Effects of Egg White Protein Supplementation on Muscle Strength and Serum Free Amino Acid Concentrations
Abstract
:1. Introduction
2. Experimental Section
2.1. Participants
2.2. Study Design
2.3. Protein and Carbohydrate Supplements
Group | Prot | Carb |
---|---|---|
Energy (kcal) | 75 | 78 |
Protein (g) | 15.0 # | 0.3 |
Fat (g) | 0.8 | 0.8 |
Carbohydrate (g) | 2.0 | 17.5 * |
Water (g) | 1.0 | 1.3 |
Ash (g) | 1.3 | 0.1 |
Salt (mg) | 0.7 | 0.0 |
2.4. Anthropometrical Analysis
2.5. One Repetition Maximum Strength Tests
2.6. Dietary Analysis and Estimated Energy Expenditure
2.7. Blood Sample Analysis
2.8. Statistics
3. Results
3.1. Subject Characteristics and One Repetition Maximum Strength Tests
Group | Baseline | After 8 weeks | ANOVA | |||
---|---|---|---|---|---|---|
Time | T × G | Group | ||||
Energy (kcal) | Prot (1) | 2147 ± 72 | 1997 ± 59 | 0.302 | 0.440 | 0.537 |
Carb (2) | 1996 ± 55 | 1974 ± 42 | ||||
Protein (g/BW) | Prot | 1.08 ± 0.07 | 1.23 ± 0.07 *,# | 0.578 | 0.036 | 0.253 |
Carb | 1.08 ± 0.09 | 1.00 ± 0.07 | ||||
Carbohydrate (g/BW) | Prot | 4.94 ± 0.35 | 4.65 ± 0.28 | 0.567 | 0.240 | 0.535 |
Carb | 4.48 ± 0.21 | 4.62 ± 0.18 | ||||
Height (cm) | Prot | 165.1 ± 1.4 | 165.1 ± 1.4 | 0.457 | 0.573 | 0.683 |
Carb | 166.0 ± 1.6 | 166.1 ± 1.7 | ||||
Body weight (kg) | Prot | 60.6 ± 1.9 | 60.0 ± 1.8 | 0.055 | 0.765 | 0.830 |
Carb | 61.1 ± 1.4 | 60.6 ± 1.4 | ||||
Body fat ratio (%) | Prot | 23.2 ± 1.9 | 20.2 ± 1.2 | <0.001 | 0.931 | 0.983 |
Carb | 23.2 ± 1.6 | 20.1 ± 1.2 | ||||
Fat free mass (kg) | Prot | 46.3 ± 1.2 | 47.8 ± 1.1 | 0.004 | 0.958 | 0.708 |
Car | 46.8 ± 1.3 | 48.4 ± 1.1 | ||||
Thigh circumference (cm) | Prot | 56.2 ± 0.9 | 56.4 ± 0.8 | 0.733 | 0.937 | 0.261 |
Carb | 54.8 ± 0.1 | 55.0 ± 0.1 | ||||
Calf circumference (cm) | Prot | 37.6 ± 0.6 | 37.6 ± 0.5 | 0.714 | 0.440 | 0.722 |
Carb | 37.4 ± 0.5 | 37.2 ± 0.5 | ||||
Waist circumference (cm) | Prot | 74.4 ± 1.5 | 75.4 ± 1.2 | 0.630 | 0.534 | 0.358 |
Carb | 76.7 ± 1.6 | 76.6 ± 1.2 | ||||
Leg extension (kg) | Prot | 43.1 ± 2.0 | 48.2 ± 1.9 | <0.001 | 0.756 | 0.194 |
Carb | 47.7 ± 2.4 | 52.7 ± 2.6 | ||||
Leg curl (kg) | Prot | 39.2 ± 1.7 | 42.9 ± 1.7 | <0.001 | 0.839 | 0.456 |
Carb | 42.1 ± 2.3 | 45.8 ± 2.2 | ||||
Squat (kg) | Prot | 92.7 ± 3.8 | 99.5 ± 4.2 | <0.001 | 0.486 | 0.129 |
Carb | 86.6 ± 3.8 | 96.5 ± 3.2 | ||||
Bench press (kg) | Prot | 41.9 ± 2.8 | 44.1 ± 2.6 | <0.001 | 0.581 | 0.100 |
Carb | 37.1 ± 1.5 | 40.4 ± 1.6 |
3.2. Blood Sample Analysis
Group | Baseline | After 8 weeks | ANOVA | |||
---|---|---|---|---|---|---|
Time | T × G | Group | ||||
Blood glucose (mg/dL) | Prot (1) | 74.6 ± 0.9 | 84.9 ± 1.8 | <0.001 | 0.414 | 0.875 |
Carb (2) | 76.1 ± 0.9 | 84.1 ± 1.8 | ||||
Triglyceride (mg/dL) | Prot | 53.6 ± 6.1 | 67.0 ± 15.9 | 0.063 | 0.505 | 0.504 |
Carb | 55.6 ± 6.1 | 83.2 ± 15.9 | ||||
Albumin (g/dL) | Prot | 4.7 ± 0.0 | 4.6 ± 0.0 | 0.022 | 0.103 | 0.597 |
Carb | 4.7 ± 0.1 | 4.7 ± 0.1 | ||||
Creatine phosphokinase activity (IU/L) | Prot | 188 ± 20 | 153 ± 18 | 0.079 | 0.471 | 0.782 |
Carb | 194 ± 22 | 125 ± 14 | ||||
Aspartate aminotransferaseactivity (U/L) | Prot | 21.9 ± 1.5 | 21.5 ± 1.3 | 0.079 | 0.601 | 0.218 |
Carb | 20.2 ± 1.3 | 18.7 ± 1.0 | ||||
Alanine aminotransferaseactivity (U/L) | Prot | 17.0 ± 1.8 | 19.4 ± 2.4 | 0.940 | 0.109 | 0.006 |
Carb | 13.7 ± 1.2 | 12.2 ± 0.8 | ||||
Cortisol (μg/dL) | Prot | 15.7 ± 0.8 | 18.6 ± 0.8 | 0.006 | 0.167 | 0.638 |
Carb | 17.1 ± 0.8 | 18.1 ± 1.1 | ||||
Insulin (μU/mL) | Prot | 8.8 ± 0.2 | 8.5 ± 0.3 | 0.987 | 0.117 | 0.093 |
Carb | 9.5 ± 1.0 | 9.8 ± 0.6 | ||||
Growth Hormone (ng/mL) | Prot | 6.1 ± 1.1 | 1.9 ± 0.3 | 0.001 | 0.645 | 0.756 |
Carb | 5.2 ± 0.7 | 2.5 ± 0.7 | ||||
Myoglobin (mg/dL) | Prot | 56.8 ± 5.1 | 47.9 ± 4.1 | 0.001 | 0.565 | 0.726 |
Carb | 53.9 ± 3.5 | 43.5 ± 1.9 |
3.3. Serum AA Concentrations and Protein Metabolites
Group | Baseline | After 8 weeks | ANOVA | |||||
---|---|---|---|---|---|---|---|---|
Time | T × G | Group | ||||||
EAA | Valine (nmoles/mL) | Prot (1) | 201 ± 7 | 223 ± 7 | 0.004 | 0.976 | 0.914 | |
Carb (2) | 198 ± 8 | 222 ± 10 | ||||||
Leucine (nmoles/mL) | Prot | 113 ± 4 | 129 ± 4 | 0.004 | 0.893 | 0.903 | ||
Carb | 115 ± 6 | 130 ± 8 | ||||||
Isoleucine (nmoles/mL) | Prot | 60.4 ± 2.2 | 72.0 ± 2.8 | 0.002 | 0.516 | 0.874 | ||
Carb | 62.9 ± 3.0 | 71.6 ± 4.6 | ||||||
Threonine (nmoles/mL) | Prot | 120 ± 9 | 128 ± 6 | 0.305 | 0.411 | 0.948 | ||
Carb | 122 ± 5 | 122 ± 5 | ||||||
Methionine (nmoles/mL) | Prot | 33.2 ± 1.8 | 37.1 ± 1.3 | 0.357 | 0.220 | 0.472 | ||
Carb | 33.3 ± 1.3 | 33.9 ± 1.0 | ||||||
Phenylalanine (nmoles/mL) | Prot | 63.5 ± 2.0 | 70.2 ± 2.1 | 0.123 | 0.134 | 0.303 | ||
Carb | 63.6 ± 2.3 | 64.6 ± 2.1 | ||||||
Lysine (nmoles/mL) | Prot | 152 ± 6 | 171 ± 7 | 0.010 | 0.339 | 0.922 | ||
Carb | 155 ± 9 | 167 ± 7 | ||||||
Tryptophan (nmoles/mL) | Prot | 61.3 ± 2.5 | 63.8 ± 2.7 | 0.385 | 0.911 | 0.029 | ||
Carb | 56.3 ± 2.3 | 58.2 ± 2.1 | ||||||
Histidine (nmoles/mL) | Prot | 80.5 ± 2.0 | 84.3 ± 3.1 | 0.198 | 0.683 | 0.630 | ||
Carb | 77.9 ± 2.9 | 81.5 ± 3.0 | ||||||
NEAA | Glycine (nmoles/mL) | Prot | 236 ± 15 | 251 ± 12 | 0.235 | 0.421 | 0.841 | |
Carb | 235 ± 10 | 237 ± 11 | ||||||
Alanine (nmoles/mL) | Prot | 342 ± 26 | 392 ± 15 | 0.028 | 0.164 | 0.142 | ||
Carb | 387 ± 18 | 404 ± 16 | ||||||
Serine (nmoles/mL) | Prot | 114 ± 4 | 118 ± 4 | 0.419 | 0.055 | 0.398 | ||
Carb | 126 ± 6 | 116 ± 6 | ||||||
Cysteine (nmoles/mL) | Prot | 17.4 ± 0.9 | 18.4 ± 0.6 | 0.903 | 0.070 | 0.453 | ||
Carb | 18.6 ± 1.1 | 18.1 ± 1.0 | ||||||
Asparagine (nmoles/mL) | Prot | 44.7 ± 1.2 | 51.5 ± 1.4 | 0.003 | 0.054 | 0.849 | ||
Carb | 47.2 ± 2.3 | 49.3 ± 2.0 | ||||||
Glutamic acid (nmoles/mL) | Prot | 20.1 ± 1.1 | 26.9 ± 2.3 | <0.001 | 0.909 | 0.786 | ||
Carb | 21.3 ± 1.2 | 26.8 ± 2.9 | ||||||
Glutamine (nmoles/mL) | Prot | 543 ± 25 | 573 ± 15 | 0.521 | 0.073 | 0.884 | ||
Carb | 561 ± 14 | 549 ± 19 | ||||||
Arginine (nmoles/mL) | Prot | 88.0 ± 4.1 | 101.5 ± 4.9 | 0.098 | 0.084 | 0.489 | ||
Carb | 98.5 ± 4.1 | 98.2 ± 5.0 | ||||||
Tyrosine (nmoles/mL) | Prot | 62.2 ± 2.6 | 73.0 ± 3.1 | 0.004 | 0.063 | 0.487 | ||
Carb | 64.3 ± 1.9 | 66.8 ± 2.4 | ||||||
Proline (nmoles/mL) | Prot | 132 ± 11 | 153 ± 12 | 0.002 | 0.832 | 0.991 | ||
Carb | 135 ± 14 | 160 ± 18 | ||||||
Total AA (nmoles/mL) | Prot | 2638 ± 86 | 2905 ± 70 | 0.009 | 0.228 | 0.895 | ||
Carb | 2731 ± 86 | 2835 ± 70 | ||||||
Total EAA (nmoles/mL) | Prot | 827 ± 28 | 924 ± 28 | 0.004 | 0.593 | 0.627 | ||
Carb | 826 ± 28 | 895 ± 28 | ||||||
BCAA (nmoles/mL) | Prot | 375 ± 15 | 424 ± 17 | 0.002 | 0.955 | 0.876 | ||
Carb | 376 ± 15 | 428 ± 17 | ||||||
Trp/BCAA ratio (%) | Prot | 16.5 ± 0.7 | 15.2 ± 0.7 | 0.014 | 0.940 | 0.074 | ||
Carb | 15.1 ± 0.6 | 13.8 ± 0.5 | ||||||
AAA (nmoles/mL) | Prot | 185 ± 13 | 207 ± 6 | 0.041 | 0.121 | 0.100 | ||
Carb | 127 ± 5 | 136 ± 5 |
4. Discussion
5. Conclusions
Acknowledgments
Conflict of Interest
References
- Rodriguez, N.R.; DiMarco, N.M.; Langley, S. Position of the American Dietetic Association, Dietitians of Canada, and the American College of Sports Medicine: Nutrition and athletic performance. J. Am. Diet. Assoc. 2009, 109, 509–527. [Google Scholar] [CrossRef]
- Bianco, A.; Mammina, C.; Paoli, A.; Bellafiore, M.; Battaglia, G.; Caramazza, G.; Palma, A.; Jemni, M. Protein supplementation in strength and conditioning adepts: Knowledge, dietary behavior and practice in Palermo, Italy. J. Int. Soc. Sports Nutr. 2011, 8, 25. [Google Scholar] [CrossRef]
- Bohe, J.; Low, J.F.; Wolfe, R.R.; Rennie, M.J. Latency and duration of stimulation of human muscle protein synthesis during continuous infusion of amino acids. J. Physiol. 2001, 532, 575–579. [Google Scholar] [CrossRef]
- Bohe, J.; Low, A.; Wolfe, R.R.; Rennie, M.J. Human muscle protein synthesis is modulated by extracellular, not intramuscular amino acid availability: A dose-response study. J. Physiol. 2003, 552, 315–324. [Google Scholar] [CrossRef]
- Borsheim, E.; Tipton, K.D.; Wolf, S.E.; Wolfe, R.R. Essential amino acid and muscle protein recovery from resistance exercise. Am. J. Physiol. Endocrinol. Metab. 2002, 283, E648–E657. [Google Scholar]
- Josse, A.R.; Tang, J.E.; Tarnopolsky, M.A.; Phillips, S.M. Bodycomposition and strength changes in women with milk and resistance exercise. Med. Sci. Sports Exerc. 2010, 42, 1122–1130. [Google Scholar]
- Hulmi, J.J.; Lockwood, C.M.; Stout, J.R. Effect of protein/essential amino acids and resistance training on skeletal muscle hypertrophy: A case for whey protein. Nutr. Metab. 2010, 7, 51. [Google Scholar] [CrossRef]
- Burk, A.; Timpmann, S.; Medijainen, L.; Vähi, M.; Oöpik, V. Time-divided ingestion pattern of casein-based protein supplement stimulatesan increase in fat-free bodymass during resistance training in young untrained men. Nutr. Res. 2009, 29, 405–413. [Google Scholar] [CrossRef]
- Hartman, J.W.; Tang, J.E.; Wilkinson, S.B.; Tarnopolsky, M.A.; Lawrence, R.L.; Fullerton, A.V.; Phillips, S.M. Consumption of fat-free fluid milk after resistance exercise promotes greater lean mass accretion than does consumption of soy or carbohydrate in young, novice, male weightlifter. Am. J. Clin. Nutr. 2007, 86, 373–381. [Google Scholar]
- Willoughby, D.S.; Stout, J.R.; Wilborn, C.D. Effects of resistance training and protein plus amino acid supplementation on muscle anabolism, mass, and strength. Amino Acids 2007, 32, 467–477. [Google Scholar] [CrossRef]
- Harper, A.E. Methods for assessing amino acid requirements and the effectiveness of alpha-keto acid analogs as substitutes for amino acids. Am. J. Clin. Nutr. 1978, 31, 1678–1687. [Google Scholar]
- Glynn, E.L.; Fry, C.S.; Drummond, M.J.; Timmerman, K.L.; Dhanani, S.; Volpi, E.; Rasmussen, B.B. Excess leucine intake enhances muscle anabolic signaling but not net protein anabolism in young men and women. J. Nutr. 2010, 140, 1970–1976. [Google Scholar] [CrossRef]
- Mayhew, J.L.; Prinster, J.L.; Ware, J.S.; Zimmer, D.L.; Arabas, J.R.; Bemben, M.G. Muscular endurance repetitions to predict bench press strength in men of different training levels. J. Sports Med. Phys. Fit. 1995, 35, 108–113. [Google Scholar]
- Hoffman, J.R. Norms for Fitness, Performance and Health; Human Kinetics: Champaign, IL, USA, 2006. [Google Scholar]
- Ministry of Education, Culture, Sports and Technology, Standard Tables of Food Composition in Japan, 5th edNational Printing Bureau: Tokyo, Japan, 2005.
- Ministry of Health, Labour and Welfare, Dietary Reference Intakes for Japanese, 2010; Daiichi-Shuppan Co., Ltd.: Tokyo, Japan, 2009.
- Ainsworth, B.E.; Haskell, W.L.; Whitt, M.C.; Irwin, M.L.; Swartz, A.M.; Strath, S.J.; O’Brien, W.L.; Bassett, D.R., Jr.; Schmitz, K.H.; Emplaincourt, P.O.; et al. Compendium of physical activities: An update of activity codes and MET intensities. Med. Sci. Sports Exerc. 2000, 32, S498–S516. [Google Scholar] [CrossRef]
- Cooke, M.B.; Rybalka, E.; Stathis, C.G.; Cribb, P.J.; Hayes, A. Whey protein isolate attenuates strength decline after eccentrically-induced muscle damage in healthy individuals. J. Int. Soc. Sports Nutr. 2010, 7, 30. [Google Scholar] [CrossRef] [Green Version]
- Fujita, S.; Dreyer, H.C.; Drummond, M.J.; Glynn, E.L.; Volpi, E.; Rasmussen, B.B. Essential amino acid and carbohydrate ingestion before resistance exercise does not enhance postexercise muscle protein synthesis. J. Appl. Physiol. 2009, 106, 1730–1739. [Google Scholar] [CrossRef]
- Kerksick, C.M.; Rasmussen, C.J.; Lancaster, S.L.; Magu, B.; Smith, P.; Melton, C.; Greenwood, M.; Almada, A.L.; Earnest, C.P.; Kreider, R.B. The effects of protein and amino acid supplementation on performance and training adaptations during ten weeks of resistance training. J. Strength Cond. Res. 2006, 20, 643–653. [Google Scholar]
- Hoffman, J.R.; Ratamess, N.A.; Tranchina, C.P.; Rashti, S.L.; Kang, J.; Faigenbaum, A.D. Effect of protein-supplement timing on strength, power, and body-composition changes in resistance-trained men. Int. J. Sport Nutr. Exerc. Metab. 2009, 19, 172–185. [Google Scholar]
- Moore, D.R.; del Bel, N.C.; Nizi, K.I.; Hartman, J.W.; Tang, J.E.; Armstrong, D.; Phillips, S.M. Resistance training reduces fasted-and fed-state leucine turnover and increases dietary nitrogen retention in previously untrained young men. J. Nutr. 2007, 137, 985–991. [Google Scholar]
- Schmitz, S.M.; Hofheins, J.E.; Lemieux, R. Nine weeks of supplementation with a multi-nutrient product augments gais in lean mass, strength, and muscular performance in resistance trained men. J. Int. Soc. Sports Nutr. 2010, 70, 40. [Google Scholar]
- Lacroix, M.; Bos, C.; Léonil, J.; Airinei, G.; Luengo, C.; Daré, S.; Benamouzig, R.; Fouillet, H.; Fauquant, J.; Tomé, D.; et al. Compared with casein or total milk protein, digestion of milk soluble proteins is too rapid to sustain the anabolic postprandial amino acid requirement. Am. J. Clin. Nutr. 2006, 84, 1070–1079. [Google Scholar]
- Kesteloot, H.E.; Joossens, J.V. Relationship between dietary protein intake and serum urea, uric acid and creatinine, and 24-hour urinary creatinine excretion: The BIRNH Study. J. Am. Coll. Nutr. 1993, 12, 42–46. [Google Scholar]
- Walrand, S.; Chambon-Savanovitch, C.; Felgines, C.; Chassagne, J.; Raul, F.; Normand, B.; Farges, M.C.; Beaufrère, B.; Vasson, M.P.; Cynober, L. Aging: A barrier to renutrition? Nutritional and immunologic evidence in rats. Am. J. Clin. Nutr. 2000, 72, 816–824. [Google Scholar]
- Moinard, C.; Cynober, L. Citrulline: A new player in the control of nitrogen homeostasis. J. Nutr. 2007, 137, S1621–S1625. [Google Scholar]
- Roy, B.D.; Tarnopolsky, M.A.; MacDougall, J.D.; Fowles, J.; Yarasheski, K.E. Effect of glucose supplement timing on protein metabolism after resistance training. J. Appl. Physiol. 1997, 82, 1882–1888. [Google Scholar] [CrossRef]
- Cuisinier, C.; Ward, R.J.; Francaux, M.; Sturbois, X.; de Witte, P. Changes in plasma and urinarytaurineand amino acids in runners immediately and 24 h after a marathon. Amino Acids 2001, 20, 13–23. [Google Scholar] [CrossRef]
- Van Hamont, D.; Harvey, C.R.; Massicotte, D.; Frew, R.; Peronnet, F.; Rehrer, N.J. Reduction in muscle glycogen and protein utilization with glucose feeding during exercise. Int. J. Sport Nutr. Exerc. Metab. 2005, 15, 350–365. [Google Scholar]
- Kim, H.J.; Lee, Y.H.; Kim, C.K. Changes in serum cartilage oligomeric matrix protein (COMP), plasma CPK and plasma hs-CRP in relation to running distance in a marathon (42.195 km) and an ultra-marathon (200 km) race. Eur. J. Appl. Physiol. 2009, 105, 765–770. [Google Scholar] [CrossRef]
© 2012 by the authors; licensee MDPI, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Hida, A.; Hasegawa, Y.; Mekata, Y.; Usuda, M.; Masuda, Y.; Kawano, H.; Kawano, Y. Effects of Egg White Protein Supplementation on Muscle Strength and Serum Free Amino Acid Concentrations. Nutrients 2012, 4, 1504-1517. https://doi.org/10.3390/nu4101504
Hida A, Hasegawa Y, Mekata Y, Usuda M, Masuda Y, Kawano H, Kawano Y. Effects of Egg White Protein Supplementation on Muscle Strength and Serum Free Amino Acid Concentrations. Nutrients. 2012; 4(10):1504-1517. https://doi.org/10.3390/nu4101504
Chicago/Turabian StyleHida, Azumi, Yuko Hasegawa, Yuko Mekata, Mika Usuda, Yasunobu Masuda, Hitoshi Kawano, and Yukari Kawano. 2012. "Effects of Egg White Protein Supplementation on Muscle Strength and Serum Free Amino Acid Concentrations" Nutrients 4, no. 10: 1504-1517. https://doi.org/10.3390/nu4101504