Nutrition Strategies for the Preterm Infant with Bronchopulmonary Dysplasia
Abstract
1. Introduction
2. Literature Search
3. Nutrition Strategies for the BPD Prevention
4. Impact of Parenteral Nutrition
5. Macronutrients and Total Energy Delivery
6. Impact of Enteral Nutrition and Human Milk
6.1. Human Milk vs. Formula
6.2. Mother’s Own Milk vs. Donor Human Milk
6.3. Fresh vs. Pasteurized HM
6.4. Use of Human Milk Fortification
7. Long-Chain Polyunsaturated Fatty Acids
8. Vitamin Supplementation
9. Summary Nutrition Strategies for BPD Prevention
10. Nutritional Strategies for Infants with Established BPD
11. Energy Demands, Growth, and Metabolic Challenges
12. Feeding Difficulties and Nutritional Barriers
13. Nutritional Strategies and Interventions
14. Post-Discharge Nutrition and Long-Term Outcomes
15. Summary Nutrition Strategies for Established BPD
16. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| ARA | Arachidonic Acid |
| DHA | Docosahexaenoic Acid |
| DHM | Donor Human Milk |
| EN | Enteral Nutrition |
| EPT | Extremely Preterm |
| HM | Human Milk |
| HMOs | Human milk oligosaccharides |
| IVLEs | Intravenous Lipid Emulsions |
| LCPUFAs | Long-chain polyunsaturated fatty acids |
| MOM | Mother’s Own Milk |
| MV | Mechanical Ventilation |
| NEC | Necrotizing Enterocolitis |
| PF | Preterm Formula |
| PMA | Postmenstrual Age |
| PN | Parenteral Nutrition |
| ROP | Retinopathy of Prematurity |
| SCFAs | Short-Chain Fatty Acids |
| SMOF | soya-bean oil, medium-chain triglycerides, olive oil and fish oil |
| VLBW | Very Low Birth Weight |
References
- Poindexter, B.B.; Martin, C.R. Impact of Nutrition on Bronchopulmonary Dysplasia. Clin. Perinatol. 2015, 42, 797–806. [Google Scholar] [CrossRef] [PubMed]
- Rocha, G.; Guimarães, H.; Pereira-Da-silva, L. The role of nutrition in the prevention and management of bronchopulmonary dysplasia: A literature review and clinical approach. Int. J. Environ. Res. Public Health 2021, 18, 6245. [Google Scholar] [CrossRef]
- Bancalari, E.; Jain, D. Bronchopulmonary Dysplasia: 50 Years after the Original Description. Neonatology 2019, 115, 384–391. [Google Scholar] [CrossRef]
- Ambalavanan, N.; Deutsch, G.; Pryhuber, G.; Travers, C.P.; Willis, K.A. The evolving pathophysiology of bronchopulmonary dysplasia. Physiol. Rev. 2026, 106, 197–237. [Google Scholar] [CrossRef]
- Uberos, J.; Jimenez-Montilla, S.; Molina-Oya, M.; García-Serrano, J.L. Early energy restriction in premature infants and bronchopulmonary dysplasia: A cohort study. Br. J. Nutr. 2020, 123, 1024–1031. [Google Scholar] [CrossRef]
- Gilfillan, M.; Bhandari, A.; Bhandari, V. Diagnosis and management of bronchopulmonary dysplasia. BMJ 2021, 375, n1974. [Google Scholar] [CrossRef]
- Carlson, S.J. Invited Review Current Nutrition Management of Infants with Chronic Lung Disease. Nutr. Clin. Pract. 2004, 19, 581–586. [Google Scholar] [CrossRef] [PubMed]
- Hwang, J.S.; Rehan, V.K. Recent Advances in Bronchopulmonary Dysplasia: Pathophysiology, Prevention, and Treatment. Lung 2018, 196, 129–138. [Google Scholar] [CrossRef]
- Milanesi, B.G.; Lima, P.A.; Villela, L.D.; Martins, A.S.; Gomes-Junior, S.C.S.; Moreira, M.E.L.; Méio, M.D.B.B. Assessment of early nutritional intake in preterm infants with bronchopulmonary dysplasia: A cohort study. Eur. J. Pediatr. 2021, 180, 1423–1430. [Google Scholar] [CrossRef] [PubMed]
- Thiess, T.; Lauer, T.; Woesler, A.; Neusius, J.; Stehle, S.; Zimmer, K.-P.; Eckert, G.P.; Ehrhardt, H. Correlation of Early Nutritional Supply and Development of Bronchopulmonary Dysplasia in Preterm Infants <1,000 g. Front. Pediatr. 2021, 9, 741365. [Google Scholar] [CrossRef] [PubMed]
- Al-Jebawi, Y.; Argawal, N.; Groh Wargo, S.; Shekhawat, P.; Mhanna, M.J. Low caloric intake and high fluid intake during the first week of life are associated with the severity of bronchopulmonary dysplasia in extremely low birth weight infants. J. Neonatal Perinat. Med. 2020, 13, 207–214. [Google Scholar] [CrossRef]
- Panagiotounakou, P.; Sokou, R.; Gounari, E.; Konstantinidi, A.; Antonogeorgos, G.; Grivea, I.N.; Daniil, Z.; Gourgouliannis, K.I.; Gounaris, A. Very preterm neonates receiving “aggressive” nutrition and early nCPAP had similar long-term respiratory outcomes as term neonates. Pediatr. Res. 2019, 86, 742–748. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Chang, S.S.Y.; Poon, W.B. Relationship between Amino Acid and Energy Intake and Long-Term Growth and Neurodevelopmental Outcomes in Very Low Birth Weight Infants. J. Parenter. Enter. Nutr. 2016, 40, 820–826. [Google Scholar] [CrossRef] [PubMed]
- Lin, H.; Bai, G.; Ge, J.; Chen, X.; He, X.; Ma, X.; Shi, L.; Du, L.; Chen, Z. Nutritional support during the first week for infants with bronchopulmonary dysplasia and respiratory distress: A multicenter cohort study in China. BMC Pediatr. 2024, 24, 238. [Google Scholar] [CrossRef]
- Wang, Y.L.; Chen, L.J.; Tsao, L.Y.; Chen, H.N.; Lee, C.H.; Hsiao, C.C. Parenteral nutrition with fish oil-based lipid emulsion reduces the risk of cholestasis in preterm infants. J. Int. Med. Res. 2021, 49, 3000605211011805. [Google Scholar] [CrossRef]
- Ndiaye, A.B.; Mohamed, I.; Pronovost, E.; Angoa, G.; Piedboeuf, B.; Lemyre, B.; Afifi, J.; Qureshi, M.; Sériès, T.; Guillot, M.; et al. Use of SMOF lipid emulsion in very preterm infants does not affect the incidence of bronchopulmonary dysplasia–free survival. J. Parenter. Enter. Nutr. 2022, 46, 1892–1902. [Google Scholar] [CrossRef]
- Fan, X.; Tang, Y.; Tang, J.; Chen, J.; Shi, J.; Wang, H.; Xia, B.; Qu, Y.; Mu, D. New-generation intravenous fat emulsions and bronchopulmonary dysplasia in preterm infants: A systematic review and meta-analysis. J. Perinatol. 2020, 40, 1585–1596. [Google Scholar] [CrossRef]
- Klevebro, S.; Westin, V.; Sjöström, E.S.; Norman, M.; Domellöf, M.; Bonamy, A.-K.E.; Hallberg, B. Early energy and protein intakes and associations with growth, BPD, and ROP in extremely preterm infants. Clin. Nutr. 2019, 38, 1289–1295. [Google Scholar] [CrossRef] [PubMed]
- Kolitz, D.; Przystac, L.; Tucker, R.; Oh, W.; Stonestreet, B.S. Higher fluid and lower caloric intakes: Associated risk of severe bronchopulmonary dysplasia in ELBW infants. J. Perinatol. 2024, 44, 941–946. [Google Scholar] [CrossRef]
- Webbe, J.W.H.; Longford, N.; Battersby, C.; Oughham, K.; Uthaya, S.N.; Modi, N.; Gale, C. Outcomes in relation to early parenteral nutrition use in preterm neonates born between 30 and 33 weeks’ gestation: A propensity score matched observational study. Arch. Dis. Child. Fetal Neonatal Ed. 2022, 107, 131–136. [Google Scholar] [CrossRef]
- Uthaya, S.; Longford, N.; Battersby, C.; Oughham, K.; Lanoue, J.; Modi, N. Early versus later initiation of parenteral nutrition for very preterm infants: A propensity score-matched observational study. Arch. Dis. Child. Fetal Neonatal Ed. 2022, 107, 137–142. [Google Scholar] [CrossRef]
- Bell, E.F.; Acarregui, M.J. Restricted versus liberal water intake for preventing morbidity and mortality in preterm infants. Cochrane Database Syst. Rev. 2014, 2014, CD000503. [Google Scholar] [CrossRef] [PubMed]
- Starr, M.C.; Griffin, R.; Gist, K.M.; Segar, J.L.; Raina, R.; Guillet, R.; Nesargi, S.; Menon, S.; Anderson, N.; Askenazi, D.J.; et al. Association of Fluid Balance with Short- and Long-term Respiratory Outcomes in Extremely Premature Neonates: A Secondary Analysis of a Randomized Clinical Trial. JAMA Netw. Open 2022, 5, E2248826. [Google Scholar] [CrossRef] [PubMed]
- Malikiwi, A.I.; Lee, Y.M.; Davies-Tuck, M.; Wong, F.Y. Postnatal nutritional deficit is an independent predictor of bronchopulmonary dysplasia among extremely premature infants born at or less than 28 weeks gestation. Early Hum. Dev. 2019, 131, 29–35. [Google Scholar] [CrossRef]
- Travers, C.P.; Wang, T.; Salas, A.A.; Schofield, E.; Dills, M.; Laney, D.; Yee, A.; Bhatia, A.; Winter, L.; Ambalavanan, N.; et al. Higher- or Usual-Volume Feedings in Infants Born Very Preterm: A Randomized Clinical Trial. J. Pediatr. 2020, 224, 66–71.e1. [Google Scholar] [CrossRef] [PubMed]
- Konnikova, Y.; Zaman, M.M.; Makda, M.; D’Onofrio, D.; Freedman, S.D.; Martin, C.R. Late enteral feedings are associated with intestinal inflammation and adverse neonatal outcomes. PLoS ONE 2015, 10, e0132924. [Google Scholar] [CrossRef]
- Zhu, Y.; Chen, X.; Zhu, J.; Jiang, C.; Yu, Z.; Su, A. Effect of First Mother’s Own Milk Feeding Time on the Risk of Moderate and Severe Bronchopulmonary Dysplasia in Infants With Very Low Birth Weight. Front. Pediatr. 2022, 10, 887028. [Google Scholar] [CrossRef]
- Uberos, J.; Sanchez-Ruiz, I.; Fernández-Marin, E.; Ruiz-López, A.; Cubero-Millan, I.; Campos-Martínez, A. Breast-feeding as protective factor against bronchopulmonary dysplasia in preterm infants. Br. J. Nutr. 2024, 131, 1405–1412. [Google Scholar] [CrossRef]
- Siddiqui, A.; Voynow, J.; Chahin, N.; Williams, A.; Xu, J.; Chavez, D.; Carroll, L.; Hendricks-Muñoz, K.D. Greater and Earlier Exposure of Mother’s Own Milk Compared to Donor Human Milk Moderates Risk and Severity of Bronchopulmonary Dysplasia. Breastfeed. Med. 2025, 20, 111–117. [Google Scholar] [CrossRef]
- Fonseca, L.T.; Senna, D.C.; Silveira, R.C.; Procianoy, R.S. Association between Breast Milk and Bronchopulmonary Dysplasia: A Single Center Observational Study. Am. J. Perinatol. 2017, 34, 264–269. [Google Scholar] [CrossRef]
- Patel, A.L.; Johnson, T.J.; Robin, B.; Bigger, H.R.; Buchanan, A.; Christian, E.; Nandhan, V.; Shroff, A.; Schoeny, M.; Engstrom, J.L.; et al. Influence of own mother’s milk on bronchopulmonary dysplasia and costs. Arch. Dis. Child. Fetal Neonatal Ed. 2017, 102, F256–F261. [Google Scholar] [CrossRef]
- Verd, S.; Porta, R.; Ginovart, G.; Avila-Alvarez, A.; Rodrigo, F.G.-M.; Renau, M.I.; Ventura, P.S. Human Milk Feeding Is Associated with Decreased Incidence of Moderate-Severe Bronchopulmonary Dysplasia in Extremely Preterm Infants. Children 2023, 10, 1267. [Google Scholar] [CrossRef]
- Yang, W.-C.; Fogel, A.; Lauria, M.E.; Ferguson, K.; Smith, E.R. Fast Feed Advancement for Preterm and Low Birth Weight Infants: A Systematic Review and Meta-analysis. Pediatrics 2022, 150. [Google Scholar] [CrossRef]
- Frazer, L.C.; Yakah, W.; Martin, C.R. Decreased Acetic Acid in the Stool of Preterm Infants Is Associated with an Increased Risk of Bronchopulmonary Dysplasia. Nutrients 2022, 14, 2412. [Google Scholar] [CrossRef]
- Villamor-Martínez, E.; Pierro, M.; Cavallaro, G.; Mosca, F.; Villamor, E. Mother’s own milk and bronchopulmonary dysplasia: A systematic review and meta-analysis. Front. Pediatr. 2019, 7, 224. [Google Scholar] [CrossRef] [PubMed]
- Villamor-Martínez, E.; Pierro, M.; Cavallaro, G.; Mosca, F.; Kramer, B.W.; Villamor, E. Donor human milk protects against bronchopulmonary dysplasia: A systematic review and meta-analysis. Nutrients 2018, 10, 238. [Google Scholar] [CrossRef]
- Huang, J.; Zhang, L.; Tang, J.; Shi, J.; Qu, Y.; Xiong, T.; Mu, D. Human milk as a protective factor for bronchopulmonary dysplasia: A systematic review and meta-analysis. Arch. Dis. Child. Fetal Neonatal Ed. 2019, 104, F128–F136. [Google Scholar] [CrossRef] [PubMed]
- Peng, W.; Han, J.; Li, S.; Zhang, L.; Yang, C.; Guo, J.; Cao, Y. The Association of Human Milk Feeding With Short-Term Health Outcomes Among Chinese Very/Extremely Low Birth Weight Infants. J. Hum. Lact. 2022, 38, 670–677. [Google Scholar] [CrossRef] [PubMed]
- Merino-Hernández, A.; Palacios-Bermejo, A.; Ramos-Navarro, C.; Caballero-Martín, S.; González-Pacheco, N.; Rodríguez-Corrales, E.; de Orgaz, M.C.S.-G.; Sánchez-Luna, M. Effect of Donated Premature Milk in the Prevention of Bronchopulmonary Dysplasia. Nutrients 2024, 16, 859. [Google Scholar] [CrossRef]
- Avila-Alvarez, A.; Fernandez-Gonzalez, S.M.; Sucasas-Alonso, A.; Ansede, A.S. Initiation of Enteral Feeding with Mother’s Own Milk or Donor Human Milk in Very Preterm Infants: Impact on Bronchopulmonary Dysplasia and Other Prematurity-Related Morbidities. Nutrients 2025, 17, 508. [Google Scholar] [CrossRef]
- Dicky, O.; Ehlinger, V.; Montjaux, N.; Gremmo-Féger, G.; Sizun, J.; Rozé, J.; Arnaud, C.; Casper, C. Policy of feeding very preterm infants with their mother’s own fresh expressed milk was associated with a reduced risk of bronchopulmonary dysplasia. Acta Paediatr. 2017, 106, 755–762. [Google Scholar] [CrossRef]
- Huang, J.; Zheng, Z.; Zhao, X.; Huang, L.; Wang, L.; Zhang, X.; Lin, X. Short-term effects of fresh mother’s own milk in very preterm infants. Matern. Child Nutr. 2023, 19, e13430. [Google Scholar] [CrossRef] [PubMed]
- Embleton, N.D.; Jennifer Moltu, S.; Lapillonne, A.; van den Akker, C.H.P.; Carnielli, V.; Fusch, C.; Gerasimidis, K.; van Goudoever, J.B.; Haiden, N.; Iacobelli, S.; et al. Enteral Nutrition in Preterm Infants (2022): A Position Paper from the ESPGHAN Committee on Nutrition and Invited Experts. J. Pediatr. Gastroenterol. Nutr. 2023, 76, 248–268. [Google Scholar] [CrossRef] [PubMed]
- Premkumar, M.H.; Pammi, M.; Suresh, G. Human milk-derived fortifier versus bovine milk-derived fortifier for prevention of mortality and morbidity in preterm neonates. Cochrane Database Syst. Rev. 2019, 2019, CD013145. [Google Scholar] [CrossRef] [PubMed]
- Carlson, S.E.; Colombo, J. Docosahexaenoic Acid and Arachidonic Acid Nutrition in Early Development. Adv. Pediatr. 2016, 63, 453–471. [Google Scholar] [CrossRef]
- Moltu, S.J.; Nordvik, T.; Rossholt, M.E.; Wendel, K.; Chawla, M.; Server, A.; Gunnarsdottir, G.; Pripp, A.H.; Domellöf, M.; Bratlie, M.; et al. Arachidonic and docosahexaenoic acid supplementation and brain maturation in preterm infants; a double blind RCT. Clin. Nutr. 2024, 43, 176–186. [Google Scholar] [CrossRef]
- Martin, C.R.; DaSilva, D.A.; Cluette-Brown, J.E.; DiMonda, C.; Hamill, A.; Bhutta, A.Q.; Coronel, E.; Wilschanski, M.; Stephens, A.J.; Driscoll, D.F.; et al. Decreased postnatal docosahexaenoic and arachidonic acid blood levels in premature infants are associated with neonatal morbidities. J. Pediatr. 2011, 159, 743–749.e2. [Google Scholar] [CrossRef]
- Manley, B.J.; Makrides, M.; Collins, C.T.; McPhee, A.J.; Gibson, R.A.; Ryan, P.; Sullivan, T.R.; Davis, P.G.; for the DINO Steering Committee. High-Dose Docosahexaenoic Acid Supplementation of Preterm Infants: Respiratory and Allergy Outcomes. Pediatrics 2011, 128, e71–e77. [Google Scholar] [CrossRef]
- Marc, I.; Boutin, A.; Pronovost, E.; Herrera, N.M.P.; Guillot, M.; Bergeron, F.; Moore, L.; Sullivan, T.R.; Lavoie, P.M.; Makrides, M. Association between Enteral Supplementation with High-Dose Docosahexaenoic Acid and Risk of Bronchopulmonary Dysplasia in Preterm Infants: A Systematic Review and Meta-analysis. JAMA Netw. Open 2023, 6, e233934. [Google Scholar] [CrossRef]
- Collins, C.T.; Makrides, M.; McPhee, A.J.; Sullivan, T.R.; Davis, P.G.; Thio, M.; Simmer, K.; Rajadurai, V.S.; Travadi, J.; Berry, M.J.; et al. Docosahexaenoic Acid and Bronchopulmonary Dysplasia in Preterm Infants. New Engl. J. Med. 2017, 376, 1245–1255. [Google Scholar] [CrossRef]
- Wackernagel, D.; Nilsson, A.K.; Sjöbom, U.; Hellström, A.; Klevebro, S.; Hansen-Pupp, I. Enteral supplementation with arachidonic and docosahexaenoic acid and pulmonary outcome in extremely preterm infants. Prostaglandins Leukot. Essent. Fat. Acids 2024, 201, 102613. [Google Scholar] [CrossRef]
- Marc, I.; Lavoie, P.M.; Sullivan, T.R.; Pronovost, E.; Boutin, A.; Beltempo, M.; Guillot, M.; Gould, J.F.; Simonyan, D.; McPhee, A.J.; et al. High-dose docosahexaenoic acid for bronchopulmonary dysplasia severity in very preterm infants: A collaborative individual participant data meta-analysis. Am. J. Clin. Nutr. 2025, 121, 826–834. [Google Scholar] [CrossRef] [PubMed]
- Meyer, S.; Bay, J.; Franz, A.R.; Ehrhardt, H.; Klein, L.; Petzinger, J.; Binder, C.; Kirschenhofer, S.; Stein, A.; Hüning, B.; et al. Early postnatal high-dose fat-soluble enteral vitamin A supplementation for moderate or severe bronchopulmonary dysplasia or death in extremely low birthweight infants (NeoVitaA): A multicentre, randomised, parallel-group, double-blind, placebo-controlled, investigator-initiated phase 3 trial. Lancet Respir. Med. 2024, 12, 544–555. [Google Scholar]
- Darlow, B.A.; Graham, P.J.; Rojas-Reyes, M.X. Vitamin A supplementation to prevent mortality and short- and long-term morbidity in very low birth weight infants. Cochrane Database Syst. Rev. 2016, 2016, CD000501. [Google Scholar] [CrossRef]
- Bronnert, A.; Bloomfield, P.M.; Páramo, L.D.; Lin, L.; Bloomfield, F.H.; Cormack, B.E. The effect of vitamin supplementation on neurodevelopmental and clinical outcomes in very low birth weight and very preterm infants: A systematic review and meta-analysis. PLoS ONE 2025, 20, e0327628. [Google Scholar] [CrossRef]
- De Meer, K.; Westerterp, K.R.; Houwen, R.H.J.; Brouwers, H.A.A.; Berger, R.; Okken, A. Total energy expenditure in infants with bronchopulmonary dysplasia is associated with respiratory status. Eur. J. Pediatr. 1997, 156, 299–304. [Google Scholar] [CrossRef]
- Principi, N.; Di Pietro, G.M.; Esposito, S. Bronchopulmonary dysplasia: Clinical aspects and preventive and therapeutic strategies. J. Transl. Med. 2018, 16, 36. [Google Scholar] [CrossRef]
- Davidson, S.; Schrayer, A.; Wielunsky, E.; Krikler, R.; Lilos, P.; Reisner, S.H. Energy Intake, Growth, and Development in Ventilated Very-Low-Birth-Weight Infants with and Without Bronchopulmonary Dysplasia. Am. J. Dis. Child. 1990, 144, 553–559. [Google Scholar] [CrossRef] [PubMed]
- Markestad, T.; Fitzhardinge, P.M. Growth and Development in Children recovering from Bronchopulmonary Dysplasia. J. Pediatr. 1981, 98, 597–602. [Google Scholar] [CrossRef]
- Bauer, S.E.; Huff, K.A.; Vanderpool, C.P.B.; Rose, R.S.; Cristea, A.I. Growth and nutrition in children with established bronchopulmonary dysplasia: A review of the literature. Nutr. Clin. Pract. 2022, 37, 282–298. [Google Scholar] [CrossRef]
- Huysman, W.A.; De Ridder, M.; De Bruin, N.C.; Van Helmond, G.; Terpstra, N.; Van Goudoever, J.B.; Sauer, P.J.J. Growth and body composition in preterm infants with bronchopulmonary dysplasia. Arch. Dis. Child. Fetal. Neonatal Ed. 2003, 88, F46–F51. [Google Scholar] [CrossRef]
- Stathis, S.L.; O’Callaghan, M.; Harvey, J.; Rogers, Y. Head circumference in ELBW babies is associated with learning difficulties and cognition but not ADHD in the school—Aged child. Dev. Med. Child. Neurol. 1999, 41, 375–380. [Google Scholar]
- Majnemer, A.; Riley, P.; Shevell, M.; Birnbaum, R.; Greenstone, H.; Coates, A.L. Severe bronchopulmonary dysplasia increases risk for later neurological and motor sequelae in preterm survivors. Dev. Med. Child. Neurol. 2000, 42, 53–60. [Google Scholar] [CrossRef]
- Biniwale, M.A.; Ehrenkranz, R.A. The Role of Nutrition in the Prevention and Management of Bronchopulmonary Dysplasia. Semin. Perinatol. 2006, 30, 200–208. [Google Scholar] [CrossRef]
- Jadcherla, S.R. Pathophysiology of aerodigestive pulmonary disorders in the neonate. Clin. Perinatol. 2012, 39, 639–654. [Google Scholar] [CrossRef]
- Nobile, S.; Noviello, C.; Cobellis, G.; Carnielli, V.P. Are Infants with Bronchopulmonary Dysplasia Prone to Gastroesophageal Reflux? A Prospective Observational Study with Esophageal pH-Impedance Monitoring. J. Pediatr. 2015, 167, 279–285.e1. [Google Scholar] [CrossRef]
- Jensen, E.A.; Dysart, K.; Gantz, M.G.; McDonald, S.; Bamat, N.A.; Keszler, M.; Kirpalani, H.; Laughon, M.M.; Poindexter, B.B.; Duncan, A.F.; et al. The Diagnosis of Bronchopulmonary Dysplasia in Very Preterm Infants An Evidence-based Approach. Am. J. Respir. Crit. Care Med. 2019, 200, 751–759. [Google Scholar] [CrossRef]
- Gaio, P.; Verlato, G.; Daverio, M.; Cavicchiolo, M.E.; Nardo, D.; Pasinato, A.; de Terlizzi, F.; Baraldi, E. Incidence of metabolic bone disease in preterm infants of birth weight <1250 g and in those suffering from bronchopulmonary dysplasia. Clin. Nutr. ESPEN 2018, 23, 234–239. [Google Scholar] [CrossRef]
- Joosten, K.; Embleton, N.; Yan, W.; Senterre, T.; The ESPGHAN/ESPEN/ESPR/CSPEN Working Group on Pediatric Parenteral Nutrition. ESPGHAN/ESPEN/ESPR/CSPEN guidelines on pediatric parenteral nutrition: Energy. Clin. Nutr. 2018, 37, 2309–2314. [Google Scholar] [CrossRef]
- van Goudoever, J.B.; Carnielli, V.; Darmaun, D.; de Pipaon, M.S.; The ESPGHAN/ESPEN/ESPR/CSPEN Working Group on Pediatric Parenteral Nutrition. ESPGHAN/ESPEN/ESPR/CSPEN guidelines on pediatric parenteral nutrition: Amino acids. Clin. Nutr. 2018, 37, 2315–2323. [Google Scholar] [CrossRef] [PubMed]
- Lapillonne, A.; Mis, N.F.; Goulet, O.; van den Akker, C.H.V.D.; Wu, J.; Koletzko, B.; Braegger, C.; Bronsky, J.; Cai, W.; Campoy, C.; et al. ESPGHAN/ESPEN/ESPR/CSPEN guidelines on pediatric parenteral nutrition: Lipids. Clin. Nutr. 2018, 37, 2324–2336. [Google Scholar] [CrossRef]
- Agostoni, C.; Buonocore, G.; Carnielli, V.P.; De Curtis, M.; Darmaun, D.; Decsi, T.; Domellöf, M.; Embleton, N.D.; Fusch, C.; Genzel-Boroviczeny, O.; et al. Enteral nutrient supply for preterm infants: Commentary from the european society of paediatric gastroenterology, hepatology and nutrition committee on nutrition. J. Pediatr. Gastroenterol. Nutr. 2010, 50, 85–91. [Google Scholar] [CrossRef]
- Giannì, M.L.; Roggero, P.; Colnaghi, M.R.; Piemontese, P.; Amato, O.; Orsi, A.; Morlacchi, L.; Mosca, F. The role of nutrition in promoting growth in pre-term infants with bronchopulmonary dysplasia: A prospective non-randomised interventional cohort study. BMC Pediatr. 2014, 14, 235. [Google Scholar] [CrossRef]
- Allen, J.; Zwerdling, R.; Ehrenkranz, R.; Gaultier, C.; Geggel, R.; Greenough, A.; Kleinman, R.; Klijanowicz, A.; Martinez, F.; Ozdemir, A.; et al. Statement on the care of the child with chronic lung disease of infancy and childhood. Am. J. Respir. Crit. Care Med. 2003, 168, 356–396. [Google Scholar] [CrossRef]
- Guimarães, H.; Rocha, G.; Guedes, M.B.; Guerra, P.; Silva, A.I.; Pissarra, S. Nutrition of preterm infants with bronchopulmonary dysplasia after hospital discharge—Part II. J. Pediatr. Neonatal Individ. Med. 2014, 3, 30117. [Google Scholar]
- Brunton, J.; Saigal, S.; Atkinson, S.A. Growth and body composition in infants with bronchopulmonary dysplasia up to 3 months corrected age: A randomized trial of a high energy nutrient-enriched formula fed after hospital discharge. J. Pediatr. 1997, 133, 340–345. [Google Scholar] [CrossRef]
- Lista, G.; Meneghin, F.; Bresesti, I.; Cavigioli, F. Nutritional problems of children with bronchopulmonary dysplasia after hospital discharge. Pediatr. Medica E Chirurgica. 2017, 39, 183. [Google Scholar] [CrossRef]
- Shaikhkhalil, A.K.; Curtiss, J.; Puthoff, T.D.; Valentine, C.J. Enteral zinc supplementation and growth in extremely-low-birth-weight infants with chronic lung disease. J. Pediatr. Gastroenterol. Nutr. 2014, 58, 183–187. [Google Scholar] [CrossRef]
- Pereira-Da-Silva, L.; Virella, D.; Fusch, C. Nutritional assessment in preterm infants: A Practical Approach in the NICU. Nutrients 2019, 11, 1999. [Google Scholar] [CrossRef]
- Bauer, S.E.; Vanderpool, C.P.B.; Ren, C.; Cristea, A.I. Nutrition and growth in infants with established bronchopulmonary dysplasia. Pediatr. Pulmonol. 2021, 56, 3557–3562. [Google Scholar] [CrossRef]
- Heras, A.; Chambers, R.; Solomon, Z.; Blatt, L.; Martin, C.R. Nutrition-based implications and therapeutics in the development and recovery of bronchopulmonary dysplasia. Semin. Perinatol. 2023, 47, 151818. [Google Scholar] [CrossRef] [PubMed]
| Category | Key Recommendations |
|---|---|
| Early Postnatal Nutrition | Adequate calories and macronutrients are critical; deficits in the first 1–4 weeks increase BPD risk. Target protein: 3.5–4 g/kg/day, lipids: 3–3.5 g/kg/day. Energy intake < 60 kcal/kg in week 1 doubles BPD risk. |
| Parenteral Nutrition | Early PN can provide essential protein and energy. Amino acids ≥ 1.5 g/kg/day in week 1 reduce mechanical ventilation duration and BPD incidence. SMOF lipid have theoretical anti-inflammatory benefits, but evidence is inconclusive. |
| Fluid Management | Initial fluid restriction may help, but nutrient-rich enteral feeds at adequate volumes are essential once tolerated. High early fluid volumes and low calorie-to-volume ratios increase BPD severity. |
| Enteral Nutrition | Early initiation (within 72 h) and sustained provision of MOM or DHM reduces BPD incidence and severity. Fresh MOM may be superior to pasteurized milk. |
| HM vs. Formula | Exclusive human milk feeding reduces BPD risk compared to formula; benefits are dose-dependent. DHM is a safe alternative when MOM is unavailable. |
| LCPUFAs | DHA and ARA support neurodevelopment and may aid lung maturation. High-dose DHA alone is not recommended. ARA/DHA ratio 2:1 is recommended [43]. |
| Vitamin Supplementation | Only intramuscular vitamin A shows modest BPD risk reduction. Vitamins C, D, E have no consistent benefit; oversupply may be harmful. |
| Nutrition in Established BPD | Infants require 15–25% higher energy. Protein 3.5–4 g/kg/day, energy 130–150 kcal/kg/day (up to 150 kcal/kg/day in severe cases). Fortified human milk or enriched formulas are preferred. |
| Micronutrients | Iron, zinc, sodium, calcium, phosphorus, vitamin D, selenium, and copper are important to support growth, bone health, and antioxidant defenses. |
| Feeding Challenges | Poor suck–swallow coordination, GER, oral aversion, and respiratory compromise often require tube feeding or gastrostomy. Multidisciplinary support is essential. |
| Post-Discharge Nutrition | Nutrient-enriched feedings should continue until catch-up growth. Close monitoring of growth, biochemical markers, and feeding tolerance is critical. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Trindade, G.S.; Benincasa, B.C.; Procianoy, G.S.; Silveira, R.C.; Procianoy, R.S. Nutrition Strategies for the Preterm Infant with Bronchopulmonary Dysplasia. Nutrients 2025, 17, 3472. https://doi.org/10.3390/nu17213472
Trindade GS, Benincasa BC, Procianoy GS, Silveira RC, Procianoy RS. Nutrition Strategies for the Preterm Infant with Bronchopulmonary Dysplasia. Nutrients. 2025; 17(21):3472. https://doi.org/10.3390/nu17213472
Chicago/Turabian StyleTrindade, Gabriela S., Bianca C. Benincasa, Guilherme S. Procianoy, Rita C. Silveira, and Renato S. Procianoy. 2025. "Nutrition Strategies for the Preterm Infant with Bronchopulmonary Dysplasia" Nutrients 17, no. 21: 3472. https://doi.org/10.3390/nu17213472
APA StyleTrindade, G. S., Benincasa, B. C., Procianoy, G. S., Silveira, R. C., & Procianoy, R. S. (2025). Nutrition Strategies for the Preterm Infant with Bronchopulmonary Dysplasia. Nutrients, 17(21), 3472. https://doi.org/10.3390/nu17213472

