Early Pregnancy Nutritional Adequacy and Subsequent Gestational Diabetes Risk by Body Mass Index: A Prospective Cohort Study of 2227 Korean Women
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Population
2.2. Dietary Assessment
2.3. Nutritional Adequacy Assessment
2.4. Covariate Assessment
2.5. Statistical Analysis
2.6. Use of Artificial Intelligence
3. Results
3.1. Study Population Characteristics
3.2. Association Between Overall Nutritional Adequacy and GDM Risk
3.3. Individual Nutrient Inadequacies and GDM Risk
3.4. BMI-Stratified Analysis
4. Discussion
4.1. Interpretation of Overall Nutritional Adequacy Findings
4.2. Specific Micronutrient Inadequacies and GDM Risk
4.3. BMI-Specific Nutritional Vulnerabilities
4.4. Implications for Clinical Practice and Public Health
4.5. Strengths and Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| AI | Adequate Intake |
| ANOVA | Analysis of Variance |
| BMI | Body Mass Index |
| CAN-Pro | Computer Aided Nutritional Analysis Program |
| CI | Confidence Interval |
| DASH | Dietary Approaches to Stop Hypertension |
| EAR | Estimated Average Requirement |
| GCT | Glucose Challenge Test |
| GDM | Gestational Diabetes Mellitus |
| HEI | Healthy Eating Index |
| IPAQ | International Physical Activity Questionnaire |
| KPOS | Korean Pregnancy Outcome Study |
| MAR | Mean Adequacy Ratio |
| MVPA | Moderate-to-Vigorous Physical Activity |
| NAR | Nutrient Adequacy Ratio |
| OGTT | Oral Glucose Tolerance Test |
| OR | Odds Ratio |
| RDI | Recommended Dietary Intake |
| RR | Relative Risk |
Appendix A
| Characteristic | Total (n = 2227) | Normal (n = 2070) | GDM (n = 157) | p |
|---|---|---|---|---|
| Age, years | 33.4 ± 3.8 | 33.3 ± 3.8 | 35.0 ± 3.6 | <0.001 |
| Educational level | ||||
| High school | 203 | 182 (8.8) | 21 (13.4) | 0.070 |
| college | 1657 | 1540 (74.4) | 117 (74.5) | |
| graduate | 367 | 345 (16.8) | 19 (12.1) | |
| Income a | ||||
| <4million/Korean won | 747 | 685 (33.1) | 62 (39.5) | 0.102 |
| ≥4million/Korean won | 1480 | 1385 (66.9) | 95 (60.5) | |
| Employment status | ||||
| Employed | 1384 | 1300 (62.8) | 84 (53.5) | 0.021 |
| Not employed | 843 | 770 (372) | 73 (46.5) | |
| MVPA at pre-pregnancy b | ||||
| Yes | 1342 | 1252 (60.5) | 90 (57.3) | 0.436 |
| No | 885 | 818 (39.5) | 67 (42.7) | |
| MVPA at 1st trimester b | ||||
| Yes | 705 | 658 (31.8) | 47 (29.9) | 0.631 |
| No | 1522 | 1412 (68.2) | 110 (70.1) | |
| Dietary supplement use | ||||
| Yes | 2166 | 2015 (97.3) | 151 (96.2) | 0.389 |
| No | 61 | 55 (2.7) | 6 (3.8) | |
| Balanced dietary intake status | ||||
| Yes | 1157 | 1092 (52.8) | 65 (41.4) | 0.006 |
| No | 1070 | 978 (47.2) | 92 (58.6) | |
| Alcohol use | ||||
| Yes | 1874 | 1742 (84.2) | 132 (84.1) | 0.979 |
| No | 353 | 328 (15.8) | 25 (15.9) | |
| Smoking currently | ||||
| Never smoked | 1970 | 1838 (88.8) | 132 (84.1) | 0.086 |
| Pre-pregnancy smoking | 189 | 173 (8.4) | 16 (10.2) | |
| Smoking in early pregnancy c | 68 | 59 (2.9) | 9 (54.7) | |
| Parity | ||||
| 0 | 1313 | 1236 (59.7) | 77 (49.0) | 0.009 |
| ≥1 | 914 | 834 (40.3) | 80 (51.0) | |
| History of DM | ||||
| Yes | - | - | - | |
| No | 2227 | 2070 (100) | 157 (100) | |
| Nausea and vomiting of pregnancy | ||||
| No | 446 | 424 (20.5) | 22 (14.0) | 0.080 |
| Mild NVP | 1373 | 1274 (61.5) | 99 (63.1) | |
| Severe NVP | 408 | 372 (18.0) | 36 (22.9) | |
| Pre-pregnancy BMI category | ||||
| <22.9 kg/m2 | 1750 | 1664 (80.4) | 86 (54.8) | <0.001 |
| 23.0–24.9 kg/m2 | 227 | 205 (9.9) | 22 (14.0) | |
| ≥25.0 kg/m2 | 250 | 201 (9.7) | 49 (31.2) | |
| Hypertension | ||||
| Yes | 33 | 27 (1.3) | 6 (3.8) | 0.012 |
| No | 2194 | 2043 (98.7) | 151 (96.2) |
References
- Jouanne, M.; Oddoux, S.; Noël, A.; Voisin-Chiret, A.S. Nutrient Requirements during Pregnancy and Lactation. Nutrients 2021, 13, 692. [Google Scholar] [CrossRef] [PubMed]
- King, J.C. Physiology of pregnancy and nutrient metabolism. Am. J. Clin. Nutr. 2000, 71, 1218S–1225S. [Google Scholar] [CrossRef] [PubMed]
- Marshall, N.; Abrams, B.; Barbour, L.A.; Catalano, P.; Christian, P.; Friedman, J.E.; Hay, W.W.; Hernandez, T.L.; Krebs, N.F.; Oken, E.; et al. The importance of nutrition in pregnancy and lactation: Lifelong consequences. Am. J. Obstet. Gynecol. 2022, 226, 607–632. [Google Scholar] [CrossRef] [PubMed]
- McIntyre, H.D.; Catalano, P.; Zhang, C.; Desoye, G.; Mathiesen, E.R.; Damm, P. Gestational diabetes mellitus. Nat. Rev. Dis. Primers 2019, 5, 47. [Google Scholar] [CrossRef]
- Wang, H.; Li, N.; Chivese, T.; Werfalli, M.; Sun, H.; Yuen, L.; Hoegfeldt, C.A.; Powe, C.E.; Immanuel, J.; Karuranga, S.; et al. IDF diabetes atlas: Estimation of global and regional gestational diabetes mellitus prevalence for 2021 by international association of diabetes in pregnancy study group’s criteria. Diabetes Res. Diabetes Res. Clin. Pract. 2022, 183, 109050. [Google Scholar] [CrossRef]
- 6. Health Insurance Review and Assessment Service (HIRA) Bigdata Open Portal. Wonju, Korea. 2024. Available online: https://opendata.hira.or.kr (accessed on 26 August 2024).
- Sweeting, A.; Hannah, W.; Backman, H.; Catalano, P.; Feghali, M.; Herman, W.H.; Hivert, M.-F.; Immanuel, J.; Meek, C.; Oppermann, M.L.; et al. Epidemiology and management of gestational diabetes. Lancet 2024, 404, 175–192. [Google Scholar] [CrossRef]
- Sweeting, A.; Wong, J.; Murphy, H.R.; Ross, G.P. A clinical update on gestational diabetes mellitus. Endocr. Rev. 2022, 43, 763–793. [Google Scholar] [CrossRef]
- Jafari Nasab, S.; Ghanavati, M.; Clark, C.T.; Nasirian, M. Adherence to Mediterranean dietary pattern and the risk of gestational diabetes mellitus: A systematic review and meta-analysis of observational studies. Nutr. Diabetes 2024, 14, 55. [Google Scholar] [CrossRef]
- Mavroeidi, I.; Manta, A.; Asimakopoulou, A.; Syrigos, A.; Paschou, S.A.; Vlachaki, E.; Nastos, C.; Kalantaridou, S.; Peppa, M. The role of the glycemic index and glycemic load in the dietary approach of gestational diabetes mellitus. Nutrients 2024, 16, 399. [Google Scholar] [CrossRef]
- Wang, V.H.; Foster, V.; Yi, S.S. Are recommended dietary patterns equitable? Public Health Nutr. 2022, 25, 464–470. [Google Scholar] [CrossRef]
- Oxlad, M.; Whitburn, S.; Grieger, J.A. The complexities of managing gestational diabetes in women of culturally and linguistically diverse backgrounds: A qualitative study of women’s experiences. Nutrients 2023, 15, 1053. [Google Scholar] [CrossRef]
- Sedaghat, F.; Akhoondan, M.; Ehteshami, M.; Aghamohammadi, V.; Ghanei, N.; Mirmiran, P.; Rashidkhani, B. Maternal dietary patterns and gestational diabetes risk: A case-control study. J. Diabetes Res. 2017, 2017, 5173926. [Google Scholar] [CrossRef]
- Fuller, H.; Moore, J.B.; Iles, M.M.; Zulyniak, M.A. Ethnic-specific associations between dietary consumption and gestational diabetes mellitus incidence: A meta-analysis. PLoS Glob. Public Health 2022, 2, e0000250. [Google Scholar] [CrossRef] [PubMed]
- Raab, R.; Hoffmann, J.; Spies, M.; Geyer, K.; Meyer, D.; Günther, J.; Hauner, H. Are pre- and early pregnancy lifestyle factors associated with the risk of preterm birth? A secondary cohort analysis of the cluster-randomised GeliS trial. BMC Pregnancy Childbirth 2022, 22, 224. [Google Scholar] [CrossRef] [PubMed]
- Okubo, H.; Miyake, Y.; Sasaki, S.; Tanaka, K.; Murakami, K.; Hirota, Y.; Child Health Study Group. Maternal dietary patterns in pregnancy and fetal growth in Japan: The Osaka Maternal and Child Health Study. Br. J. Nutr. 2012, 107, 1526–1533. [Google Scholar] [CrossRef]
- Kennedy, E.T.; Ohls, J.; Carlson, S.; Fleming, K. The Healthy Eating Index: Design and applications. J. Am. Diet. Assoc. 1995, 95, 1103–1108. [Google Scholar] [CrossRef]
- Sacks, F.M.; Svetkey, L.P.; Vollmer, W.M.; Appel, L.J.; Bray, G.A.; Harsha, D.; Obarzanek, E.; Conlin, P.R.; Miller, E.R.; Simons-Morton, D.G.; et al. Effects on blood pressure of reduced dietary sodium and the Dietary Approaches to Stop Hypertension (DASH) diet. N. Engl. J. Med. 2001, 344, 3–10. [Google Scholar] [CrossRef]
- Katz, D.L.; Doughty, K.N.; Geagan, K.; Jenkins, D.A.; Gardner, C.D. Application of the Healthy Eating Index in a multicultural population: Introduction of Adaptive Component Scoring. Front. Nutr. 2025, 12, 1511230. [Google Scholar] [CrossRef]
- Kant, A.K. Indexes of overall diet quality: A review. J. Am. Diet. Assoc. 1996, 96, 785–791. [Google Scholar] [CrossRef]
- Choi, H.; Kwak, D.W.; Kim, M.H.; Lee, S.Y.; Chung, J.H.; Han, Y.J.; Park, H.J.; Kim, M.Y.; Cha, D.H.; Koo, S.; et al. The Korean Pregnancy Outcome Study (KPOS): Study Design and Participants. J. Epidemiol. 2021, 31, 392–400. [Google Scholar] [CrossRef]
- Kim, S.; Park, C.Y. Validity of Interviewer-Administered 24-h Dietary Recalls in Older Korean Women: A Pilot Study. Nutrients 2023, 15, 1757. [Google Scholar] [CrossRef]
- Korean Nutrition Society. CAN-Pro 5.0 (Computer Aided Nutritional Analysis Program), Professional Edition; Computer Software; Korean Nutrition Society: Seoul, Republic of Korea, 2015. [Google Scholar]
- Hatloy, A.; Torheim, L.E.; Oshaug, A. Food variety—A good indicator of nutritional adequacy of the diet? Eur. J. Clin. Nutr. 1998, 52, 891–898. [Google Scholar] [CrossRef] [PubMed]
- Ministry of Health and Welfare; The Korean Nutrition Society. Dietary Reference Intakes for Koreans 2020; Ministry of Health and Welfare: Seoul, Republic of Korea, 2020.
- Craig, C.L.; Marshall, A.L.; Sjöström, M.; Bauman, A.E.; Booth, M.L.; Ainsworth, B.E.; Pratt, M.; Ekelund, U.; Yngve, A.; Sallis, J.F.; et al. International Physical Activity Questionnaire: 12-Country Reliability and Validity. Med. Sci. Sports Exerc. 2003, 35, 1381–1395. [Google Scholar] [CrossRef] [PubMed]
- WHO Expert Consultation. Appropriate body-mass index for Asian populations and its implications for policy and intervention strategies. Lancet 2004, 363, 157–163. [Google Scholar] [CrossRef] [PubMed]
- Looman, M.; Schoenaker, D.A.J.M.; Soedamah-Muthu, S.S.; Mishra, G.D.; Geelen, A.; Feskens, E.J.M. Pre-pregnancy dietary micronutrient adequacy is associated with lower risk of developing gestational diabetes in Australian women. Nutr. Res. 2019, 62, 32–40. [Google Scholar] [CrossRef]
- Schoenaker, D.A.; Mishra, G.D.; Callaway, L.K.; Soedamah-Muthu, S.S. The Role of Energy, Nutrients, Foods, and Dietary Patterns in the Development of Gestational Diabetes Mellitus: A Systematic Review of Observational Studies. Diabetes Care. 2016, 39, 16–23. [Google Scholar] [CrossRef]
- Wu, Y.; Zhang, Q.; Xiao, X. The effect and potential mechanism of maternal micronutrient intake on offspring glucose metabolism: An emerging field. Front. Nutr. 2021, 8, 763809. [Google Scholar] [CrossRef]
- Machairiotis, N.; Vasilakaki, S.; Minns, L.; Malakasis, A. Nutrients that modulate gestational diabetes mellitus: A systematic review of cohort studies Jan 2019–Jan 2020. Int. J. Clin. Pract. 2021, 75, e14033. [Google Scholar] [CrossRef]
- Cheong, L.; Law, L.S.-C.; Tan, L.Y.L.; Amal, A.A.-A.; Khoo, C.M.; Eng, P.C. Medical Nutrition Therapy for Women with Gestational Diabetes: Current Practice and Future Perspectives. Nutrients 2025, 17, 1210. [Google Scholar] [CrossRef]
- Zhang, T.; Yang, L.; Yang, S.; Gao, S. Vitamin D on the susceptibility of gestational diabetes mellitus: A mini-review. Front. Nutr. 2025, 12, 1514148. [Google Scholar] [CrossRef]
- Wang, M.; Chen, Z.; Hu, Y.; Wang, Y.; Wu, Y.; Lian, F.; Li, H.; Yang, J.; Xu, X. The effects of vitamin D supplementation on glycemic control and maternal outcomes in women with GDM: A meta-analysis of RCTs. Clin. Nutr. 2021, 40, 4773–4783. [Google Scholar] [CrossRef]
- O’Connor, E.M.; Durack, E. Osteocalcin: The extra-skeletal role of a vitamin K-dependent protein in glucose metabolism. J. Nutr. Intermed. Metab. 2017, 7, 8–13. [Google Scholar] [CrossRef]
- Suksomboon, N.; Poolsup, N.; Darli Ko Ko, H. Effect of vitamin K supplementation on insulin sensitivity: A meta-analysis. Diabetes Metab. Syndr. Obes. 2017, 10, 169–177. [Google Scholar] [CrossRef] [PubMed]
- Fields, A.M.; Welle, K.; Ho, E.S.; Mesaros, C.; Susiarjo, M. Vitamin B6 deficiency disrupts serotonin signaling in pancreatic islets and induces gestational diabetes in mice. Commun. Biol. 2021, 4, 421. [Google Scholar] [CrossRef]
- Qin, Y.; Song, Q.; Jiang, X.; Su, Y.; Chen, H.; Ji, X.; Xu, S. Correlation between serum vitamin levels and gestational diabetes mellitus. Front. Endocrinol. 2025, 16, 1569654. [Google Scholar] [CrossRef]
- Pretorius, M.; Huang, C. Beta-Cell Adaptation to Pregnancy—Role of Calcium Dynamics. Front. Endocrinol. 2022, 13, 853876. [Google Scholar] [CrossRef]
- Haidery, F.; Lambertini, L.; Tse, I.; Dodda, S.; Garcia-Ocaña, A.; Scott, D.K.; Baumel-Alterzon, S. NRF2 deficiency leads to inadequate beta cell adaptation during pregnancy and gestational diabetes. Redox Biol. 2025, 81, 103566. [Google Scholar] [CrossRef]
- Khanna, D.; Khanna, S.; Khanna, P.; Kahar, P.; Patel, B.M. Obesity: A Chronic Low-Grade Inflammation and Its Markers. Cureus 2022, 14, e22711. [Google Scholar] [CrossRef]
- Parrettini, S.; Caroli, A.; Torlone, E. Nutrition and Metabolic Adaptations in Physiological and Complicated Pregnancy: Focus on Obesity and Gestational Diabetes. Front. Endocrinol. 2020, 11, 611929. [Google Scholar] [CrossRef]
- Lowe, N.M. The global challenge of hidden hunger: Perspectives from the field. Proc. Nutr. Soc. 2021, 80, 283–289. [Google Scholar] [CrossRef]
- Weffort, V.R.S.; Lamounier, J.A. Hidden hunger—A narrative review. J. Pediatr. 2024, 100, S10–S17. [Google Scholar] [CrossRef]
- Blasetti, A.; Quarta, A.; Guarino, M.; Cicolini, I.; Iannucci, D.; Giannini, C.; Chiarelli, F. Role of Prenatal Nutrition in the Development of Insulin Resistance in Children. Nutrients 2022, 15, 87. [Google Scholar] [CrossRef]


| Nutritional Assessment Term | Abbreviation | Definition |
|---|---|---|
| Estimated Average Requirement | EAR | Daily nutrient intake level needed to meet the requirements of half the healthy individuals in a particular life stage and gender group |
| Adequate Intake | AI | Average daily nutrient intake level based on observed or experimentally determined approximations or estimates of nutrient intakes by a group of apparently healthy people that are assumed to be adequate |
| Recommended Dietary Intake | RDI | The average daily dietary intake level that is sufficient to meet the nutrient requirements of nearly all (97–98 percent) healthy individuals in a particular life stage and gender group |
| Characteristic | Total (n = 2227) | MAR Q1 (n = 556) | Q2 (n = 557) | Q3 (n = 557) | MAR Q4 (n = 557) | p |
|---|---|---|---|---|---|---|
| Median MAR (range) a | 0.62 (0.07–0.68) | 0.72 (0.68–0.76) | 0.79 (0.76–0.83) | 0.87 (0.83–0.99) | ||
| Age, years | 33.4 ± 3.8 | 33.2 ± 3.7 | 33.3 ± 3.8 | 33.6 ± 4.0 | 33.6 ± 3.8 | 0.34 |
| Educational level | ||||||
| High school | 203 | 79 (14.1) | 47 (8.4) | 37 (6.6) | 44 (7.8) | <0.001 |
| college | 1657 | 403 (71.7) | 424 (75.4) | 434 (77.1) | 409 (72.8) | |
| graduate | 367 | 80 (14.2) | 91 (16.2) | 92 (16.3) | 109 (19.4) | |
| Income b | ||||||
| <4 million/Korean won | 747 | 205 (36.5) | 175 (31.1) | 187 (33.2) | 191 (34.0) | 0.299 |
| ≥4 million/Korean won | 1480 | 357 (63.5) | 387 (68.9) | 376 (66.8) | 371 (66.0) | |
| Employment status | ||||||
| Employed | 1384 | 336 (59.8) | 368 (65.5) | 361 (64.1) | 328 (58.4) | 0.041 |
| Not employed | 843 | 226 (40.2) | 194 (34.5) | 202 (35.9) | 234 (41.6) | |
| MVPA participation before pregnancy c | ||||||
| Yes | 1342 | 344 (61.2) | 304 (54.1) | 356 (63.2) | 356 (63.3) | 0.004 |
| No | 885 | 218 (38.8) | 258 (45.9) | 207 (36.8) | 206 (36.7) | |
| MVPA participation in 1st trimester c | ||||||
| Yes | 705 | 180 (32.0) | 158 (28.1) | 198 (35.2) | 182 (32.4) | 0.088 |
| No | 1522 | 382 (68.0) | 404 (71.9) | 365 (64.8) | 380 (67.6) | |
| Dietary supplement use | ||||||
| Yes | 2166 | 543 (96.6) | 541 (96.3) | 553 (98.2) | 551 (98.0) | 0.099 |
| No | 61 | 19 (3.4) | 21 (3.7) | 10 (1.8) | 11 (2.0) | |
| Alcohol use | ||||||
| Yes | 1874 | 481 (85.6) | 472 (84.0) | 477 (84.7) | 459 (81.7) | 0.316 |
| No | 353 | 81 (14.4) | 90 (16.0) | 86 (15.3) | 103 (18.3) | |
| Smoking currently | ||||||
| Never smoked | 1970 | 478 (85.1) | 499 (88.8) | 512 (90.9) | 502 (89.3) | 0.05 |
| Pre-pregnancy smoking | 189 | 58 (10.3) | 50 (8.9) | 37 (6.6) | 45 (8.0) | |
| Smoking in early pregnancy d | 68 | 26 (4.6) | 13 (2.3) | 14 (2.5) | 15 (2.7) | |
| Parity | ||||||
| 0 | 1313 | 353 (62.8) | 341 (60.7) | 319 (56.7) | 312 (55.5) | 0.044 |
| ≥1 | 914 | 209 (37.2) | 221 (39.3) | 244 (43.3) | 250 (44.5) | |
| History of Diabetes Mellitus | ||||||
| Yes | 6 (1.1) | 7 (1.2) | 5 (0.9) | 4 (0.7) | 0.821 | |
| No | 2227 | 556 (98.9) | 555 (98.8) | 558 (99.1) | 558 (99.3) | |
| Nausea and vomiting of pregnancy | ||||||
| No | 446 | 89 (15.8) | 127 (22.6) | 115 (20.4) | 125 (22.2) | 0.083 |
| Mild NVP | 1373 | 363 (64.6) | 331 (58.9) | 345 (61.3) | 345 (61.4) | |
| Severe NVP | 408 | 110 (19.6) | 104 (18.5) | 103 (18.3) | 92 (16.4) | |
| Pre-pregnancy BMI category | ||||||
| <18.5 kg/m2 | 296 | 72 (12.8) | 67 (11.9) | 86 (15.3) | 71 (12.6) | 0.457 |
| 18.5–22.9 kg/m2 | 1454 | 348 (61.9) | 371 (66.0) | 365 (64.8) | 375 (66.7) | |
| 23.0–24.9 kg/m2 | 227 | 64 (11.4) | 61 (10.9) | 53 (9.4) | 56 (10.0) | |
| ≥25.0 kg/m2 | 250 | 78 (13.9) | 63 (11.2) | 59 (10.5) | 60 (10.7) | |
| Hypertension | ||||||
| Yes | 33 | 14 (2.5) | 7 (1.2) | 6 (1.1) | 11 (2.0) | 0.221 |
| No | 2194 | 548 (97.5) | 555 (98.8) | 557 (98.9) | 551 (98.0) | |
| Gestational Diabetes Mellitus | ||||||
| Yes | 157 | 49 (8.8) | 45 (8.1) | 34 (6.1) | 29 (5.2) | 0.066 |
| No | 2070 | 507 (91.2) | 512 (91.9) | 523 (93.9) | 528 (94.8) | |
| Total energy intake (kcal/day) | 1729.0 ± 492.0 | 1327.8 ± 366.4 | 1663.8 ± 384.7 | 1820.0 ± 383.1 | 2103.6 ± 475.5 | <0.001 |
| Total carbohydrate intake (E%) | 58.5 ± 10.4 | 60.6 ± 13.6 | 58.7 ± 9.6 | 58.6 ± 8.6 | 56.2 ± 8.5 | <0.001 |
| Total protein intake (E%) | 16.4 ± 6.0 | 15.7 ± 10.8 | 15.9 ± 3.0 | 16.6 ± 2.9 | 17.5 ± 3.0 | <0.001 |
| Quartiles of Mean Adequacy Ratio | p for Trend d | ||||
|---|---|---|---|---|---|
| Quartile 1 | Quartile 2 | Quartile 3 | Quartile 4 | ||
| Median MAR | 0.62 | 0.72 | 0.79 | 0.87 | |
| GDM cases/Normal cases | 49/507 | 45/512 | 34/523 | 29/528 | |
| Model 1 a | 1.760 (1.080–2.867) | 1.719 (1.049–2.816) | 1.242 (0.738–2.092) | 1.00 (ref) c | 0.013 |
| Model 2 b | 1.815 (1.100–2.994) | 1.750 (1.061–2.884) | 1.270 (0.753–2.143) | 1.00 (ref) c | 0.012 |
| Dietary Intake | EAR (AI) | Normal (n = 2070) | GDM (n = 157) | p | Normal (n = 2070) | GDM (n = 157) | Chi-Squared | Relative Risk |
|---|---|---|---|---|---|---|---|---|
| Mean (SD) | Mean (SD) | % Below EAR/AI a | % Below EAR/AI a | |||||
| Energy, kcal/d | 2000–1900 * | 1730.9 ± 486.5 | 1703.0 ± 559.8 | 0.492 | 68.7 | 70.7 | 0.610 | 1.09 (0.78–1.52) |
| Energy-adjusted carbohydrate, g/d | 135 | 280.7 ± 44.4 | 277.3 ± 43.1 | 0.347 | 4 | 3.2 | 0.628 | 0.81 (0.34–1.92) |
| Energy-adjusted lipid, g/d | - | 62.1 ± 52.1 | 62.2 ± 16.9 | 0.985 | ||||
| Energy-adjusted protein, g/d | 45–40 | 80.6 ± 24.2 | 79.5 ± 16.1 | 0.570 | 6.7 | 9.6 | 0.176 | 1.42 (0.86–2.36) |
| Dietary fiber, g/d | (25) | 20.7 ± 7.2 | 20.2 ± 7.6 | 0.431 | 76.8 | 77.7 | 0.798 | 1.05 (0.73–1.51) |
| Vitamin A, μg RAE/d | 510–500 | 506.4 ± 323.7 | 469.9 ± 265.4 | 0.169 | 57.9 | 62.4 | 0.266 | 1.19 (0.87–1.63) |
| Thiamin, mg/d | 1.3 | 1.3 ± 0.7 | 1.3 ± 0.7 | 0.971 | 58.4 | 59.2 | 0.839 | 1.03 (0.76–1.40) |
| Riboflavin, mg/d | 1.3 | 1.3 ± 0.6 | 1.2 ± 0.5 | 0.315 | 58.6 | 61.1 | 0.532 | 1.10 (0.81–1.50) |
| Niacin, mg NE/d | 14 | 16.4 ± 10.3 | 15.2 ± 6.8 | 0.164 | 40.1 | 51.6 | 0.005 | 1.54 (1.14–2.08) |
| Vitamin B6, mg/d | 1.9 | 1.6 ± 0.7 | 1.5 ± 0.6 | 0.040 | 74.2 | 82.8 | 0.017 | 1.62 (1.08–2.43) |
| Folate, μg DFE/d | 340 | 560.7 ± 213.5 | 526.4 ± 200.7 | 0.052 | 46.9 | 54.8 | 0.057 | 1.34 (0.99–1.82) |
| Vitamin B12, μg/d | 2.2 | 9.0 ± 6.6 | 7.9 ± 6.1 | 0.062 | 6.6 | 8.9 | 0.258 | 1.36 (0.80–2.29) |
| Vitamin C, mg/d | 85 | 118.5 ± 77.0 | 104.1 ± 66.8 | 0.022 | 41.1 | 48.4 | 0.074 | 1.32 (0.97–1.78) |
| Vitamin D, μg/d | (10) | 4.01 ± 5.3 | 3.6 ± 3.2 | 0.087 | 92.7 | 98.1 | 0.010 | 3.84 (1.24–11.90) |
| Vitamin E, mg α-TE/d | (12) | 16.9 ± 7.5 | 16.1 ± 7.3 | 0.212 | 26.8 | 31.2 | 0.232 | 1.22 (0.88–1.69) |
| Vitamin K, μg/d | (65) | 274.6 ± 204.2 | 262.3 ± 207.0 | 0.466 | 5.0 | 9.6 | 0.014 | 1.89 (1.15–3.11) |
| Calcium, mg/d | 550 | 557.0 ± 250.3 | 535.8 ± 271.1 | 0.310 | 55.1 | 63.7 | 0.037 | 1.39 (1.02–1.91) |
| Iron, mg/d | 19 | 14.3 ± 5.5 | 13.6 ± 5.2 | 0.106 | 85.4 | 86.6 | 0.677 | 1.10 (0.71–1.71) |
| Magnesium, mg/d | 260–270 | 81.1 ± 49.1 | 72.6 ± 43.7 | 0.035 | 99.6 | 100 | 0.435 | - |
| Selenium, μg/d | 53 | 97.3 ± 36.1 | 92.3 ± 35.4 | 0.092 | 7.7 | 11.5 | 0.096 | 1.49 (0.94–2.38) |
| Phosphorus, mg/d | 580 | 1113.9 ± 354.3 | 1072.7 ± 362.3 | 0.161 | 3.8 | 6.4 | 0.107 | 1.65 (0.90–3.03) |
| Zinc, mg/d | 9 | 10.0 ± 3.5 | 9.8 ± 3.6 | 0.610 | 42.0 | 46.5 | 0.275 | 1.18 (0.88–1.60) |
| Copper, μg/d | 600 | 1159.1 ± 401.2 | 1146.7 ± 436.1 | 0.712 | 4.2 | 6.4 | 0.200 | 1.49 (0.81–2.74) |
| Sodium, mg/d | (3000) | 4279.4 ± 1468.8 | 4267.3 ± 1729.5 | 0.932 | 19.7 | 26.1 | 0.054 | 1.40 (0.99–1.97) |
| Potassium, mg/d | (3500) | 2917.7 ± 1019.7 | 2736.5 ± 874.5 | 0.030 | 76.4 | 82.2 | 0.100 | 1.39 (0.94–2.07) |
| Subgroup | Quartiles of Mean Adequacy Ratio | p for Trend b | ||||
|---|---|---|---|---|---|---|
| Quartile 1 | Quartile 2 | Quartile 3 | Quartile 4 | |||
| Median MAR | 0.62 | 0.72 | 0.79 | 0.87 | ||
| BMI ≤ 22.9 kg/m2 (n = 1730) | GDM/Normal a | 24/395 | 25/414 | 20/429 | 17/426 | |
| Model c | 1.96 (1.01–3.79) | 1.86 (0.97–3.57) | 1.31 (0.67–2.57) | 1.00 (ref) d | 0.031 | |
| BMI 23.0–24.9 kg/m2 (n = 227) | GDM/Normal | 7/55 | 5/53 | 3/49 | 7/48 | |
| Model c | 0.87 (0.26–2.92) | 0.62 (0.17–2.21) | 0.40 (0.10–1.68) | 1.00 (ref) | 0.999 | |
| BMI ≥ 25.0 kg/m2 (n = 250) | GDM/Normal | 18/57 | 15/45 | 11/45 | 5/54 | |
| Model c | 3.17 (0.99–10.15) | 4.20 (1.30–13.50) | 2.64 (0.81–8.58) | 1.00 (ref) | 0.037 | |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, H.-J.; Lee, H.J.; Kim, J.W.; Yang, S.J.; Kim, J.Y.; Choi, Y.J.; Kim, S.; Kim, N.; Kim, Y.R.; Jung, S.H.; et al. Early Pregnancy Nutritional Adequacy and Subsequent Gestational Diabetes Risk by Body Mass Index: A Prospective Cohort Study of 2227 Korean Women. Nutrients 2025, 17, 3569. https://doi.org/10.3390/nu17223569
Han H-J, Lee HJ, Kim JW, Yang SJ, Kim JY, Choi YJ, Kim S, Kim N, Kim YR, Jung SH, et al. Early Pregnancy Nutritional Adequacy and Subsequent Gestational Diabetes Risk by Body Mass Index: A Prospective Cohort Study of 2227 Korean Women. Nutrients. 2025; 17(22):3569. https://doi.org/10.3390/nu17223569
Chicago/Turabian StyleHan, Hye-Ji, Hyun Jung Lee, Jin Woo Kim, Su Ji Yang, Ju Yeon Kim, Yong Jun Choi, Seoyeon Kim, Nari Kim, Young Ran Kim, Sang Hee Jung, and et al. 2025. "Early Pregnancy Nutritional Adequacy and Subsequent Gestational Diabetes Risk by Body Mass Index: A Prospective Cohort Study of 2227 Korean Women" Nutrients 17, no. 22: 3569. https://doi.org/10.3390/nu17223569
APA StyleHan, H.-J., Lee, H. J., Kim, J. W., Yang, S. J., Kim, J. Y., Choi, Y. J., Kim, S., Kim, N., Kim, Y. R., Jung, S. H., Jang, J. H., Hwang, Y., Kim, M. H., Kim, M. Y., Lim, J. H., & Ryu, H. M. (2025). Early Pregnancy Nutritional Adequacy and Subsequent Gestational Diabetes Risk by Body Mass Index: A Prospective Cohort Study of 2227 Korean Women. Nutrients, 17(22), 3569. https://doi.org/10.3390/nu17223569

