Lean Mass and Body Fat Percentage Are Contradictory Predictors of Bone Mineral Density in Pre-Menopausal Pacific Island Women
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Body Composition and BMI
3.2. Dietary Data
3.3. Physical Activity Data
3.4. Correlations between Predictor Variables and BMD
3.5. Multiple Regression Analysis
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Abbreviations
ANS | Annual Nutrition Survey |
BMC | Bone Mineral Content |
BMD | Bone Mineral Density |
BMI | Body Mass Index |
BPAQ | Bone-specific Physical Activity Questionnaire |
cBPAQ | Current Bone-specific Physical Activity Questionnaire |
DXA | Dual X-ray Absorptiometry |
FFM | Fat Free Mass |
FFQ | Food Frequency Questionnaire |
RPAQ | Recent Physical Activity Questionnaire |
SPARC | Sport & Recreation New Zealand |
References
- Kanis, J.A.; Oden, A.; Johnell, O.; De Laet, C.; Jonsson, B.; Oglesby, A.K. The components of excess mortality after hip fracture. Bone 2003, 32, 468–473. [Google Scholar] [CrossRef]
- Pasco, J.A.; Sanders, K.M.; Hoekstra, F.M.; Henry, M.J.; Nicholson, G.C.; Kotowicz, M.A. The human cost of fracture. Osteoporos. Int. 2005, 16, 2046–2052. [Google Scholar] [CrossRef] [PubMed]
- Taylor, B.C.; Schreiner, P.J.; Stone, K.L.; Fink, H.A.; Cummings, S.R.; Nevitt, M.C.; Bowman, P.J.; Ensrud, K.E. Long-term prediction of incident hip fracture risk in elderly white women: Study of osteoporotic fractures. J. Am. Geriatr. Soc. 2004, 52, 1479–1486. [Google Scholar] [CrossRef] [PubMed]
- Ralston, S.H.; de Crombrugghe, B. Genetic regulation of bone mass and susceptibility to osteoporosis. Genes Dev. 2006, 20, 2492–2506. [Google Scholar] [CrossRef] [PubMed]
- Rizzoli, R. Nutritional aspects of bone health. Best Pract. Res. Clin. Endocrinol. Met. 2014, 28, 795–808. [Google Scholar] [CrossRef] [PubMed]
- Wolff, I.; van Croonenborg, J.; Kemper, H.; Kostense, P.; Twisk, J. The effect of exercise training programs on bone mass: A meta-analysis of published controlled trials in pre-and postmenopausal women. Osteoporos. Int. 1999, 9, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Lindsay, R.; Cosman, F.; Herrington, B.S.; Himmelstein, S. Bone mass and body composition in normal women. J. Bone Miner. Res. 1992, 7, 55–63. [Google Scholar] [CrossRef] [PubMed]
- Reid, I.R.; Ames, R.; Evans, M.C.; Sharpe, S.; France, G.G.J.T.; Lim, T.M.T.; Cundy, T.F. Determinants of total body and regional bone mineral density in normal postmenopausal women—A key role for fat mass. J. Clin. Endocrinol. Met. 1992, 75, 45–51. [Google Scholar]
- Blain, H.; Vuillemin, A.; Guillemin, F.; Durant, R.; Hanesse, B.; De Talance, N.; Doucet, B.; Jeandel, C. Serum leptin level is a predictor of bone mineral density in postmenopausal women. J. Clin. Endocrinol. Met. 2002, 87, 1030–1035. [Google Scholar] [CrossRef] [PubMed]
- Pasco, J.A.; Henry, M.J.; Kotowicz, M.A.; Collier, G.R.; Ball, M.J.; Ugoni, A.M.; Nicholson, G.C. Serum leptin levels are associated with bone mass in nonobese women. J. Clin. Endocrinol. Met. 2001, 86, 1884–1887. [Google Scholar] [CrossRef]
- Thomas, T.; Burguera, B.; Melton, L.J.; Atkinson, E.J.; O'Fallon, W.M.; Riggs, B.L.; Khosla, S. Role of serum leptin, insulin, and estrogen levels as potential mediators of the relationship between fat mass and bone mineral density in men versus women. Bone 2001, 29, 114–120. [Google Scholar] [CrossRef]
- Finkelstein, J.S.; Brockwell, S.E.; Mehta, V.; Greendale, G.A.; Sowers, M.R.; Ettinger, B.; Lo, J.C.; Johnston, J.M.; Cauley, J.A.; Danielson, M.E. Bone mineral density changes during the menopause transition in a multiethnic cohort of women. J. Clin. Endocrinol. Met. 2013, 93, 861–868. [Google Scholar] [CrossRef] [PubMed]
- MacInnis, R.J.; Cassar, C.; Nowson, C.A.; Paton, L.M.; Flicker, L.; Hopper, J.L.; Larkins, R.G.; Wark, J.D. Determinants of bone density in 30-to 65-year-old women: A co-twin study. J. Bone Miner. Res. 2003, 18, 1650–1656. [Google Scholar] [CrossRef] [PubMed]
- Weeks, B.K.; Beck, B.R. The BPAQ: A bone-specific physical activity assessment instrument. Osteoporos. Int. 2008, 19, 1567–1577. [Google Scholar] [CrossRef] [PubMed]
- Heaney, R.P. Calcium, dairy products and osteoporosis. J. Am. Coll. Nutr. 2000, 19, 83–99. [Google Scholar] [CrossRef]
- Rubin, C.T.; Lanyon, L.E. Regulation of bone-formation by applied dynamic loads. J. Bone Jt. Surg. Am. 1984, 66, 397–402. [Google Scholar]
- Cundy, T.; Cornish, J.; Evans, M.C.; Gamble, G.; Stapleton, J.; Reid, I.R. Sources of interracial variation in bone-mineral density. J. Bone Miner. Res. 1995, 10, 368–373. [Google Scholar] [CrossRef] [PubMed]
- Reid, I.R.; Mackie, M.; Ibbertson, H.K. Bone-mineral content in Polynesian and white New Zealand women. Br. Med. J. 1986, 292, 1547–1548. [Google Scholar] [CrossRef]
- Bogl, L.H.; Latvala, A.; Kaprio, J.; Sovijarvi, O.; Rissanen, A.; Pietilainen, K.H. An Investigation into the relationship between soft tissue body composition and bone mineral density in a young adult twin sample. J. Bone Miner. Res. 2011, 26, 79–87. [Google Scholar] [CrossRef] [PubMed]
- Felson, D.T.; Zhang, Y.; Hannan, M.T.; Anderson, J.J. Effects of weight and body mass index on bone mineral density in men and women: The Framingham study. J. Bone Miner. Res. 1993, 8, 567–573. [Google Scholar] [CrossRef] [PubMed]
- Grant, A.M.; Gordon, F.K.; Ferguson, E.L.; Williams, S.M.; Henry, T.E.; Toafa, V.M.; Guthrie, B.E.; Goulding, A. Do young New Zealand Pacific Island and European children differ in bone size or bone mineral? Calcif. Tissue Int. 2005, 76, 397–403. [Google Scholar] [CrossRef] [PubMed]
- University of Otago; Ministry of Health. A Focus on Nutrition: Key Findings of the 2008/09 New Zealand Adult Nutrition Survey; Ministry of Health: Wellington, New Zealand, 2011.
- Ministry of Health. Vitamin D Status of New Zealand Adults: Findings from the 2008/09 New Zealand Adult Nutrition Survey; Ministry of Health: Wellington, New Zealand, 2012.
- Chen, T.C.; Chimeh, F.; Lu, Z.; Mathieu, J.; Person, K.S.; Zhang, A.; Kohn, N.; Martinello, S.; Berkowitz, R.; Holick, M.F. Factors that influence the cutaneous synthesis and dietary sources of vitamin D. Arch. Biochem. Biophys. 2007, 460, 213–217. [Google Scholar] [CrossRef] [PubMed]
- Holick, M.F.; Maclaughlin, J.A.; Doppelt, S.H. Regulation of cutaneous previtamin-D3 photosynthesis in man - skin pigment is not an essential regulator. Science 1981, 211, 590–593. [Google Scholar] [CrossRef] [PubMed]
- SPARC. SPARC Facts: Results of the New Zealand Sport and Physical Activity Surveys (1997–2001); SPARC: Wellington, New Zealand, 2003. [Google Scholar]
- Ministry of Health. Adult Data Tables: Health Status, Health Behaviours, and Risk Factors; Ministry of Health: Wellington, New Zealand, 2015.
- Kruger, R.; Shultz, S.P.; McNaughton, S.A.; Russell, A.P.; Firestone, R.T.; George, L.; Beck, K.L.; Conlon, C.A.; von Hurst, P.R.; Breier, B. Predictors and risks of body fat profiles in young New Zealand European, Māori and Pacific women: Study protocol for the women’s EXPLORE study. SpringerPlus 2015, 4, 128. [Google Scholar] [CrossRef] [PubMed]
- SurveyMonkey Inc. Available online: https://www.surveymonkey.co.nz (accessed on 28 July 2016).
- Von Hurst, P.R.; Walsh, D.C.; Conlon, C.A.; Ingram, M.; Kruger, R.; Stonehouse, W. Validity and reliability of bioelectrical impedance analysis to estimate body fat percentage against air displacement plethysmography and dual-energy X-ray absorptiometry. Nutr. Diet. 2015. [Google Scholar] [CrossRef]
- The Writing Group for the ISCD Position Development Conferece. Diagnosis of osteoporosis in men, premenopausal women, and children. J. Clin. Densitom. 2004, 7, 17–26. [Google Scholar]
- Houston, Z.L. Development and Validation of a Semi-Quantitative Food Frequency Questionnaire to Assess Dietary Intake of Adult Women Living in New Zealand; Massey University: Albany, NY, USA, 2014. [Google Scholar]
- Black, A.E. Critical evaluation of energy intake using the Goldberg cut-off for energy intake: Basal metabolic rate. A practical guide to its calculation, use and limitations. Int. J. Obes. Relat. Metab. Disord. 2000, 24, 1119–1130. [Google Scholar] [CrossRef] [PubMed]
- Ministry of Health. Annual Update of Key Results 2013/14: New Zealand Health Survey; Ministry of Health: Wellington, New Zealand, 2014.
- National Health and Medical Research Council. Nutrient Reference Values for Australia and New Zealand Including Recommended Dietary Intakes; NHMRC: Canberra, Australia, 2006.
- Green, S.B. How many subjects does it take to do a regression analysis. Multivar. Behav. Res. 1991, 26, 499–510. [Google Scholar] [CrossRef] [PubMed]
- Oliveros, E.; Somers, V.K.; Sochor, O.; Goel, K.; Lopez-Jimenez, F. The concept of normal weight obesity. Prog. Cardiovasc. Dis. 2014, 56, 426–433. [Google Scholar] [CrossRef] [PubMed]
- Vincenti, M.A. Physical status: The use of and interpretation of anthropometry. J. Acad. Nutr. Diet. 1996, 96, 1104. [Google Scholar]
- Okorodudu, D.; Jumean, M.; Montori, V.; Romero-Corral, A.; Somers, V.; Erwin, P.; Lopez-Jimenez, F. Diagnostic performance of body mass index to identify obesity as defined by body adiposity: A systematic review and meta-analysis. Int. J. Obes. 2010, 34, 791–799. [Google Scholar] [CrossRef] [PubMed]
- Rush, E.; Plank, L.; Chandu, V.; Laulu, M.; Simmons, D.; Swinburn, B.; Yajnik, C. Body size, body composition, and fat distribution: A comparison of young New Zealand men of European, Pacific Island, and Asian Indian ethnicities. N. Z. Med. J. 2004, 117, 1207. [Google Scholar]
- Rush, E.C.; Freitas, I.; Plank, L.D. Body size, body composition and fat distribution: Comparative analysis of European, Maori, Pacific Island and Asian Indian adults. Br. J. Nutr. 2009, 102, 632–641. [Google Scholar] [CrossRef] [PubMed]
- Seeman, E.; Delmas, P.D. Bone quality—The material and structural basis of bone strength and fragility. N. Engl. J. Med. 2006, 354, 2250–2261. [Google Scholar] [CrossRef] [PubMed]
- Harris, S.; Dallal, G.E.; Dawson-Hughes, B. Influence of body weight on rates of change in bone density of the spine, hip, and radius in postmenopausal women. Calcif. Tissue Int. 1992, 50, 19–23. [Google Scholar] [CrossRef] [PubMed]
- Glauber, H.S.; Vollmer, W.M.; Nevitt, M.C.; Ensrud, K.E.; Orwoll, E.S. Body weight versus body fat distribution, adiposity, and frame size as predictors of bone density. J. Clin. Endocrinol. Metab. 1995, 80, 1118–1123. [Google Scholar] [PubMed]
- Baumgartner, R.N.; Stauber, P.M.; Koehler, K.M.; Romero, L.; Garry, P.J. Associations of fat and muscle masses with bone mineral in elderly men and women. Am. J. Clin. Nutr. 1996, 63, 365–372. [Google Scholar] [PubMed]
- Compston, J.E.; Bhambhani, M.; Laskey, M.A.; Murphy, S.; Khaw, K.T. Body-composition and bone mass in postmenopausal women. Clin. Endocrinol. 1992, 37, 426–431. [Google Scholar] [CrossRef]
- Douchi, T.; Oki, T.; Nakamura, S.; Ijuin, H.; Yamamoto, S.; Nagata, Y. The effect of body composition on bone density in pre- and postmenopausal women. Maturitas 1997, 27, 55–60. [Google Scholar] [CrossRef]
- Kirchengast, S.; Peterson, B.; Hauser, G.; Knogler, W. Body composition characteristics are associated with the bone density of the proximal femur end in middle- and old-aged women and men. Maturitas 2001, 39, 133–145. [Google Scholar] [CrossRef]
- Liu, S.; Li, J.; Sheng, Z.; Wu, X.; Liao, E. Relationship between body composition and age, menopause and its effects on bone mineral density at segmental regions in Central Southern Chinese postmenopausal elderly women with and without osteoporosis. Arch. Gerontol. Geriatr. 2011, 53, 192–197. [Google Scholar] [CrossRef] [PubMed]
- Nur, H.; Toraman, N.F.; Arica, Z.; Sarier, N.; Samur, A. The relationship between body composition and bone mineral density in postmenopausal Turkish women. Rheumatol. Int. 2013, 33, 607–612. [Google Scholar] [CrossRef] [PubMed]
- Reid, I.; Evans, M.; Ames, R. Volumetric bone density of the lumbar spine is related to fat mass but not lean mass in normal postmenopausal women. Osteoporos. Int. 1994, 4, 362–367. [Google Scholar] [CrossRef] [PubMed]
- Thomas, T.; Gori, F.; Khosla, S.; Jensen, M.D.; Burguera, B.; Riggs, B.L. Leptin acts on human marrow stromal cells to enhance differentiation to osteoblasts and to inhibit differentiation to adipocytes 1. Endocrinology 1999, 140, 1630–1638. [Google Scholar] [CrossRef] [PubMed]
- Heymsfield, S.B.; Smith, R.; Aulet, M.; Bensen, B.; Lichtman, S.; Wang, J.; Pierson, R.N. Appendicular skeletal muscle mass: Measurement by dual-photon absorptiometry. Am. J. Clin. Nutr. 1990, 52, 214–218. [Google Scholar] [PubMed]
Parameters | Participants (n = 83) | Range |
---|---|---|
Age (years) | 28 (21, 37) * | 16–45 |
Height (cm) | 167.4 ± 5.8 † | 154.1–183.8 |
Weight (kg) | 90.4 ± 19 † | 53.7–147.2 |
BMI (kg/m2) | 32.4 ± 6.8 † | 20.4–54.9 |
Body fat % | 38.4 ± 7.6 † | 24–53.3 |
Bone-free lean mass (kg) | 52.4 ± 6.9 † | 36.9–66.4 |
Total body BMD (g/cm2) | 1.2 ± 0.08 † | 0.93–1.29 |
BMI Range (kg/m2) | Study Group | NZ-Wide [22] |
---|---|---|
18.5–24.9 | 13.2% | 13.7% |
25–29.9 | 28.6% | 26.5% |
≥30 | 58.2% | 59.5% |
Nutrient | Study Population (n = 56) Intake | NZ-Wide Intake (Adult Pacific Island Women) 1 | Recommended Intake 2 |
---|---|---|---|
Energy (kJ) | 9334 (7210, 11,821) * | 8318 | BMR × PAL |
Carbohydrate (% of total energy) | 43 ± 8.2 † | 47 | 45%–65% of total energy intake |
Fat (% of total energy) | 35 ± 7 † | 35.2 | 20%–35% of total energy intake |
Protein (% of total energy) | 18 ± 3.8 † | 16.2 | 15%–25% of total energy intake |
Protein (total g) | 108.5 ± 42.4 | 81 | 0.8–1 g per kg of mass |
Calcium (mg) | 1016 ± 442 † | 653 | 14–18 years: 1300 mg/day |
19–50 years: 1000 mg/day | |||
Vitamin C (mg) | 125 (94, 216) * | 99 | 14–18 years: 40 mg/day |
19–50 years: 45 mg/day |
Variables | r | n | p |
---|---|---|---|
Total mass | 0.26 | 83 | <0.05 * |
cBPAQ | 0.07 | 59 | >0.05 |
Calcium | −0.04 | 56 | >0.05 |
Protein | 0.09 | 56 | >0.05 |
Vitamin C | −0.01 | 56 | >0.05 |
B | SE B | 95% CI B | Standar-dised β | R | R2 | ∆R2 | p | |
---|---|---|---|---|---|---|---|---|
Model 1 | 0.458 | 0.210 | 0.210 * | <0.001 | ||||
Intercept | 0.821 | 0.060 | 0.702, 0.941 | |||||
Lean mass | 5.286 × 10−6 | 0.000 | 0.000, 0.000 | 0.458 | ||||
Model 2 | 0.514 | 0.265 | 0.055 ** | <0.001 | ||||
Intercept | 0.763 | 0.063 | 0.637, 0.889 | |||||
Lean mass | 5.258 × 10−6 | 0.000 | 0.000, 0.000 | 0.456 | ||||
Age | 0.002 | 0.001 | 0.000, 0.004 | 0.234 | ||||
Model 3 | 0.632 | 0.377 | 0.135 *** | <0.001 | ||||
Intercept | 0.789 | 0.058 | 0.674, 0.889 | |||||
Lean mass | 7.519 × 10−6 | 0.000 | 0.000, 0.000 | 0.651 | ||||
Age | 0.003 | 0.001 | 0.002, 0.005 | 0.348 | ||||
Body Fat % | −0.005 | 0.001 | −0.007, −0.002 | −0.432 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Casale, M.; Von Hurst, P.R.; Beck, K.L.; Shultz, S.; Kruger, M.C.; O’Brien, W.; Conlon, C.A.; Kruger, R. Lean Mass and Body Fat Percentage Are Contradictory Predictors of Bone Mineral Density in Pre-Menopausal Pacific Island Women. Nutrients 2016, 8, 470. https://doi.org/10.3390/nu8080470
Casale M, Von Hurst PR, Beck KL, Shultz S, Kruger MC, O’Brien W, Conlon CA, Kruger R. Lean Mass and Body Fat Percentage Are Contradictory Predictors of Bone Mineral Density in Pre-Menopausal Pacific Island Women. Nutrients. 2016; 8(8):470. https://doi.org/10.3390/nu8080470
Chicago/Turabian StyleCasale, Maria, Pamela R. Von Hurst, Kathryn L. Beck, Sarah Shultz, Marlena C. Kruger, Wendy O’Brien, Cathryn A. Conlon, and Rozanne Kruger. 2016. "Lean Mass and Body Fat Percentage Are Contradictory Predictors of Bone Mineral Density in Pre-Menopausal Pacific Island Women" Nutrients 8, no. 8: 470. https://doi.org/10.3390/nu8080470
APA StyleCasale, M., Von Hurst, P. R., Beck, K. L., Shultz, S., Kruger, M. C., O’Brien, W., Conlon, C. A., & Kruger, R. (2016). Lean Mass and Body Fat Percentage Are Contradictory Predictors of Bone Mineral Density in Pre-Menopausal Pacific Island Women. Nutrients, 8(8), 470. https://doi.org/10.3390/nu8080470