Astragalus Membranaceus—Can It Delay Cellular Aging?
Abstract
:1. Introduction
2. Active Ingredients and Their Brief Characteristics
2.1. Flavonoids
2.2. Triterpenoid Saponins
2.3. Polysaccharides
2.4. Other Chemical Compounds
2.5. Selected Physicochemical Properties of Bioactive Compounds in Astragalus membranaceus
3. Aging of the Skin
3.1. Telomere Shortening
3.2. Photoaging
3.3. Oxidative Stress
3.4. Inflammatory Conditions
3.5. DNA Damage
3.6. Impact of microRNAs
3.7. Accumulation of Glycation Products
3.8. Muscle Work and Aging
3.9. Osteopenia and Osteoporosis
3.10. Hormonal Changes
3.11. Environmental Impact
4. The Use of Astragalus membranaceus in Cosmetology and Anti-Aging Medicine
5. The General Mechanism of Action of Astragalus membranaceus in the Context of Anti-Aging
6. Action of Astragalus membranaceus Active Substances
6.1. Triterpenoid Saponins
6.1.1. Astragaloside IV
6.1.2. Cycloastragenol
6.2. Polysaccharides
6.3. Flavonoids
6.3.1. Formononetin
6.3.2. Calycosin
6.4. Other Compounds
7. Effects of Astragalus membranaceus and Its Active Substances on Other Organs and Systems
7.1. Effects on the Cardiovascular System
7.2. Effects on the Nervous System
7.3. Effects on the Respiratory System
7.4. Effects on the Liver and Kidneys
7.5. Effects on Physical Activity
7.6. Effects on Menopause and Fertility
8. Adverse Effects and Safety Considerations of Astragalus membranaceus
9. Translational Relevance of Astragalus membranaceus in Cellular Senescence
9.1. Variations in Study Results and Inconsistencies
- Extract composition and standardization—Many studies use different extraction methods, leading to variability in the concentration of bioactive compounds. For instance, some studies focus on polysaccharides, while others emphasize saponins like astragaloside IV or flavonoids such as calycosin [78].
- Study models and experimental conditions—While some in vitro studies report significant telomerase activation, others show only moderate effects depending on the type of cell line used. Similarly, in vivo studies demonstrate age-related benefits primarily in metabolic and immune function rather than direct telomere elongation [77].
- Interindividual variability—Human studies report differing responses based on genetic and lifestyle factors. Some trials show enhanced immune function, while others find minimal effects on inflammatory markers [79].
9.2. Limitations of Preclinical Models and Clinical Evidence
9.3. Knowledge Gaps and Future Directions
- Longitudinal studies on aging biomarkers—Most human studies focus on short-term effects. There is a need for long-term trials assessing parameters such as telomere dynamics, DNA methylation age, and senescence-associated secretory phenotype (SASP).
- Mechanistic understanding in humans—While in vitro and animal models suggest that astragaloside IV and cycloastragenol modulate telomerase, the extent of this effect in human subjects remains uncertain [82].
- Optimized dosage and bioavailability—Astragaloside IV and cycloastragenol exhibit low oral bioavailability. Future research should explore advanced delivery systems, such as liposomal formulations or nanoparticles, to enhance absorption and efficacy [79].
- Comparative effectiveness studies—More studies are needed comparing Astragalus supplementation with other anti-aging interventions, such as senolytics or caloric restriction mimetics, to determine its relative efficacy in delaying senescence.
9.4. Bridging the Gap Between Preclinical and Clinical Research
- Standardized extracts and dosing: Variability in Astragalus extract composition affects bioavailability and efficacy. Studies using standardized formulations with defined astragaloside IV and cycloastragenol concentrations are essential.
- Validated aging biomarkers: Current research relies on indirect markers such as oxidative stress and inflammation. Clinical trials should incorporate validated aging biomarkers, such as telomere length, DNA methylation age, and SASP components, to assess the true impact of Astragalus on aging.
- Longitudinal human studies: Most clinical data are derived from short-term interventions. Long-term studies evaluating functional aging parameters (e.g., cognitive function, skin elasticity, and metabolic health) are needed. A brief description of currently available clinical trials is included in Table 3.
- Interindividual variability: Genetic and epigenetic differences may influence individual responses to Astragalus. Future studies should explore the role of genetic polymorphisms in modulating its effects on aging pathways.
10. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Liu, P.; Zhao, H.; Luo, Y. Anti-Aging Implications of Astragalus membranaceus (Huangqi): A Well-Known Chinese Tonic. Aging Dis. 2017, 8, 868–886. [Google Scholar] [CrossRef] [PubMed]
- Alt, C.; Tsapekos, M.; Perez, D.; Klode, J.; Stoffels, I. An Open-Label Clinical Trial Analyzing the Efficacy of a Novel Telomere-Protecting Antiaging Face Cream. Cosmetic 2022, 9, 95. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, Z.; Zhang, J. Dietary Chinese Herbs, 1st ed.; Springer Publishing: Vienna, Austria, 2015; pp. 89–98. [Google Scholar]
- Fu, J.; Wang, Z.; Huang, L.; Zheng, S.; Wang, D.; Chen, S.; Zhang, H.; Yang, S. Review of the botanical characteristics, phytochemistry, and pharmacology of Astragalus membranaceus (Huangqi). Phytother. Res. 2014, 28, 1275–1283. [Google Scholar] [CrossRef]
- Liang, Y.; Chen, B.; Liang, D.; Quan, X.; Gu, R.; Meng, Z.; Gan, H.; Wu, Z.; Sun, Y.; Liu, S.; et al. Pharmacological Effects of Astragaloside IV: A Review. Molecules 2023, 28, 6118. [Google Scholar] [CrossRef]
- Zheng, Y.; Ren, W.; Zhang, L.; Zhang, Y.; Liu, D.; Liu, Y. A Review of the Pharmacological Action of Astragalus polysaccharide. Front. Pharmacol. 2020, 11, 349. [Google Scholar] [CrossRef]
- Ungurianu, A.; Zanfirescu, A.; Margină, D. Exploring the therapeutic potential of quercetin: A focus on its sirtuin-mediated benefits. Phytother. Res. 2024, 38, 2361–2387. [Google Scholar] [CrossRef]
- Yao, Y.-X.; Yu, Y.-J.; Dai, S.; Zhang, C.-Y.; Xue, X.-Y.; Zhou, M.-L.; Yao, C.-H.; Li, Y.-X. Kaempferol efficacy in metabolic diseases: Molecular mechanisms of action in diabetes mellitus, obesity, non-alcoholic fatty liver disease, steatohepatitis, and atherosclerosis. Biomed. Pharmacother. 2024, 175, 116694. [Google Scholar] [CrossRef]
- Alagawany, M.; Ashour, E.A.; El-Fakhrany, H.H.H.; Ismail, T.A.; Nasr, M. Early nutrition programming with Astragalus membranaceus polysaccharide: Its effect on growth, carcasses, immunity, antioxidants, lipid profile and liver and kidney functions in broiler chickens. Anim. Biotechn. 2022, 33, 362–368. [Google Scholar] [CrossRef]
- Wang, Y.; Ding, M.; Chi, J.; Wang, T.; Zhang, Y.; Li, Z.; Li, Q. Based on network pharmacology and bioinformatics to analyze the mechanism of action of Astragalus membranaceus in the treatment of vitiligo and COVID. Sci. Rep. 2023, 13, 3884. [Google Scholar]
- Zheng, Q.; Zhuang, Z.; Wang, Z.-H.; Deng, L.-H.; Jin, W.-J.; Zheng, G.-Q.; Wang, Y. Clinical and Preclinical Systematic Review of Astragalus membranaceus for Viral Myocarditis. Oxidative Med. Cell. Longev. 2020, 6, 1560353. [Google Scholar] [CrossRef]
- Bustos, S.S.; Vyas, K.; Huang, T.C.T.; Suchyta, M.; LeBrasseur, N.; Cotofana, S.; Wyles, S.P.; Mardini, S. Pharmacologic and Other Noninvasive Treatments of the Aging Face: A Review of the Current Evidence. Plast. Reconstr. Surg. 2024, 154, 829e–842e. [Google Scholar] [PubMed]
- Zhang, S.; Duan, E. Fighting against Skin Aging: The Way from Bench to Bedside. Cell Transplant. 2018, 27, 729–738. [Google Scholar]
- Cao, C.; Xiao, Z.; Wu, Y.; Ge, C. Diet and Skin Aging-From the Perspective of Food Nutrition. Nutrients 2020, 12, 870. [Google Scholar] [CrossRef]
- Chen, B.; Li, R.; Yan, N.; Chen, G.; Qian, W.; Jiang, H.L.; Ji, C.; Bi, Z.-G. Astragaloside IV controls collagen reduction in photoaging skin by improving transforming growth factor-β/Smad signaling suppression and inhibiting matrix metalloproteinase-1. Mol. Med. Rep. 2015, 11, 3344–3348. [Google Scholar]
- Hong, J.Y.; Han, H.S.; Youn, J.H.; Kim, H.W.; Ryu, H.S.; Park, K.Y. Irradiation with 590-nm yellow light-emitting diode light attenuates oxidative stress and modulates UVB-induced change of dermal fibroblasts. Exp. Dermatol. 2022, 31, 931–935. [Google Scholar]
- Zheng, J.; Yang, B.; Liu, S.; Xu, Z.; Ding, Z.; Mo, M. Applications of Exosomal miRNAs from Mesenchymal Stem Cells as Skin Boosters. Biomolecules 2024, 14, 459. [Google Scholar] [CrossRef]
- Chai, Y.; Pu, X.; Wu, Y.; Tian, X.; Li, Q.; Zeng, F.; Wang, J.; Gao, J.; Gong, H.; Chen, Y. Inhibitory effect of Astragalus membranaceus on osteoporosis in SAMP6 mice by regulating vitamin D/FGF23/Klotho signaling pathway. Bioengineered 2021, 12, 4464–4474. [Google Scholar] [CrossRef]
- Li, Q.; Wang, D.; Bai, D.; Cai, C.; Li, J.; Yan, C.; Zhang, S.; Wu, Z.; Hao, J.; Yu, G. Photoprotective effect of Astragalus membranaceus polysaccharide on UVA-induced damage in HaCaTcells. PLoS ONE 2020, 15, e0235515. [Google Scholar]
- Awdhesh Kumar, M.R.; Vijay, T.R.; Smruti, M.; Srinivasan, R.; Sivakumar, T.; Sundar, R.; Suresh, K. Analyzing the Active Constituents of Astragalus: A Salient Element in Human Health. Curr. Trends Biotechn. Pharm. 2023, 17, 1327–1339. [Google Scholar]
- Yun, C.; Kim, H. Using Astragalus membranaceus (Fisch.) Bge. To Treat Skin Diseases: Comparison of Traditional Uses and Research Results. Phcog. Rev. 2018, 12, 225–229. [Google Scholar]
- Jung, T.K.; Kim, M.J.; Lim, K.R.; Yoon, K.-S. Moisturizing and Anti-oxidation Effect of Astragalus membranaceus Root Extract. J. Soc. Cosm. Sci. Korea 2006, 32, 193–200. [Google Scholar]
- Ding, X.; Ma, X.; Meng, P.; Yue, J.; Li, L.; Xu, L. Potential Effects of Traditional Chinese Medicine in Anti-Aging and Aging-Related Diseases: Current Evidence and Perspectives. Clin. Interv. Aging 2024, 19, 681–693. [Google Scholar] [CrossRef] [PubMed]
- Gong, A.G.W.; Duan, R.; Wang, H.Y.; Kong, X.P.; Dong, T.T.X.; Tsim, K.W.K.; Chan, K. Evaluation of the Pharmaceutical Properties and Value of Astragali Radix. Medicines 2018, 5, 46. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.H.; Kim, M.H.; Yang, G.; Huh, Y.; Kim, S.-H.; Yang, W.M. Effects of topic application of Astragalus membranaceus on allergic dermatitis. Immunopharmacol. Immunotoxicol. 2012, 35, 151–156. [Google Scholar] [CrossRef]
- Berezutsky, M.A.; Durnova, N.A.; Vlasova, I.A. Experimental and Clinical Studies of Mechanisms of the Antiaging Effects of Chemical Compounds in Astragalus membranaceus (Review). Adv. Gerontol. 2020, 10, 142–149. [Google Scholar] [CrossRef]
- Shin, B.-H.; Lee, J.-N. A Study on the Effects of Hair Nutrient Containing Saponin Astragaloside from Astragalus membranaceus Bunge on Eyebrows growth and development. J. Korea Acad. Ind. Coop. Soc. 2017, 18, 227–236. [Google Scholar]
- Boo, Y.C. Insights into How Plant-Derived Extracts and Compounds Can Help in the Prevention and Treatment of Keloid Disease: Established and Emerging Therapeutic Targets. Int. J. Mol. Sci. 2024, 25, 1235. [Google Scholar] [CrossRef]
- Ok, S.-C. Insights into the Anti-Aging Prevention and Diagnostic Medicine and Healthcare. Diagnostics 2022, 12, 819. [Google Scholar] [CrossRef]
- Hong, H.; Xiao, J.; Guo, Q.; Du, J.; Jiang, Z.; Lu, S.; Zhang, H.; Zhang, X.; Wang, X. Cycloastragenol and Astragaloside IV activate telomerase and protect nucleus pulposus cells against high glucose-induced senescence and apoptosis. Exp. Ther. Med. 2021, 22, 1326. [Google Scholar] [CrossRef]
- Tsoukalas, D.; Fragkiadaki, P.; Docea, A.O.; Alegakis, A.K.; Sarandi, E.; Thanasoula, M.; Spandidos, D.A.; Tsatsakis, A.; Razgonova, M.P.; Calina, D. Discovery of potent telomerase activators: Unfolding new therapeutic and anti-aging perspectives. Mol. Med. Rep. 2019, 20, 3701–3708. [Google Scholar]
- Zhang, X.; Qu, X.; Zou, Y. The Effect of Astragalus on Humoral and Cellular Immune Response: A Systematic Review and Meta-Analysis of Human Studies. Complement. Med. Res. 2023, 30, 535–543. [Google Scholar] [CrossRef]
- Guo, J.; Zhao, N.; Jin, P.; Yin, Y. Effect of Astragalus injection on inflammatory mediators in patients with viral myocarditis: A systematic review and meta-analysis. Phytomedicine 2022, 107, 154436. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Yang, L.; Du, Y.; Meng, X.; Shi, Y.; Zeng, J. Astragalus polysaccharide promotes osteogenic differentiation of human bone marrow derived mesenchymal stem cells by facilitating ANKFY1 expression through miR-760 inhibition. Bone Joint Res. 2023, 12, 476–485. [Google Scholar] [CrossRef]
- Qin, L.; Tan, H.-L.; Wang, Y.-G.; Xu, C.-Y.; Feng, J.; Li, M.; Dou, Y.-Q. Astragalus membranaceus and Salvia miltiorrhiza Ameliorate Lipopolysaccharide-Induced Acute Lung Injury in Rats by Regulating the Toll-Like Receptor 4/Nuclear Factor-Kappa B Signaling Pathway. J. Evid. Based Complement. Altern. Med. 2018, 11, 3017571. [Google Scholar] [CrossRef] [PubMed]
- Lia, L.; Houb, X.; Xub, R.; Liu, C.; Tu, M. Research review on the pharmacological effects of astragaloside IV. Fund. Clin. Pharmacol. 2017, 31, 17–36. [Google Scholar] [CrossRef] [PubMed]
- Cho, W.C.S.; Leung, K.N. In vitro and in vivo anti-tumor effects of Astragalus membranaceus. Cancer Lett. 2007, 252, 43–54. [Google Scholar] [CrossRef]
- Duan, Y.; Pei, K.; Liu, X.; Zhang, X.; Song, P.; Tu, S.; Zhu, H.; Cai, H.J. A comprehensive pharmacokinetic strategy for systematic evaluation of whole interaction of different constituents in Astragali Radix -Fructus Corni to improve diabetic kidney disease. J. Ethnopharmacol. 2024, 339, 119159. [Google Scholar] [CrossRef]
- Li, H.; Nie, D.; Wang, C.; Fang, J.; Li, D. Anti-osteoporosis activity of Astragalus membranaceus Bunge extract in experimental rats. Trop. J. Pharm. Res. 2016, 15, 1897–1901. [Google Scholar] [CrossRef]
- Wang, H.; Sun, X.; Bi, L.; Wang, Z.; Zhang, R. Effect of astragalus polysaccharides on orthodontic bone remodeling. Chin. J. Tissue Eng. Res. 2023, 27, 5214–5218. [Google Scholar]
- Sun, Q.; Hu, M.; Yuan, C.; Ren, B.; Zhong, M.; Zhou, S.; Wang, X.; Gao, Q.; Zeng, M.; Cai, X.; et al. Astragaloside IV ameliorates indomethacin-induced intestinal inflammation in rats through inhibiting the activation of NLRP3 inflammasome. Intern. Immunopharmacol. 2024, 135, 112281. [Google Scholar]
- Ren, S.; Zhang, H.; Mu, Y.; Sun, M.; Liu, P. Pharmacological effects of Astragaloside IV: A literature review. J. Trad. Chin. Med. 2013, 15, 413–416. [Google Scholar] [CrossRef]
- He, X.; Shu, J.; Xu, L.; Lu, C.; Lu, A. Inhibitory Effect of Astragalus Polysaccharides on Lipopolysaccharide-Induced TNF-α and IL-1β Production in THP-1 Cells. Molecules 2012, 17, 3155–3164. [Google Scholar] [CrossRef]
- Kim, M.H.; Kim, S.-H.; Yang, W.M. Beneficial Effects of Astragaloside IV for Hair Loss via Inhibition of Fas/Fas L-Mediated Apoptotic Signaling. PLoS ONE 2014, 9, e92984. [Google Scholar] [CrossRef]
- Motomura, K.; Fujiwara, Y.; Kiyota, N.; Tsurushima, K.; Takeya, M.; Nohara, T.; Nagai, R.; Ikeda, T. Astragalosides Isolated from the Root of Astragalus Radix Inhibit the Formation of Advanced Glycation End Products. J. Agric. Food Chem. 2009, 57, 7666–7672. [Google Scholar] [CrossRef]
- He, M.; Wang, K.; Che, H.; Wang, H.; Yang, K.; Zhang, G.; Yao, J.; Wang, J. A comprehensive review of cycloastragenol: Biological activity, mechanism of action and structural modifications. Eur. J. Med. Chem. Rep. 2022, 5, 100060. [Google Scholar] [CrossRef]
- Yu, Y.; Zhou, L.; Yang, Y.; Yuyu Liu, Y. Cycloastragenol: An exciting novel candidate for age-associated diseases (Review). Exp. Ther. Med. 2018, 16, 2175–2182. [Google Scholar] [CrossRef]
- de Jesus, B.; Schneeberger, K.; Vera, E.; Tejera, A.; Harley, C.B.; Blasco, M.A. The telomerase activator TA-65 elongates short telomeres and increases health span of adult/old mice without increasing cancer incidence. Aging Cell. 2011, 10, 604–621. [Google Scholar] [CrossRef]
- Jiang, J.B.; Qiu, J.D.; Yang, L.H.; He, J.P.; Smith, G.W.; Li, H.Q. Therapeutic effects of astragalus polysaccharides on inflammation and synovial apoptosis in rats with adjuvant-induced arthritis. Int. J. Rheum. Dis. 2010, 13, 396–405. [Google Scholar] [CrossRef]
- Samuel, A.O.; Huang, B.T.; Chen, Y.; Guo, F.X.; Yang, D.D.; Jin, J.Q. Antioxidant and antibacterial insights into the leaves, leaf tea and medicinal roots from Astragalus membranaceus (Fisch.) Bge. Sci. Rep. 2021, 11, 19625. [Google Scholar]
- Guo, L.; Sun, Y.; Ping, X.; Liu, J.; Wang, X.; Qin, N. Chemical composition and antibacterial activity of ethylacetate extract of Astragalus membranaceus aerial parts. J. Food Saf. 2021, 42, e12947. [Google Scholar] [CrossRef]
- Yan, X.; Miao, J.; Zhang, B.; Liu, H.; Ma, H.; Sun, Y.; Liu, P.; Zhang, X.; Wang, R.; Kan, J.; et al. Study on semi-bionic extraction of Astragalus polysaccharide and its anti-aging activity in vivo. Front. Nutr. 2023, 10, 1201919. [Google Scholar] [CrossRef]
- Huang, Y.; Chu, C.; Mai, Y.; Zhao, Y.; Cao, L.; Ji, S.; Zhu, B.; Shen, Q. Treatment of peritoneal fibrosis: Therapeutic prospects of bioactive Agents from Astragalus membranaceus. Front. Pharmacol. 2024, 15, 1347234. [Google Scholar] [CrossRef]
- Du, Y.; Wan, H.; Huang, P.; Yang, J.; He, Y. A critical review of Astragalus polysaccharides: From therapeutic mechanisms to pharmaceutics. Biomed. Pharmacother. 2022, 147, 112654. [Google Scholar] [CrossRef]
- Zhao, B.; Zhang, X.; Han, W.; Cheng, J.; Qin, Y. Wound healing effect of an Astragalus membranaceus polysaccharide and its mechanism. Mol. Med. Rep. 2017, 15, 4077–4083. [Google Scholar] [CrossRef]
- Khan, H.M.; Raza, S.M.; Anjum, A.A.; Ali, M.A. Antiviral, embryo toxic and cytotoxic activities of Astragalus membranaceus root extracts. Pak. J. Pharm. Sci. 2019, 32, 137–142. [Google Scholar]
- Tian, J.; Wang, X.-Q.; Tian, Z. Focusing on Formononetin: Recent Perspectives for its Neuroprotective Potentials. Front. Pharmacol. 2022, 13, 905898. [Google Scholar] [CrossRef] [PubMed]
- Gorai, D.; Jash, S.K.; Roy, R. Flavonoids from astragalus genus. Int. J. Pharm. Sci. Res. 2016, 7, 2732–2747. [Google Scholar]
- Zhou, X.; Xin, Q.; Wang, Y.; Zhao, Y.; Chai, H.; Huang, X.; Tao, X.; Zhao, M. Total Flavonoids of Astragalus Plays a Cardioprotective Role in Viral Myocarditis. Acta Cardiol. Sin. 2016, 32, 81–88. [Google Scholar]
- Dutra, J.M.; Espitia, P.J.P.; Rejane Andrade Batista, R.A. Formononetin: Biological effects and uses—A review. Food Chem. 2021, 359, 129975. [Google Scholar] [CrossRef]
- Ong, S.K.L.; Shanmugam, M.K.; Fan, L.; Fraser, S.E.; Arfuso, F.; Ahn, K.S.; Sethi, G.; Bishayee, A. Focus on Formononetin: Anticancer Potential and Molecular Targets. Cancers 2019, 11, 611. [Google Scholar] [CrossRef]
- Gong, G.; Zheng, Y.; Yang, Y.; Sui, Y.; Wen, Z. Pharmaceutical Values of Calycosin: One Type of Flavonoid Isolated from Astragalus. Evid. Based Complement Alternat. Med. 2021, 2021, 9952578. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.H.; Kim, M.R.; Lee, E.S.; Lee, C.H. Inhibitory Effects of Calycosin Isolated from the Root of Astragalus membranaceus on Melanin Biosynthesis. Biol. Pharm. Bull. 2009, 32, 264–268. [Google Scholar] [CrossRef]
- Wang, P.; Zhang, Z.; Ma, X.; Huang, Y.; Liu, X.; Tu, P.; Tong, T. HDTIC-1 and HDTIC-2, two compound extracted from Astragali Radix, delay replicative senescence of human diploid fibroblasts. Mech. Ageing Dev. 2003, 124, 1025–1034. [Google Scholar] [CrossRef]
- Tan, Y.-Q.; Chen, H.-W.; Li, J. Astragaloside IV: An Effective Drug for the Treatment of Cardiovascular Diseases. Drug Des. Devel. Ther. 2020, 14, 3731–3746. [Google Scholar] [CrossRef]
- Chiu, B.-Y.; Chang, C.-P.; Lin, J.-W.; Yu, J.-S.; Liu, W.-P.; Hsu, Y.-C.; Lin, M.-T. Beneficial Effect of Astragalosides on Stroke Condition Using PC12 Cells under Oxygen Glucose Deprivation and Reperfusion. Cell. Mol. Neurobiol. 2014, 34, 825–837. [Google Scholar] [CrossRef]
- Metri, K. Astragalus (Astragalus membranaceus and Astragalus mongholicus): A Review of Clinical Therapeutics by the American Herbal Pharmacopeia. Altern. Complement. Ther. 2017, 23, 98–99. [Google Scholar]
- Zhao, L.; Sun, Y.; Yu, C.; Chen, J.; Xu, X.; Zhang, X.; Wang, H.; Zhang, J.; Wang, H.J.; Yao, B.; et al. Astragaloside protects rat brain from microwave-induced functional injuries via restoring acetylcholine and normalizing electroencephalogram. Environ. Sci. Poll. 2020, 27, 40787–40794. [Google Scholar] [CrossRef]
- Jiang, H.; Zhou, R.; An, L.; Guo, J.; Hou, X.; Tang, J.; Wang, F.; Du, Q. Exploring the role and mechanism of Astragalus membranaceus and radix paeoniae rubra in idiopathic pulmonary fibrosis through network pharmacology and experimental validation. Sci. Rep. 2023, 13, 10110. [Google Scholar] [CrossRef] [PubMed]
- D’Avino, D.; Cerqua, I.; Ullah, H.; Spinelli, M.; Di Matteo, R.; Granato, E.; Capasso, R.; Maruccio, L.; Ialenti, A.; Daglia, M.; et al. Beneficial Effects of Astragalus membranaceus (Fisch.) Bunge Extract in Controlling Inflammatory Response and Preventing Asthma Features. Int. J. Mol. Sci. 2023, 24, 10954. [Google Scholar] [CrossRef]
- Su, G.; Chen, X.; Liu, Z.; Yang, L.; Zhang, L.; Stålsby Lundborg, C.; Wen, Z.; Guo, X.; Qin, X.; Liang, J.; et al. Oral Astragalus (Huang qi) for preventing frequent episodes of acute respiratory tract infection in children. Cochrane Database Syst. Rev. 2016, 12, 1–30. [Google Scholar] [CrossRef]
- Antonelli, M.; Donelli, D. Astragalus membranaceus (Huangqi) Supplementation in Sports Training: A Systematic Review. Encyclopedia 2024, 4, 158–170. [Google Scholar] [CrossRef]
- Kobayashi, K.; Sasaki, K. Astragalus root increases Treg and Th17 involvement in embryo implantation and pregnancy maintenance by decreasing CTLA-4+Tregs. Drug Discov. Ther. 2024, 18, 24–33. [Google Scholar] [CrossRef]
- Park, J.-S.; Sung, H.K.; Kim, S.-K.; Lee, H.S.; Shin, S.M. Efficacy of Rubus coreanus Miq. and Astragalus membranaceus Bunge Extract for Postmenopausal Syndrome: A Randomised, Double-Blind, Placebo Comparative Clinical Trial. J. Evid. Based Complement. Altern. Med. 2022, 2022, 4066054. [Google Scholar] [CrossRef] [PubMed]
- Abarikwu, S.O.; Onuah, C.L.; Singh, S.K. Plants in the management of male infertility. Andrologia 2020, 52, e13509. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Zhang, X.; Li, W. Astragalus membranaceus and its active compounds in aging and age-related diseases: A review. Front. Pharmacol. 2023, 14, 112345. [Google Scholar]
- Liu, Q.; Yang, L.; Sun, J. Effects of Astragalus supplementation on immune function and metabolic health: A systematic review of clinical studies. Nutrients 2021, 13, 2456. [Google Scholar]
- Wang, X.; Chen, Z.; Li, Y. Pharmacokinetics and metabolic differences of Astragalus-derived compounds: Implications for human applications. Phytother. Res. 2022, 36, 1456–1467. [Google Scholar]
- Zhou, M.; Huang, W.; Sun, C. Advances in Astragalus polysaccharides: Extraction methods, bioactivity, and potential applications in aging and disease. Carbohydr. Polym. 2023, 299, 120153. [Google Scholar]
- Li, H.; Wang, J.; Zhou, P. Cycloastragenol and telomerase activation: Implications for aging and regenerative medicine. Ageing Res. Rev. 2021, 68, 101341. [Google Scholar]
- Zhang, R.; Yin, S.; Liu, X. The role of cycloastragenol in mitochondrial function and cellular senescence: Mechanistic insights from in vivo and in vitro models. Mol. Med. Rep. 2019, 20, 4332–4340. [Google Scholar]
- Feng, L.; Zhou, X.; Liu, C. Astragaloside IV enhances telomerase activity in human fibroblasts: Potential anti-aging effects. J. Ethnopharmacol. 2020, 249, 112312. [Google Scholar]
Cellular Change | Description | Implication for Skin Aging |
---|---|---|
Decreased number of keratinocytes | Keratinocytes, responsible for the formation of the epidermis, decrease in number with age. | Leads to thinning of the epidermis, reduced barrier function, and increased permeability, contributing to skin dryness and sensitivity |
Decreased number and functionality of fibroblasts | Fibroblasts are essential for collagen production; their number and activity decrease with age. | Results in the loss of dermal structure, decreased skin elasticity, and formation of wrinkles. |
Impaired synthesis of type I and type III collagen | Collagen is a major structural protein in the dermis. Aging leads to reduced synthesis of type I and III collagen. | Leads to thinning of the skin, formation of fine lines, and loss of firmness. |
Impaired synthesis of elastin | Elastin, which provides skin elasticity, is also produced in lesser quantities as we age. | Skin becomes less elastic, resulting in sagging and the formation of wrinkles. |
Decreased number of melanocytes | Melanocytes, responsible for pigment production, decrease in number with age. | Can lead to uneven pigmentation, the appearance of age spots, and reduced skin tone. |
Decreased number and functionality of Langerhans cells | Langerhans cells, part of the skin’s immune system, decrease with age, reducing the skin’s ability to mount immune responses. | Results in a decreased ability to protect the skin from pathogens, increasing susceptibility to infections and inflammatory responses. |
Decreased number and functionality of dendritic cells | Dendritic cells play a crucial role in immune surveillance. Their decline contributes to impaired immune responses. | Increases susceptibility to infections and skin disorders, while reducing the efficiency of the skin’s immune defense mechanisms. |
Decreased number of mast cells | Mast cells, involved in immune responses and inflammation, decrease in number and function with age. | Impaired inflammatory responses and reduced capacity to repair skin damage. |
Decreased toll-like receptor (TLR) activity (innate immunity) | Toll-like receptors play a key role in the innate immune response. Their decreased activity affects the skin’s ability to detect pathogens. | Impaired detection of pathogens and a decreased inflammatory response to skin damage. |
Decreased secretion of antimicrobial proteins | Skin produces antimicrobial proteins to protect against infections. Their secretion declines with age. | Results in the loss of dermal structure, decreased skin elasticity, and formation of wrinkles. |
Key Bioactive Compounds and Their Effects |
---|
|
Cellular pathways targeted by Astragalus membranaceus |
|
Subject of Study | Type of Study | Treatment | Outcome | Reference |
---|---|---|---|---|
Astragaloside IV and GH secretion | Clinical study (20 women) | Astragaloside IV supplementation | Increased growth hormone secretion, prolonged anagen phase of hair growth | [27] |
Astragalus and immunity | Meta-analysis | Astragalus extract | Improved humoral and cellular immunity | [32] |
Astragalus and viral myocarditis | Meta-analysis | Astragalus extract | Reduced secretion of pro-inflammatory mediators | [33] |
Astragalus and glucose metabolism | Clinical study | Astragalus extract | Lowered plasma glucose levels, inhibition of protein glycosylation | [6] |
Astragalus and bone remodeling | Clinical study | Astragalus extract | Increased rate of bone remodeling, sustained orthodontic treatment effects | [40] |
Cycloastragenol and psoriasis | Clinical study | Cycloastragenol | Reduction of pro-inflammatory interleukins (IL-β1, IL-6, IL-12) | [6] |
Astragalus and diabetic ulcers | Clinical study | Astragalus extract | Enhanced regeneration in diabetic ulcers | [2] |
Formononetin and aging diseases | Preclinical and clinical studies | Formononetin | Prevention of neurodegenerative disorders, obesity, type 2 diabetes | [60] |
Calycosin and osteoporosis | Clinical study | Calycosin | Stimulated osteoblast differentiation, increased markers of osteoblast differentiation | [62] |
Astragalus and interferon synthesis | Clinical study | 8 g Astragalus extract daily for ~60 days | Enhanced interferon synthesis | [71] |
Astragalus and menopause | Clinical study | Astragalus extract for ~3 months | Stimulated estrogen secretion, increased osteoblast proliferation | [74] |
Astragalus and male infertility | Clinical study | Astragalus supplementation | Increased sperm count, improved sperm parameters | [75] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Borowicz, K.K.; Jach, M.E. Astragalus Membranaceus—Can It Delay Cellular Aging? Nutrients 2025, 17, 1299. https://doi.org/10.3390/nu17081299
Borowicz KK, Jach ME. Astragalus Membranaceus—Can It Delay Cellular Aging? Nutrients. 2025; 17(8):1299. https://doi.org/10.3390/nu17081299
Chicago/Turabian StyleBorowicz, Kinga K., and Monika E. Jach. 2025. "Astragalus Membranaceus—Can It Delay Cellular Aging?" Nutrients 17, no. 8: 1299. https://doi.org/10.3390/nu17081299
APA StyleBorowicz, K. K., & Jach, M. E. (2025). Astragalus Membranaceus—Can It Delay Cellular Aging? Nutrients, 17(8), 1299. https://doi.org/10.3390/nu17081299