Raymond, P.A.; Strayer, D.L.; Pace, M.L.; Findlay, S.E.G.; Fischer, D.T. Zebra mussel invasion in a large, turbid river: Phytoplankton response to increased grazing. Ecology 1997, 78, 588–602. [Google Scholar] [CrossRef]
- Zieritz, A.; Sousa, R.; Aldridge, D.C.; Douda, K.; Esteves, E.; Ferreira-Rodríguez, N.; Mageroy, J.H.; Nizzoli, D.; Osterling, M.; Reis, J.; et al. A global synthesis of ecosystem services provided and disrupted by freshwater bivalve molluscs. Biol. Rev. 2022, 97, 1967–1998. [Google Scholar] [CrossRef]
- Makarewicz, J.C.; Lewis, T.W.; Bertram, P. Phytoplankton Composition and Biomass in the Offshore Waters of Lake Erie: Pre- and Post-Dreissena Introduction (1983–1993). J. Great Lakes Res. 1999, 25, 135–148. [Google Scholar] [CrossRef]
- Vanderploeg, H.A.; Liebig, J.R.; Carmichael, W.W.; Agy, M.A.; Johengen, T.H.; Fahnenstiel, G.L.; Nalepa, T.F. Zebra mussel (Dreissena polymorpha) selective filtration promoted toxic Microcystis blooms in Saginaw Bay (Lake Huron) and Lake Erie. Can. J. Fish. Aquat. Sci. 2001, 58, 1208–1221. [Google Scholar] [CrossRef]
- Lavrentyev, P.J.; Gardner, W.S.; Cavaletto, J.F.; Beaver, J.R. Effects of the Zebra Mussel (Dreissena polymorpha Pallas) on Protozoa and Phytoplankton from Saginaw Bay, Lake Huron. J. Great Lakes Res. 1995, 21, 545–557. [Google Scholar] [CrossRef]
- Raikow, D.F.; Sarnelle, O.; Wilson, A.E.; Hamilton, S.K. Dominance of the noxious cyanobacterium Microcystis aeruginosa in low-nutrient lakes is associated with exotic zebra mussels. Limnol. Oceanogr. 2004, 49, 482–487. [Google Scholar] [CrossRef]
- Juhel, G.; Davenport, J.; O’Halloran, J.; Culloty, S.; Ramsay, R.; James, K.; Furey, A.; Allis, O. Pseudodiarrhoea in zebra mussels Dreissena polymorpha (Pallas)exposed to microcystins. J. Exp. Biol. 2006, 209, 810–816. [Google Scholar] [CrossRef] [PubMed]
- Knoll, L.B.; Sarnelle, O.; Hamilton, S.K.; Kissman, C.E.H.; Wilson, A.E.; Rose, J.B.; Morgan, M.R. Invasive zebra mussels (Dreissena polymorpha) increase cyanobacterial toxin concentrations in low-nutrient lakes. Can. J. Fish. Aquat. Sci. 2008, 65, 448–455. [Google Scholar] [CrossRef]
- Vanderploeg, H.A.; Sarnelle, O.; Liebig, J.R.; Morehead, N.R.; Robinson, S.D.; Johengen, T.H.; Horst, G.P. Seston quality drives feeding, stoichiometry and excretion of zebra mussels. Freshw. Biol. 2017, 62, 664–680. [Google Scholar] [CrossRef]
- Sarnelle, O.; White, J.D.; Horst, G.P.; Hamilton, S.K. Phosphorus addition reverses the positive effect of zebra mussels (Dreissena polymorpha) on the toxic cyanobacterium, Microcystis aeruginosa. Water Res. 2012, 46, 3471–3478. [Google Scholar] [CrossRef]
- Bastviken, D.T.E.; Caraco, N.F.; Cole, J.J. Experimental measurements of zebra mussel (Dreissena polymorpha) impacts on phytoplankton community composition. Freshw. Biol. 1998, 39, 375–386. [Google Scholar] [CrossRef]
- Pires, L.M.D.; Bontes, B.M.; Van Donk, E.; Ibelings, B.W. Grazing on colonial and filamentous, toxic and non-toxic cyanobacteria by the zebra mussel Dreissena polymorpha. J. Plankton Res. 2005, 27, 331–339. [Google Scholar] [CrossRef]
- Boegehold, A.G.; Johnson, N.S.; Kashian, D.R. Dreissenid (quagga and zebra mussel) veligers are adversely affected by bloom forming cyanobacteria. Ecotoxicol. Environ. Saf. 2019, 182, 109426. [Google Scholar] [CrossRef]
- Karpowicz, M.; Feniova, I.Y.; Sakharova, E.G.; Gorelysheva, Z.I.; Więcko, A.; Górniak, A.; Dzialowski, A.R. Top-down and bottom-up control of phytoplankton communities by zebra mussels Dreissena polymorpha (Pallas, 1771). Sci. Total Environ. 2023, 877, 162899. [Google Scholar] [CrossRef]
- Vanderploeg, H.A.; Johengen, T.H.; Liebig, J.R. Feedback between zebra mussel selective feeding and algal composition affects mussel condition: Did the regime changer pay a price for its success? Freshw. Biol. 2009, 54, 47–63. [Google Scholar] [CrossRef]
- Conroy, J.D.; Edwards, W.J.; Pontius, R.A.; Kane, D.D.; Zhang, H.; Shea, J.F.; Richey, J.N.; Culver, D.A. Soluble nitrogen and phosphorus excretion of exotic freshwater mussels (Dreissena spp.): Potential impacts for nutrient remineralisation in western Lake Erie. Freshw. Biol. 2005, 50, 1146–1162. [Google Scholar] [CrossRef]
- Wojtal-Frankiewicz, A.; Frankiewicz, P. The impact of pelagic (Daphnia longispina) and benthic (Dreissena polymorpha) filter feeders on chlorophyll and nutrient concentration. Limnologica 2011, 41, 191–200. [Google Scholar] [CrossRef]
- Fishman, D.B.; Adlerstein, S.A.; Vanderploeg, H.A.; Fahnenstiel, G.L.; Scavia, D. Phytoplankton community composition of Saginaw Bay, Lake Huron, during the zebra mussel (Dreissena polymorpha) invasion: A multivariate analysis. J. Great Lakes Res. 2010, 36, 9–19. [Google Scholar] [CrossRef]
- USEPA. National Lakes Assessment: A Collaborative Survey of the Nation’s Lakes; EPA 841-R-09-001; USA Environmental Protection Agency, Office of Water and Office of Research and Development: Washington, DC, USA, 2009. [Google Scholar]
- Tang, H.; Vanderploeg, H.A.; Johengen, T.H.; Leibig, J.R. Quagga mussel (Dreissena rostriformis bugensis) selective feeding of phytoplankton in Saginaw Bay. J. Great Lakes Res. 2014, 40, 83–94. [Google Scholar] [CrossRef]
- Johengen, T.H.; Nalepa, T.F.; Fahnenstiel, G.L.; Goudy, G. Nutrient Changes in Saginaw Bay, Lake Huron, After the Establishment of the Zebra Mussel (Dreissena polymorpha). J. Great Lakes Res. 1995, 21, 449–464. [Google Scholar] [CrossRef]
- Xie, L.; Rediske, R.R.; Hong, Y.; O’Keefe, J.; Gillett, N.D.; Dyble, J.; Steinman, A.D. The role of environmental parameters in the structure of phytoplankton assemblages and cyanobacteria toxins in two hypereutrophic lakes. Hydrobiologia 2012, 691, 255–268. [Google Scholar] [CrossRef]
- Paerl, H.W.; Plaas, H.E.; Nelson, L.M.; Korbobo, A.S.; Cheshire, J.H.; Yue, L.; Preece, E.P. Dual nitrogen and phosphorus reductions are needed for long-term mitigation of eutrophication and harmful cyanobacterial blooms in the hydrologically-variable San Francisco Bay Delta, CA. Sci. Total Environ. 2024, 957, 177499. [Google Scholar] [CrossRef]
- Reynolds, S.A.; Aldridge, D.C. Impacts of invasive quagga mussels (Dreissena rostriformis bugensis) on reservoir water quality, as revealed by progressive-change BACIPS analysis. Water Res. 2021, 197, 117105. [Google Scholar] [CrossRef] [PubMed]
- Barbiero, R.P.; Rockwell, D.C.; Warren, G.J.; Tuchman, M.L. Changes in spring phytoplankton communities and nutrient dynamics in the eastern basin of Lake Erie since the invasion of Dreissena spp. Can. J. Fish. Aquat. Sci. 2006, 63, 1549–1563. [Google Scholar] [CrossRef]
- Fernald, S.H.; Caraco, N.F.; Cole, J.J. Changes in cyanobacterial dominance following the invasion of the zebra mussel Dreissena polymorpha: Long-term results from the Hudson River estuary. Estuaries Coasts 2007, 30, 163–170. [Google Scholar] [CrossRef]
- Kleinteich, J.; Wood, S.A.; Küpper, F.C.; Camacho, A.; Quesada, A.; Frickey, T.; Dietrich, D.R. Temperature-related changes in polar cyanobacterial mat diversity and toxin production. Nat. Clim. Change 2012, 2, 356–360. [Google Scholar] [CrossRef]
- Hu, C.; Rea, C.; Yu, Z.; Lee, J. Relative importance of Microcystis abundance and diversity in determining microcystin dynamics in Lake Erie coastal wetland and downstream beach water. J. Appl. Microbiol. 2016, 120, 138–151. [Google Scholar] [CrossRef]
- Strong, W.L. Biased richness and evenness relationships within Shannon–Wiener index values. Ecol. Indic. 2016, 67, 703–713. [Google Scholar] [CrossRef]
- Mida, J.L.; Scavia, D.; Fahnenstiel, G.L.; Pothoven, S.A.; Vanderploeg, H.A.; Dolan, D.M. Long-term and recent changes in southern Lake Michigan water quality with implications for present trophic status. J. Great Lakes Res. 2010, 36, 42–49. [Google Scholar] [CrossRef]
- Zhu, B.; Fitzgerald, D.G.; Mayer, C.M.; Rudstam, L.G.; Mills, E.L. Alteration of Ecosystem Function by Zebra Mussels in Oneida Lake: Impacts on Submerged Macrophytes. Ecosystems 2006, 9, 1017–1028. [Google Scholar] [CrossRef]
- Dzialowski, A.R.; Jessie, W. Zebra mussels negate or mask the increasing effects of nutrient enrichment on algal biomass: A preliminary mesocosm study. J. Plankton Res. 2009, 31, 1437–1440. [Google Scholar] [CrossRef][Green Version]
- Goedkoop, W.; Naddafi, R.; Grandin, U. Retention of N and P by zebra mussels (Dreissena polymorpha Pallas) and its quantitative role in the nutrient budget of eutrophic Lake Ekoln, Sweden. Biol. Invasions 2011, 13, 1077–1086. [Google Scholar] [CrossRef]
- Yuan, F.; Krebs, R.A.; Wagner, A.N. Identifying the influence of zebra and quagga mussels on sedimentary phosphorus dynamics in western Lake Erie. Hydrobiologia 2021, 848, 1897–1909. [Google Scholar] [CrossRef]
- Dolman, A.M.; Rucker, J.; Pick, F.R.; Fastner, J.; Rohrlack, T.; Mischke, U.; Wiedner, C. Cyanobacteria and Cyanotoxins: The Influence of Nitrogen versus Phosphorus. PLoS ONE 2012, 7, e38757. [Google Scholar] [CrossRef] [PubMed]
- Vézie, C.; Rapala, J.; Vaitomaa, J.; Seitsonen, J.; Sivonen, K. Effect of Nitrogen and Phosphorus on Growth of Toxic and Nontoxic Microcystis Strains and on Intracellular Microcystin Concentrations. Microb. Ecol. 2002, 43, 443–454. [Google Scholar] [CrossRef]
- Davis, T.W.; Berry, D.L.; Boyer, G.L.; Gobler, C.J. The effects of temperature and nutrients on the growth and dynamics of toxic and non-toxic strains of Microcystis during cyanobacteria blooms. Harmful Algae 2009, 8, 715–725. [Google Scholar] [CrossRef]
- Naddafi, R.; Pettersson, K.; Eklov, P. The effect of seasonal variation in selective feeding by zebra mussels (Dreissena polymorpha) on phytoplankton community composition. Freshw. Biol. 2007, 52, 823–842. [Google Scholar] [CrossRef]
- Bossenbroek, J.M.; Johnson, L.E.; Peters, B.; Lodge, D.M. Forecasting the Expansion of Zebra Mussels in the United States. Conserv. Biol. 2007, 21, 800–810. [Google Scholar] [CrossRef]
- Schindler, D.W.; Carpenter, S.R.; Chapra, S.C.; Hecky, R.E.; Orihel, D.M. Reducing Phosphorus to Curb Lake Eutrophication is a Success. Environ. Sci. Technol. 2016, 50, 8923–8929. [Google Scholar] [CrossRef]
- Rigosi, A.; Carey, C.C.; Ibelings, B.W.; Brooks, J. The interaction between climate warming and eutrophication to promote cyanobacteria is dependent on trophic state and varies among taxa. Limnol. Oceanogr. 2014, 59, 99–114. [Google Scholar] [CrossRef]
- Panlasigui, S.; Davis, A.J.S.; Mangiante, M.J.; Darling, J.A. Assessing threats of non-native species to native freshwater biodiversity: Conservation priorities for the United States. Biol. Conserv. 2018, 224, 199–208. [Google Scholar] [CrossRef]
- Bobeldyk, A.M.; Bossenbroek, J.M.; Evans-White, M.A.; Lodge, D.M.; Lamberti, G.A. Secondary spread of zebra mussels (Dreissena polymorpha) in coupled lake-stream systems. Ecoscience 2005, 12, 339–346. [Google Scholar] [CrossRef]
- Bray, J.R.; Curtis, J.T. An ordination of the upland forest communities of southern Wisconsin. Ecol. Monogr. 1957, 27, 326–349. [Google Scholar] [CrossRef]
- Singh, W.; Hjorleifsson, E.; Stefansson, G. Robustness of fish assemblages derived from three hierarchical agglomerative clustering algorithms performed on Icelandic groundfish survey data. ICES J. Mar. Sci. 2011, 68, 189–200. [Google Scholar] [CrossRef]
- Clarke, K.R.; Warwick, R.M. Change in Marine Communities: An Approach to Statistical Analysis and Interpretation, 2nd ed.; PRIMER-E Ltd.: Plymouth, UK, 2001. [Google Scholar]
- Beran, T.N.; Violato, C. Structural equation modeling in medical research: A primer. BMC Res. Notes 2010, 3, 267. [Google Scholar] [CrossRef] [PubMed]
- Oksanen, J.; Blanchet, F.G.; Kindt, R.; Legendre, P.; O’Hara, R.B.; Simpson, G.L.; Solymos, P.; Stevens, M.H.H.; Wagner, H. Package ‘Vegan’: Community Ecology Package (19 March 2013), Version 2.0-7. Available online: https://vegan.r-forge.r-project.org/ (accessed on 3 November 2019).
- Pelletier, D.; Ferraris, J. A multivariate approach for defining fishing tactics from commercial catch and effort data. Can. J. Fish. Aquat. Sci. 2000, 57, 51–65. [Google Scholar] [CrossRef]
- Hammer, Ø.; Harper, D.A.T.; Ryan, P.D. Past: Paleontological statistics software package for education and data analysis. Palaeontol. Electron. 2001, 4, 1–9. [Google Scholar]
Genus | Cluster 1 (%) (n = 138) | Cluster 2 (%) (n = 244) | Cluster 3 (%) (n = 252) | Cluster 4 (%) (n = 231) | Cluster 5 (%) (n = 132) | Cluster 6 1 (%) (n = 28) |
---|---|---|---|---|---|---|
Dolichospermum | 10.32 | 12.44 | 7.30 | 19.77 | 1.54 | 0 |
Coelosphaerium | 7.52 | 1.67 | 0.82 | 3.71 | 1.16 | 0 |
Aphanizomenon | 6.71 | 0.88 | 5.61 | 17.06 | 1.32 | 0 |
Aphanocapsa | 12.22 | 3.93 | 0.63 | 14.65 | 0 | 0 |
Chroococcus | 11.91 | 5.29 | 1.14 | 7.04 | 0.77 | 0 |
Leptolyngbya | 12.16 | 0.62 | 0.00 | 1.03 | 0 | 0 |
Merismopedia | 5.77 | 4.22 | 1.22 | 5.43 | 1.04 | 0 |
Microcystis | 6.48 | 35.49 | 64.70 | 2.59 | 61.11 | 0 |
Oscillatoria | 0.06 | 20.83 | 1.74 | 0.91 | 3.08 | 0 |
Phormidium | 6.73 | 0.08 | 0 | 3.74 | 0 | 0 |
Synechococcus | 0.00 | 0.58 | 1.16 | 0.77 | 21.68 | 0 |
Zebra Mussel Status of the Area | Student’s T-Test | |||
---|---|---|---|---|
Variable | Zebra Mussel Not Established (n = 848) | Zebra Mussel Established (n = 180) | T-Statistic | p-Value |
Microcystin (μg/L) | 0.05 | 0.10 | −2.73 | 0.0065 |
Nitrogen (μg/L) | 576 | 627 | −0.74 | 0.4572 |
Phosphorus (μg/L) | 32 | 18 | 4.56 | <0.0001 |
Cyanobacteria (cells/mL) | 5248 | 6157 | −2.51 | 0.0127 |
Microcystis (cells/mL) | 239 | 508 | −1.21 | 0.2250 |
Dolichospermum (cells/mL) | 10 | 97 | −5.64 | <0.0001 |
Chlorophyll-a (μg/L) | 8.67 | 6.40 | 0.85 | 0.3960 |
Cyanobacteria biodiversity | 0.74 | 1.03 | −2.87 | <0.0001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, F.; Kim, J.; Costa, O.S., Jr.; Liang, S.; Lee, J. Potential Linkage Between Zebra Mussel Establishment, Cyanobacterial Community Composition, and Microcystin Levels in United States Lakes. Toxins 2025, 17, 447. https://doi.org/10.3390/toxins17090447
Zhang F, Kim J, Costa OS Jr., Liang S, Lee J. Potential Linkage Between Zebra Mussel Establishment, Cyanobacterial Community Composition, and Microcystin Levels in United States Lakes. Toxins. 2025; 17(9):447. https://doi.org/10.3390/toxins17090447
Chicago/Turabian StyleZhang, Feng, Jayun Kim, Ozeas S. Costa, Jr., Song Liang, and Jiyoung Lee. 2025. "Potential Linkage Between Zebra Mussel Establishment, Cyanobacterial Community Composition, and Microcystin Levels in United States Lakes" Toxins 17, no. 9: 447. https://doi.org/10.3390/toxins17090447
APA StyleZhang, F., Kim, J., Costa, O. S., Jr., Liang, S., & Lee, J. (2025). Potential Linkage Between Zebra Mussel Establishment, Cyanobacterial Community Composition, and Microcystin Levels in United States Lakes. Toxins, 17(9), 447. https://doi.org/10.3390/toxins17090447