Modulating Strategies of the Intestinal Microbiota in Colorectal Cancer
Abstract
1. Introduction
2. Materials and Methods
2.1. Search Strategy
2.2. Study Selection Criteria
2.3. Quality Assessment, Data Extraction and Grouping
3. Results
3.1. Translational Insights into Prebiotic Effects on Gut Microbiota and Colorectal Carcinogenesis: Experimental and Clinical Evidence
3.2. Probiotic-Driven Modulation of Gut Microbiota in CRC: Integrative Experimental and Clinical Perspectives
3.3. Postbiotic-Driven Modulation of Gut Microbiota and Its Therapeutic Implications in CRC: From Bench to Bedside
3.4. Feeding the Microbiome: Dietary Influence on Microbial Composition
| Outcome | Dietary Compound | Model of CRC Used |
|---|---|---|
| ↓ E. coli pks+ in fecal samples | Green tea and manganese intake | Healthy individuals (human) |
| ↑ Microbial diversity | Curcumin Curcumin + Vitamin E tocotrienols Berberine | Murine |
| Fruit and vegetable | CRC survivors (human) | |
| – Microbial diversity | Ginger derivatives | Individuals previously diagnosed with colorectal adenoma |
| ↑ Beneficial bacteria | Curcumin P127-MLL@Gins nanoparticle Berberine HPS | Murine |
| Ginger derivatives | In vitro simulated digestive and fermentative processes of ginger | |
| Ginger derivatives | Healthy individuals (human) | |
| ↓ Pathogenic species | Curcumin P127-MLL@Gins nanoparticle Berberine HPS | Murine |
| Ginger derivatives | Individuals previously diagnosed with colorectal adenoma | |
| ↑ SCFAs | Fruit and vegetable | CRC survivors (human) |
| Ginger derivatives | In vitro simulated digestive and fermentative processes of ginger | |
| ↓ Cell viability/proliferation | Curcumin Curcumin + Vitamin E tocotrienols Ginger derivatives Berberine | Cell lines |
| Curcumin P127-MLL@Gins nanoparticle HPS | Murine | |
| ↑ Immune response | Curcumin P127-MLL@Gins nanoparticle | |
| ↓ Inflammation | Curcumin + Vitamin E tocotrienols Berberine HPS | |
| Ginger derivatives | Healthy individuals (human) | |
| ↓ Tumor growth | Curcumin Curcumin + Vitamin E tocotrienols Berberine HPS | Murine |
| ↓ Number/size of tumors | P127-MLL@Gins nanoparticle | |
| ↑ Colon length | Curcumin HPS | |
| ↓ Tissue damage | Berberine HPS | |
| ↑ Body weight | HPS | |
| ↓ pH | Ginger derivatives | In vitro simulated digestive and fermentative processes of ginger |
4. Discussion
5. Conclusions
6. Future Perspectives
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| CRC | Colorectal Cancer |
| FMT | Fecal Microbiota Transplantation |
| hBD | human β-Defensin |
| HPS | Hawthorn-derived Polysaccharides |
| PHB | Polyhydroxybutyrate |
| PRISMA | Preferred Reporting Items for Systematic Reviews and Meta-Analyses |
| PTSO | Propyl Propane Thiosulfonate |
| SCFAS | Short-Chain Fatty Acids |
References
- Bray, F.; Laversanne, M.; Sung, H.; Ferlay, J.; Siegel, R.L.; Soerjomataram, I.; Jemal, A. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2024, 74, 229–263. [Google Scholar] [CrossRef]
- Kulshrestha, R.; Tiwari, S. Diet and Colon Cancer: A Comprehensive Review. In Colon Cancer Diagnosis and Therapy; Springer: Berlin/Heidelberg, Germany, 2021; pp. 53–71. [Google Scholar]
- Rebuzzi, F.; Ulivi, P.; Tedaldi, G. Genetic Predisposition to Colorectal Cancer: How Many and Which Genes to Test? Int. J. Mol. Sci. 2023, 24, 2137. [Google Scholar] [CrossRef]
- Formica, V.; Sera, F.; Cremolini, C.; Riondino, S.; Morelli, C.; Arkenau, H.T.; Roselli, M. KRAS and BRAF Mutations in Stage II and III Colon Cancer: A Systematic Review and Meta-Analysis. J. Natl. Cancer Inst. 2022, 114, 517–527. [Google Scholar] [CrossRef]
- Nakayama, M.; Oshima, M. Mutant p53 in colon cancer. J. Mol. Cell Biol. 2019, 11, 267–276. [Google Scholar] [CrossRef]
- Kim, M.; Vogtmann, E.; Ahlquist, D.A.; Devens, M.E.; Kisiel, J.B.; Taylor, W.R.; White, B.A.; Hale, V.L.; Sung, J.; Chia, N.; et al. Fecal Metabolomic Signatures in Colorectal Adenoma Patients Are Associated with Gut Microbiota and Early Events of Colorectal Cancer Pathogenesis. MBio 2020, 11. [Google Scholar] [CrossRef]
- Wirbel, J.; Pyl, P.T.; Kartal, E.; Zych, K.; Kashani, A.; Milanese, A.; Fleck, J.S.; Voigt, A.Y.; Palleja, A.; Ponnudurai, R.; et al. Meta-analysis of fecal metagenomes reveals global microbial signatures that are specific for colorectal cancer. Nat. Med. 2019, 25, 679–689. [Google Scholar] [CrossRef]
- Alhinai, E.A.; Walton, G.E.; Commane, D.M. The Role of the Gut Microbiota in Colorectal Cancer Causation. Int. J. Mol. Sci. 2019, 20, 5295. [Google Scholar] [CrossRef]
- Dai, Z.; Zhang, J.; Wu, Q.; Chen, J.; Liu, J.; Wang, L.; Chen, C.; Xu, J.; Zhang, H.; Shi, C.; et al. The role of microbiota in the development of colorectal cancer. Int. J. Cancer 2019, 145, 2032–2041. [Google Scholar] [CrossRef]
- Han, B.; Zhang, Y.; Feng, X.; Yang, J.; Wang, B.; Fang, J.; Wang, Z.; Zhu, J.; Niu, G.; Guo, Y. The power of microbes: The key role of gut microbiota in the initiation and progression of colorectal cancer. Front. Oncol. 2025, 15, 1563886. [Google Scholar] [CrossRef]
- Li, Y.; Zhuang, M.; Mei, S.; Hu, G.; Zhang, J.; Qiu, W.; Wang, X.; Tang, J. Gut microbiota, immune cell, colorectal cancer association mediators: A Mendelian randomization study. BMC Cancer 2025, 25, 396. [Google Scholar] [CrossRef]
- Zuo, S.; Huang, Y.; Zou, J. The role of the gut microbiome in modulating immunotherapy efficacy in colorectal cancer. IUBMB Life 2024, 76, 1050–1057. [Google Scholar] [CrossRef]
- Kendong, S.M.A.; Ali, R.A.R.; Nawawi, K.N.M.; Ahmad, H.F.; Mokhtar, N.M. Gut Dysbiosis and Intestinal Barrier Dysfunction: Potential Explanation for Early-Onset Colorectal Cancer. Front. Cell. Infect. Microbiol. 2021, 11, 744606. [Google Scholar] [CrossRef] [PubMed]
- El Tekle, G.; Andreeva, N.; Garrett, W.S. The Role of the Microbiome in the Etiopathogenesis of Colon Cancer. Annu. Rev. Physiol. 2024, 86, 453–478. [Google Scholar] [CrossRef]
- Brusnic, O.; Onisor, D.; Boicean, A.; Hasegan, A.; Ichim, C.; Guzun, A.; Chicea, R.; Todor, S.B.; Vintila, B.I.; Anderco, P.; et al. Fecal Microbiota Transplantation: Insights into Colon Carcinogenesis and Immune Regulation. J. Clin. Med. 2024, 13, 6578. [Google Scholar] [CrossRef]
- Morsli, D.S.; Tbahriti, H.F.; Rahli, F.; Mahammi, F.Z.; Nagdalian, A.; Hemeg, H.A.; Imran, M.; Rauf, A.; Shariati, M.A. Probiotics in colorectal cancer prevention and therapy: Mechanisms, benefits, and challenges. Discov. Oncol. 2025, 16, 406. [Google Scholar] [CrossRef]
- Xu, F.; Li, Q.; Wang, S.; Dong, M.; Xiao, G.; Bai, J.; Wang, J.; Sun, X. The efficacy of prevention for colon cancer based on the microbiota therapy and the antitumor mechanisms with intervention of dietary Lactobacillus. Microbiol. Spectr. 2023, 11, e0018923. [Google Scholar] [CrossRef]
- Lambring, C.; Varga, K.; Livingston, K.; Lorusso, N.; Dudhia, A.; Basha, R. Therapeutic Applications of Curcumin and Derivatives in Colorectal Cancer. Onco Ther. 2022, 9, 51–62. [Google Scholar] [CrossRef]
- Chen, H.; Lei, Y.; Zhou, J.; Lv, C.; Xuan, Q. Advances in bevacizumab in colorectal cancer: A bibliometric analysis from 2004 to 2023. Front. Oncol. 2025, 15, 1552914. [Google Scholar] [CrossRef]
- Chan, G.H.J.; Chee, C.E. Making sense of adjuvant chemotherapy in colorectal cancer. J. Gastrointest. Oncol. 2019, 10, 1183–1192. [Google Scholar] [CrossRef]
- Banerjee, A.; Pathak, S.; Subramanium, V.D.; Murugesan, R.; Verma, R.S. Strategies for targeted drug delivery in treatment of colon cancer: Current trends and future perspectives. Drug Discov. Today 2017, 22, 1224–1232. [Google Scholar] [CrossRef]
- Higgins, J.P.; Altman, D.G.; Gøtzsche, P.C.; Jüni, P.; Moher, D.; Oxman, A.D.; Savovic, J.; Schulz, K.F.; Weeks, L.; Sterne, J.A. The Cochrane Collaboration’s tool for assessing risk of bias in randomised trials. BMJ (Clin. Res. Ed.) 2011, 343, d5928. [Google Scholar] [CrossRef]
- Hooijmans, C.R.; Rovers, M.M.; de Vries, R.B.; Leenaars, M.; Ritskes-Hoitinga, M.; Langendam, M.W. SYRCLE’s risk of bias tool for animal studies. BMC Med. Res. Methodol. 2014, 14, 43. [Google Scholar] [CrossRef]
- Wang, S.; Xiao, Y.; Tian, F.; Zhao, J.; Zhang, H.; Zhai, Q.; Chen, W. Rational use of prebiotics for gut microbiota alterations: Specific bacterial phylotypes and related mechanisms. J. Funct. Foods 2020, 66, 103838. [Google Scholar] [CrossRef]
- Guillamón, E.; Navajas-Porras, B.; Delgado-Osorio, A.; Gil-Martínez, L.; Mut-Salud, N.; Cuberos-Escobar, A.; Vozmediano, J.R.; de la Cueva, S.P.; Chávarri, M.; Marañón, I.; et al. Evaluation of PTSO delivery approaches for gut microbiota modulation in colorectal cancer: A comparative study of microcapsules containing Allium derivatives. J. Funct. Foods 2025, 128, 106818. [Google Scholar] [CrossRef]
- Yu, P.; Xu, W.; Li, Y.; Xie, Z.; Shao, S.; Liu, J.; Wang, Y.; Wang, L.; Yang, H. Ginsenosides 20R-Rg3 and Rg5 enriched black ginseng inhibits colorectal cancer tumor growth by activating the Akt/Bax/caspase-3 pathway and modulating gut microbiota in mice. Curr. Res. Food Sci. 2025, 10, 100978. [Google Scholar] [CrossRef] [PubMed]
- Tajasuwan, L.; Kettawan, A.; Rungruang, T.; Wunjuntuk, K.; Prombutara, P. Role of Dietary Defatted Rice Bran in the Modulation of Gut Microbiota in AOM/DSS-Induced Colitis-Associated Colorectal Cancer Rat Model. Nutrients 2023, 15, 1528. [Google Scholar] [CrossRef]
- Parker, K.D.; Maurya, A.K.; Ibrahim, H.; Rao, S.; Hove, P.R.; Kumar, D.; Kant, R.; Raina, B.; Agarwal, R.; Kuhn, K.A.; et al. Dietary Rice Bran-Modified Human Gut Microbial Consortia Confers Protection against Colon Carcinogenesis Following Fecal Transfaunation. Biomedicines 2021, 9, 144. [Google Scholar] [CrossRef]
- Bai, X.; Duan, Z.; Deng, J.; Zhang, Z.; Fu, R.; Zhu, C.; Fan, D. Ginsenoside Rh4 inhibits colorectal cancer via the modulation of gut microbiota-mediated bile acid metabolism. J. Adv. Res. 2025, 72, 37–52. [Google Scholar] [CrossRef]
- So, W.K.W.; Chan, J.Y.W.; Law, B.M.H.; Choi, K.C.; Ching, J.Y.L.; Chan, K.L.; Tang, R.S.Y.; Chan, C.W.H.; Wu, J.C.Y.; Tsui, S.K.W. Effects of a Rice Bran Dietary Intervention on the Composition of the Intestinal Microbiota of Adults with a High Risk of Colorectal Cancer: A Pilot Randomised-Controlled Trial. Nutrients 2021, 13, 526. [Google Scholar] [CrossRef]
- Stene, C.; Xu, J.; Fallone de Andrade, S.; Palmquist, I.; Molin, G.; Ahrné, S.; Thorlacius, H.; Johnson, L.B.; Jeppsson, B. Synbiotics protected radiation-induced tissue damage in rectal cancer patients: A controlled trial. Clin. Nutr. (Edinb. Scotl.) 2025, 49, 33–41. [Google Scholar] [CrossRef]
- Chen, Y.; Liao, X.; Li, Y.; Cao, H.; Zhang, F.; Fei, B.; Bao, C.; Cao, H.; Mao, Y.; Chen, X.; et al. Effects of prebiotic supplement on gut microbiota, drug bioavailability, and adverse effects in patients with colorectal cancer at different primary tumor locations receiving chemotherapy: Study protocol for a randomized clinical trial. Trials 2023, 24, 268. [Google Scholar] [CrossRef] [PubMed]
- Thananimit, S.; Pahumunto, N.; Teanpaisan, R. Characterization of Short Chain Fatty Acids Produced by Selected Potential Probiotic Lactobacillus Strains. Biomolecules 2022, 12, 1829. [Google Scholar] [CrossRef]
- Pahumunto, N.; Teanpaisan, R. Anti-cancer Properties of Potential Probiotics and Their Cell-free Supernatants for the Prevention of Colorectal Cancer: An In Vitro Study. Probiotics Antimicrob. Proteins 2023, 15, 1137–1150. [Google Scholar] [CrossRef]
- Sugimura, N.; Li, Q.; Chu, E.S.H.; Lau, H.C.H.; Fong, W.; Liu, W.; Liang, C.; Nakatsu, G.; Su, A.C.Y.; Coker, O.O.; et al. Lactobacillus gallinarum modulates the gut microbiota and produces anti-cancer metabolites to protect against colorectal tumourigenesis. Gut 2021, 71, 2011–2021. [Google Scholar] [CrossRef]
- Huang, C.; Sun, Y.; Liao, S.R.; Chen, Z.X.; Lin, H.F.; Shen, W.Z. Suppression of Berberine and Probiotics (in vitro and in vivo) on the Growth of Colon Cancer With Modulation of Gut Microbiota and Butyrate Production. Front. Microbiol. 2022, 13, 869931. [Google Scholar] [CrossRef]
- Benito, I.; Encío, I.J.; Milagro, F.I.; Alfaro, M.; Martínez-Peñuela, A.; Barajas, M.; Marzo, F. Microencapsulated Bifidobacterium bifidum and Lactobacillus gasseri in Combination with Quercetin Inhibit Colorectal Cancer Development in Apc(Min/+) Mice. Int. J. Mol. Sci. 2021, 22, 4906. [Google Scholar] [CrossRef]
- Niechcial, A.; Schwarzfischer, M.; Wawrzyniak, P.; Determann, M.; Pöhlmann, D.; Wawrzyniak, M.; Gueguen, E.; Walker, M.R.; Morsy, Y.; Atrott, K.; et al. Probiotic Administration Modulates Gut Microbiota and Suppresses Tumor Growth in Murine Models of Colorectal Cancer. Int. J. Mol. Sci. 2025, 26, 4404. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, Y.; Xu, L.; Gu, G.; Dong, Z. Parabacteroides johnsonii inhibits the onset and progression of colorectal cancer by modulating the gut microbiota. J. Transl. Med. 2025, 23, 734. [Google Scholar] [CrossRef]
- Ma, X.; Yan, L.; Yu, X.; Guo, H.; He, Y.; Wen, S.; Yu, T.; Wang, W. The alleviating effect of Akkermansia muciniphila PROBIO on AOM/DSS-induced colorectal cancer in mice and its regulatory effect on gut microbiota. J. Funct. Foods 2024, 114, 106091. [Google Scholar] [CrossRef]
- Chen, D.; Jin, D.; Huang, S.; Wu, J.; Xu, M.; Liu, T.; Dong, W.; Liu, X.; Wang, S.; Zhong, W.; et al. Clostridium butyricum, a butyrate-producing probiotic, inhibits intestinal tumor development through modulating Wnt signaling and gut microbiota. Cancer Lett. 2020, 469, 456–467. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.; Zha, M.; Li, L.; Qiao, J.; Kwok, L.Y.; Wang, D.; Chen, Y. Bifidobacterium animalis ssp. lactis BX-245-fermented milk alleviates tumor burden in mice with colorectal cancer. J. Dairy Sci. 2025, 108, 1211–1226. [Google Scholar] [CrossRef]
- Wanitsuwan, W.; Pahumunto, N.; Surachat, K.; Thananimit, S.; Wonglapsuwan, M.; Laohawiriyakamol, S.; Teanpaisan, R. Comparison of the effects of postbiotics and live-probiotics containing Lacticaseibacillus paracasei SD1 and Lacticaseibacillus rhamnosus SD11 in patients with previous colorectal cancer: A randomized controlled trial. J. Funct. Foods 2024, 123, 106576. [Google Scholar] [CrossRef]
- McCoubrey, L.E.; Shen, C.; Mwasambu, S.; Favaron, A.; Sangfuang, N.; Thomaidou, S.; Orlu, M.; Globisch, D.; Basit, A.W. Characterising and preventing the gut microbiota’s inactivation of trifluridine, a colorectal cancer drug. Eur. J. Pharm. Sci. Off. J. Eur. Fed. Pharm. Sci. 2024, 203, 106922. [Google Scholar] [CrossRef]
- Wang, J.L.; Chen, Y.S.; Huang, K.C.; Yeh, C.H.; Chen, M.C.; Wu, L.S.; Chiu, Y.H. Resistant Starch-Encapsulated Probiotics Attenuate Colorectal Cancer Cachexia and 5-Fluorouracil-Induced Microbial Dysbiosis. Biomedicines 2024, 12, 1450. [Google Scholar] [CrossRef]
- Huang, F.; Li, S.; Chen, W.; Han, Y.; Yao, Y.; Yang, L.; Li, Q.; Xiao, Q.; Wei, J.; Liu, Z.; et al. Postoperative Probiotics Administration Attenuates Gastrointestinal Complications and Gut Microbiota Dysbiosis Caused by Chemotherapy in Colorectal Cancer Patients. Nutrients 2023, 15, 356. [Google Scholar] [CrossRef]
- Fernández, J.; Saettone, P.; Franchini, M.C.; Villar, C.J.; Lombó, F. Antitumor bioactivity and gut microbiota modulation of polyhydroxybutyrate (PHB) in a rat animal model for colorectal cancer. Int. J. Biol. Macromol. 2022, 203, 638–649. [Google Scholar] [CrossRef]
- Watanabe, D.; Murakami, H.; Ohno, H.; Tanisawa, K.; Konishi, K.; Tsunematsu, Y.; Sato, M.; Miyoshi, N.; Wakabayashi, K.; Watanabe, K.; et al. Association between dietary intake and the prevalence of tumourigenic bacteria in the gut microbiota of middle-aged Japanese adults. Sci. Rep. 2020, 10, 15221. [Google Scholar] [CrossRef]
- Kyaw, T.S.; Upadhyay, V.; Tolstykh, I.; Van Loon, K.; Laffan, A.; Stanfield, D.; Gempis, D.; Kenfield, S.A.; Chan, J.M.; Piawah, S.; et al. Variety of Fruit and Vegetables and Alcohol Intake are Associated with Gut Microbial Species and Gene Abundance in Colorectal Cancer Survivors. Am. J. Clin. Nutr. 2023, 118, 518–529. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.; Zhuang, Y.; Liang, Y.; Chen, H.; Qiu, W.; Xu, H.; Zhou, H. Curcumin exerts anti-tumor activity in colorectal cancer via gut microbiota-mediated CD8(+) T Cell tumor infiltration and ferroptosis. Food Funct. 2025, 16, 3671–3693. [Google Scholar] [CrossRef]
- Deng, W.; Xiong, X.; Lu, M.; Huang, S.; Luo, Y.; Wang, Y.; Ying, Y. Curcumin suppresses colorectal tumorigenesis through restoring the gut microbiota and metabolites. BMC Cancer 2024, 24, 1141. [Google Scholar] [CrossRef] [PubMed]
- Farhana, L.; Sarkar, S.; Nangia-Makker, P.; Yu, Y.; Khosla, P.; Levi, E.; Azmi, A.; Majumdar, A.P.N. Natural agents inhibit colon cancer cell proliferation and alter microbial diversity in mice. PLoS ONE 2020, 15, e0229823. [Google Scholar] [CrossRef]
- Wang, J.H.; Chen, Y.W.; Hsieh, S.; Kung, M.L. Nanosized Ginger-Derived Phenolic Zingerone Obstructs Cell Cycle G2/M Progression and Initiates Apoptosis in Human Colorectal Cancer. Environ. Toxicol. 2025, 40, 1059–1071. [Google Scholar] [CrossRef] [PubMed]
- Al Azzam, K.M.; Al-Areer, N.W.; Al Omari, R.H.; Al-Deeb, I.; Bounoua, N.; Negim, E.S.; Al-Samydai, A.; Aboalroub, A.A.; Said, R. Assessment of the anticancer potential of certain phenolic and flavonoid components in ginger capsules using colorectal cancer cell lines coupled with quantitative analysis. Biomed. Chromatogr. BMC 2024, 38, e5993. [Google Scholar] [CrossRef]
- Farombi, E.O.; Ajayi, B.O.; Ajeigbe, O.F.; Maruf, O.R.; Anyebe, D.A.; Opafunso, I.T.; Adedara, I.A. Mechanistic exploration of 6-shogaol’s preventive effects on azoxymethane and dextran sulfate sodium -induced colorectal cancer: Involvement of cell proliferation, apoptosis, carcinoembryonic antigen, wingless-related integration site signaling, and oxido-inflammation. Toxicol. Mech. Methods 2025, 35, 1–10. [Google Scholar] [CrossRef]
- Wang, J.; Chen, Y.; Hu, X.; Feng, F.; Cai, L.; Chen, F. Assessing the Effects of Ginger Extract on Polyphenol Profiles and the Subsequent Impact on the Fecal Microbiota by Simulating Digestion and Fermentation In Vitro. Nutrients 2020, 12, 3194. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, D.; Jiang, H.; Zhang, S.; Pang, X.; Gao, S.; Zhang, H.; Zhang, S.; Xiao, Q.; Chen, L.; et al. Gut Microbiota Variation With Short-Term Intake of Ginger Juice on Human Health. Front. Microbiol. 2020, 11, 576061. [Google Scholar] [CrossRef]
- Li, B.; Zu, M.; Jiang, A.; Cao, Y.; Wu, J.; Shahbazi, M.A.; Shi, X.; Reis, R.L.; Kundu, S.C.; Xiao, B. Magnetic natural lipid nanoparticles for oral treatment of colorectal cancer through potentiated antitumor immunity and microbiota metabolite regulation. Biomaterials 2024, 307, 122530. [Google Scholar] [CrossRef] [PubMed]
- Prakash, A.; Rubin, N.; Staley, C.; Onyeaghala, G.; Wen, Y.F.; Shaukat, A.; Milne, G.; Straka, R.J.; Church, T.R.; Prizment, A. Effect of ginger supplementation on the fecal microbiome in subjects with prior colorectal adenoma. Sci. Rep. 2024, 14, 2988. [Google Scholar] [CrossRef]
- Wang, M.; Ma, Y.; Yu, G.; Zeng, B.; Yang, W.; Huang, C.; Dong, Y.; Tang, B.; Wu, Z. Integration of microbiome, metabolomics and transcriptome for in-depth understanding of berberine attenuates AOM/DSS-induced colitis-associated colorectal cancer. Biomed. Pharmacother. Biomed. Pharmacother. 2024, 179, 117292. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.; Yang, J.; Ye, C.; Wu, H.; Shu, W.; Li, R.; Wang, S.; Lu, Y.; Chen, H.; Zhang, Z.; et al. Berberine attenuates 5-fluorouracil-induced intestinal mucosal injury by modulating the gut microbiota without compromising its anti-tumor efficacy. Heliyon 2024, 10, e34528. [Google Scholar] [CrossRef]
- Yang, W.; Yang, T.; Huang, B.; Chen, Z.; Liu, H.; Huang, C. Berberine improved the microbiota in lung tissue of colon cancer and reversed the bronchial epithelial cell changes caused by cancer cells. Heliyon 2024, 10, e24405. [Google Scholar] [CrossRef] [PubMed]
- Ma, L.; Lang, Y.; Xin, X.; Zhao, W.; Zhou, Q.; Wang, J.; Dong, S. Polysaccharides extracted from hawthorn (Crataegus pinnatifida) exhibiting protective effects against DSS/AOM-induced colorectal cancer in vivo. J. Funct. Foods 2023, 107, 105618. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef] [PubMed]


| Outcome | Prebiotic | Model of CRC Used |
|---|---|---|
| ↓ CRC cells viability | PTSO Ginsenosides | Cell lines |
| ↑ Microbial diversity | PTSO | |
| ↑ SCFAs | ||
| Rice bran | Murine | |
| ↓ Oxidative stress | PTSO | Cell lines |
| ↑ Beneficial bacteria | Ginsenosides Rice bran | Murine |
| Rice bran | Individuals with elevated CRC risk (human) | |
| ↓ White blood cell | Oat bran | Individuals with CRC undergoing radiotherapy (human) |
| ↓ Inflammation | Ginsenosides | Murine |
| ↓ Tumor growth | ||
| ↑ Intestinal barrier integrity | ||
| ↓ Pathogenic species | Rice bran | |
| ↓ Neoplastic lesions | ||
| ↓ CRC-related metabolites |
| Outcome | Probiotic | Model of CRC Used |
|---|---|---|
| ↑ Microbial diversity | Parabacteroides johnsonii Mix of Bifidobacterium longum, Lactobacillus casei, Lactobacillus rhamnosus, Streptococcus thermophiles and Clostridium butyricum | Murine |
| Mix of Bifidobacterium infantis, Lactobacillus acidophilus, Enterococcus faecalis, and Bacillus cereus | Human | |
| ↓ Pathogenic species | Mix of Lacticaseibacillus strains | Cell lines |
| Lactobacillus gallinarum Clostridium butyricum Mix of Bifidobacterium longum, Lactobacillus casei, Lactobacillus rhamnosus, Streptococcus thermophiles and Clostridium butyricum | Murine | |
| Mix of Lacticaseibacillus strains | Human | |
| ↑ Beneficial bacterial | Lactobacillus gallinarum Akkermansia muciniphila Clostridium butyricum Mix of Bifidobacterium longum, Lactobacillus casei, Lactobacillus rhamnosus, Streptococcus thermophiles and Clostridium butyricum | Murine |
| ↓ Cancer cells | Mix of Lacticaseibacillus strains Clostridium butyricum Mix of Bifidobacterium, Lactobacillus, and Enterococcus | Cell lines |
| Mix of Bifidobacterium longum, Lactobacillus casei, Lactobacillus rhamnosus, Streptococcus thermophiles and Clostridium butyricum | Murine | |
| ↑ SCFAs | Mix of Lacticaseibacillus strains | Cell lines |
| Mix of Bifidobacterium bifidum and Lactobacillus gasseri Clostridium butyricum | Murine | |
| Mix of Lacticaseibacillus strains Mix of Bifidobacterium infantis, Lactobacillus acidophilus, Enterococcus faecalis, and Bacillus cereus | Human | |
| ↓ Inflammation | Mix of Lacticaseibacillus strains | Cell lines |
| Mix of Bifidobacterium bifidum and Lactobacillus gasseri Akkermansia muciniphila Mix of Bifidobacterium longum, Lactobacillus casei, Lactobacillus rhamnosus, Streptococcus thermophiles and Clostridium butyricum | Murine | |
| Mix of Lacticaseibacillus strains | Human | |
| ↓ Tumor growth | Parabacteroides johnsonii Clostridium butyricum Mix of Bifidobacterium longum, Lactobacillus casei, Lactobacillus rhamnosus, Streptococcus thermophiles and Clostridium butyricum Mix of Bifidobacterium, Lactobacillus, and Enterococcus | Murine |
| ↓ Number/size of tumors | Lactobacillus gallinarum Mix of Bifidobacterium bifidum and Lactobacillus gasseri | |
| ↓ Body weight loss | Mix of Bifidobacterium bifidum and Lactobacillus gasseri Akkermansia muciniphila | |
| ↓ Symptoms | Akkermansia muciniphila Bifidobacterium bifidum and Lactobacillus gasseri Mix of Bifidobacterium longum, Lactobacillus casei, Lactobacillus rhamnosus, Streptococcus thermophiles and Clostridium butyricum Mix of Bifidobacterium infantis, Lactobacillus acidophilus, Enterococcus faecalis, and Bacillus cereus | |
| ↑ Intestinal barrier integrity | Bifidobacterium animalis ssp. lactis BX-245 | |
| ↑ Immune mediators |
| Outcome | Metabolites from | Model of CRC Used |
|---|---|---|
| ↓ Cancer cells | Lactobacillus gallinarum | Cell lines |
| CRC organoids (from humans) | ||
| ↑ SCFAs | PHB | Murine |
| Mix of Lactobacillus paracasei SD1 and Lacticaseibacillus rhamnosus SD11 | Human | |
| ↑ Microbial diversity | PHB | Murine |
| ↓ Pathogenic species | Mix of Lactobacillus paracasei SD1 and Lacticaseibacillus rhamnosus SD11 | Human |
| ↓ Inflammation | PHB | Murine |
| Mix of Lactobacillus paracasei SD1 and Lacticaseibacillus rhamnosus SD11 | Human | |
| ↓ Number/size of tumors | PHB | Murine |
| Outcome | Combination | Model of CRC Used |
|---|---|---|
| ↓ White blood cell | Oat bran + Lactobacillus plantarum HEAL19 + blueberry husks | Individuals with CRC undergoing radiotherapy (human) |
| ↓ Inflammation | ||
| ↓ Tissue damage | ||
| ↑ Microbial diversity | ||
| ↓ CRC development | Quercetine + Bifidobacterium bifidum and Lactobacillus gasseri | Murine |
| Benefits derived from the combination | ||
| ↓ Inflammation | Berberine and probiotics (comparison with their separate use | Murine |
| ↑ Microbial diversity | ||
| ↑ Beneficial bacteria | ||
| ↓ Pathogenic species | ||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
García Mansilla, M.J.; Rodríguez Sojo, M.J.; Roxana Lista, A.; Ayala Mosqueda, C.V.; García García, J.; Gálvez Peralta, J.; Rodríguez Nogales, A.; Ruiz Malagón, A.J.; Rodríguez Sánchez, M.J. Modulating Strategies of the Intestinal Microbiota in Colorectal Cancer. Nutrients 2025, 17, 3565. https://doi.org/10.3390/nu17223565
García Mansilla MJ, Rodríguez Sojo MJ, Roxana Lista A, Ayala Mosqueda CV, García García J, Gálvez Peralta J, Rodríguez Nogales A, Ruiz Malagón AJ, Rodríguez Sánchez MJ. Modulating Strategies of the Intestinal Microbiota in Colorectal Cancer. Nutrients. 2025; 17(22):3565. https://doi.org/10.3390/nu17223565
Chicago/Turabian StyleGarcía Mansilla, María José, María Jesús Rodríguez Sojo, Andreea Roxana Lista, Ciskey Vanessa Ayala Mosqueda, Jorge García García, Julio Gálvez Peralta, Alba Rodríguez Nogales, Antonio Jesús Ruiz Malagón, and María José Rodríguez Sánchez. 2025. "Modulating Strategies of the Intestinal Microbiota in Colorectal Cancer" Nutrients 17, no. 22: 3565. https://doi.org/10.3390/nu17223565
APA StyleGarcía Mansilla, M. J., Rodríguez Sojo, M. J., Roxana Lista, A., Ayala Mosqueda, C. V., García García, J., Gálvez Peralta, J., Rodríguez Nogales, A., Ruiz Malagón, A. J., & Rodríguez Sánchez, M. J. (2025). Modulating Strategies of the Intestinal Microbiota in Colorectal Cancer. Nutrients, 17(22), 3565. https://doi.org/10.3390/nu17223565

