Assessing the Impact of Composite Dietary Antioxidant Index on Gastric Cancer Risk: A Case–Control Study in Southeast China
Abstract
1. Introduction
2. Methods
2.1. Study Design and Study Participants
2.2. Questionnaire
2.2.1. Food Frequency Questionnaire (FFQ)
2.2.2. Demographics and Lifestyles
2.3. Calculation of the Composite Dietary Antioxidant Index (CDAI)
2.4. Statistical Analysis
2.5. Ethical Considerations
3. Results
3.1. Baseline Demographics
3.2. Association Between CDAI Components and Gastric Cancer Risk
3.3. Association Between CDAI Score and Gastric Cancer Risk
3.4. Dose–Response Relationship Between CDAI and Gastric Cancer Risk
4. Discussion
4.1. Association of CDAI Components with Gastric Cancer
4.2. Association Between CDAI and Gastric Cancer
4.3. Population Heterogeneity in the CDAI–Gastric Cancer Association
4.4. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, S.; Zheng, R.; Li, J.; Zeng, H.; Li, L.; Chen, R.; Sun, K.; Han, B.; Bray, F.; Wei, W.; et al. Global, regional, and national lifetime risks of developing and dying from gastrointestinal cancers in 185 countries: A population-based systematic analysis of GLOBOCAN. Lancet Gastroenterol. Hepatol. 2024, 9, 229–237. [Google Scholar] [CrossRef]
- Nie, Y.; Wu, K.; Yu, J.; Liang, Q.; Cai, X.; Shang, Y.; Zhou, J.; Pan, K.; Sun, L.; Fang, J.; et al. A global burden of gastric cancer: The major impact of China. Expert. Rev. Gastroenterol. Hepatol. 2017, 11, 651–661. [Google Scholar] [CrossRef]
- Bray, F.; Laversanne, M.; Sung, H.; Ferlay, J.; Siegel, R.L.; Soerjomataram, I.; Jemal, A. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2024, 74, 229–263. [Google Scholar] [CrossRef]
- Chen, C.B.; Zhou, Y.; Wu, L.R. Fujian Cancer Registry Annual Report 2022; Fujian Science and Technology Press: Fuzhou, China, 2023. (In Chinese) [Google Scholar]
- Hayes, J.D.; Dinkova-Kostova, A.T.; Tew, K.D. Oxidative Stress in Cancer. Cancer Cell 2020, 38, 167–197. [Google Scholar] [CrossRef] [PubMed]
- Stone, W.L.; Krishnan, K.; Campbell, S.E.; Palau, V.E. The role of antioxidants and pro-oxidants in colon cancer. World J. Gastrointest. Oncol. 2014, 6, 55–66. [Google Scholar] [CrossRef] [PubMed]
- Chikara, S.; Nagaprashantha, L.D.; Singhal, J.; Horne, D.; Awasthi, S.; Singhal, S.S. Oxidative stress and dietary phytochemicals: Role in cancer chemoprevention and treatment. Cancer Lett. 2018, 413, 122–134. [Google Scholar] [CrossRef] [PubMed]
- Agudo, A.; Cayssials, V.; Bonet, C.; Tjønneland, A.; Overvad, K.; Boutron-Ruault, M.C.; Affret, A.; Fagherazzi, G.; Katzke, V.; Schübel, R.; et al. Inflammatory potential of the diet and risk of gastric cancer in the European Prospective Investigation into Cancer and Nutrition (EPIC) study. Am. J. Clin. Nutr. 2018, 107, 607–616. [Google Scholar] [CrossRef]
- D’Elia, L.; Rossi, G.; Ippolito, R.; Cappuccio, F.P.; Strazzullo, P. Habitual salt intake and risk of gastric cancer: A meta-analysis of prospective studies. Clin. Nutr. 2012, 31, 489–498. [Google Scholar] [CrossRef]
- Hosseini, B.; Berthon, B.S.; Saedisomeolia, A.; Starkey, M.R.; Collison, A.; Wark, P.A.B.; Wood, L.G. Effects of fruit and vegetable consumption on inflammatory biomarkers and immune cell populations: A systematic literature review and meta-analysis. Am. J. Clin. Nutr. 2018, 108, 136–155. [Google Scholar] [CrossRef]
- Carini, F.; Mazzola, M.; Rappa, F.; Jurjus, A.; Geagea, A.G.; Al Kattar, S.; Bou-Assi, T.; Jurjus, R.; Damiani, P.; Leone, A.; et al. Colorectal Carcinogenesis: Role of Oxidative Stress and Antioxidants. Anticancer Res. 2017, 37, 4759–4766. [Google Scholar] [CrossRef]
- Beetch, M.; Harandi-Zadeh, S.; Shen, K.; Lubecka, K.; Kitts, D.D.; O’Hagan, H.M.; Stefanska, B. Dietary antioxidants remodel DNA methylation patterns in chronic disease. Br. J. Pharmacol. 2020, 177, 1382–1408. [Google Scholar] [CrossRef]
- Mocellin, M.C.; Fernandes, R.; Chagas, T.R.; Trindade, E. A meta-analysis of n-3 polyunsaturated fatty acids effects on circulating acute-phase protein and cytokines in gastric cancer. Clin. Nutr. 2018, 37, 840–850. [Google Scholar] [CrossRef]
- Jeddi, F.; Soozangar, N.; Sadeghi, M.R.; Somi, M.H.; Shirmohamadi, M.; Eftekhar-Sadat, A.T.; Samadi, N. Nrf2 overexpression is associated with P-glycoprotein upregulation in gastric cancer. Biomed. Pharmacother. 2018, 97, 286–292. [Google Scholar] [CrossRef]
- Serafini, M.; Bellocco, R.; Wolk, A.; Ekström, A.M. Total antioxidant potential of fruit and vegetables and risk of gastric cancer. Gastroenterology 2002, 123, 985–991. [Google Scholar] [CrossRef]
- Li, P.; Zhang, H.; Chen, J.; Shi, Y.; Cai, J.; Yang, J.; Wu, Y. Association between dietary antioxidant vitamins intake/blood level and risk of gastric cancer. Int. J. Cancer 2014, 135, 1444–1453. [Google Scholar] [CrossRef]
- Zhong, J.; Li, P.; Zheng, F.; Li, Y.; Lu, W.; Chen, H.; Cai, J.; Xia, D.; Wu, Y. Association between dietary vitamin C intake/blood level and risk of digestive system cancer: A systematic review and meta-analysis of prospective studies. Food Funct. 2024, 15, 8217–8237. [Google Scholar] [CrossRef]
- Motti, M.L.; Tafuri, D.; Donini, L.; Masucci, M.T.; De Falco, V.; Mazzeo, F. The Role of Nutrients in Prevention, Treatment and Post-Coronavirus Disease-2019 (COVID-19). Nutrients 2022, 14, 1000. [Google Scholar] [CrossRef] [PubMed]
- Rebbeck, T.R.; Burns-White, K.; Chan, A.T.; Emmons, K.; Freedman, M.; Hunter, D.J.; Kraft, P.; Laden, F.; Mucci, L.; Parmigiani, G.; et al. Precision Prevention and Early Detection of Cancer: Fundamental Principles. Cancer Discov. 2018, 8, 803–811. [Google Scholar] [CrossRef]
- Chen, Y.; Dutson, E.; Eibl, G. Strategies to Prevent Obesity-Related Cancer. JAMA 2018, 319, 2442. [Google Scholar] [CrossRef] [PubMed]
- Xiong, B.; Wang, J.; He, R.; Qu, G. Composite dietary antioxidant index and sleep health: A new insight from cross-sectional study. BMC Public Health 2024, 24, 609. [Google Scholar] [CrossRef] [PubMed]
- Vahid, F.; Rahmani, D.; Davoodi, S.H. Validation of Dietary Antioxidant Index (DAI) and investigating the relationship between DAI and the odds of gastric cancer. Nutr. Metab. 2020, 17, 102. [Google Scholar] [CrossRef]
- Yang, J.; Qian, S.; Na, X.; Zhao, A. Association between Dietary and Supplemental Antioxidants Intake and Lung Cancer Risk: Evidence from a Cancer Screening Trial. Antioxidants 2023, 12, 338. [Google Scholar] [CrossRef]
- Yu, Y.C.; Paragomi, P.; Wang, R.; Jin, A.; Schoen, R.E.; Sheng, L.T.; Pan, A.; Koh, W.P.; Yuan, J.M.; Luu, H.N. Composite dietary antioxidant index and the risk of colorectal cancer: Findings from the Singapore Chinese Health Study. Int. J. Cancer 2022, 150, 1599–1608. [Google Scholar] [CrossRef]
- Luo, Z.; Chen, S.; Chen, P.; Xiong, K.; Cao, C. Association of dietary inflammatory index, composite dietary antioxidant index and risk of death among adult cancer survivors: Findings from the National Health and Nutrition Examination Survey 2001–2018. Front. Immunol. 2025, 16, 1556828. [Google Scholar] [CrossRef]
- Maugeri, A.; Barchitta, M.; Magnano San Lio, R.; Scalisi, A.; Agodi, A. Antioxidant and inflammatory potential of diet among women at risk of cervical cancer: Findings from a cross-sectional study in Italy. Public Health Nutr. 2022, 25, 1577–1585. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Chen, Y.; Luo, Z.; Cheng, L.; Wang, Q.; Zou, F.; Lin, Y. Association between the Chinese Dietary Inflammatory Index and risk of gastric cancer: A case-control study in Southeastern China. Front. Nutr. 2025, 12, 1653575. [Google Scholar] [CrossRef] [PubMed]
- Wright, M.E.; Mayne, S.T.; Stolzenberg-Solomon, R.Z.; Li, Z.; Pietinen, P.; Taylor, P.R.; Virtamo, J.; Albanes, D. Development of a comprehensive dietary antioxidant index and application to lung cancer risk in a cohort of male smokers. Am. J. Epidemiol. 2004, 160, 68–76. [Google Scholar] [CrossRef] [PubMed]
- Valko, M.; Leibfritz, D.; Moncol, J.; Cronin, M.T.; Mazur, M.; Telser, J. Free radicals and antioxidants in normal physiological functions and human disease. Int. J. Biochem. Cell Biol. 2007, 39, 44–84. [Google Scholar] [CrossRef] [PubMed]
- Toh, J.W.T.; Wilson, R.B. Pathways of Gastric Carcinogenesis, Helicobacter pylori Virulence and Interactions with Antioxidant Systems, Vitamin C and Phytochemicals. Int. J. Mol. Sci. 2020, 21, 6451. [Google Scholar] [CrossRef] [PubMed]
- Hoang, B.V.; Lee, J.; Choi, I.J.; Kim, Y.W.; Ryu, K.W.; Kim, J. Effect of dietary vitamin C on gastric cancer risk in the Korean population. World J. Gastroenterol. 2016, 22, 6257–6267. [Google Scholar] [CrossRef] [PubMed]
- Rayman, M.P. Selenium and human health. Lancet 2012, 379, 1256–1268. [Google Scholar] [CrossRef] [PubMed]
- Labunskyy, V.M.; Hatfield, D.L.; Gladyshev, V.N. Selenoproteins: Molecular pathways and physiological roles. Physiol. Rev. 2014, 94, 739–777. [Google Scholar] [CrossRef] [PubMed]
- Roman, M.; Jitaru, P.; Barbante, C. Selenium biochemistry and its role for human health. Metallomics 2014, 6, 25–54. [Google Scholar] [CrossRef]
- Weekley, C.M.; Harris, H.H. Which form is that? The importance of selenium speciation and metabolism in the prevention and treatment of disease. Chem. Soc. Rev. 2013, 42, 8870–8894. [Google Scholar] [CrossRef]
- Hurst, R.; Hooper, L.; Norat, T.; Lau, R.; Aune, D.; Greenwood, D.C.; Vieira, R.; Collings, R.; Harvey, L.J.; Sterne, J.A.; et al. Selenium and prostate cancer: Systematic review and meta-analysis. Am. J. Clin. Nutr. 2012, 96, 111–122. [Google Scholar] [CrossRef]
- Ruggiero, M.; Motti, M.L.; Meccariello, R.; Mazzeo, F. Resveratrol and Physical Activity: A Successful Combination for the Maintenance of Health and Wellbeing? Nutrients 2025, 17, 837. [Google Scholar] [CrossRef]
- Kong, S.Y.; Bostick, R.M.; Flanders, W.D.; McClellan, W.M.; Thyagarajan, B.; Gross, M.D.; Judd, S.; Goodman, M. Oxidative balance score, colorectal adenoma, and markers of oxidative stress and inflammation. Cancer Epidemiol. Biomarkers Prev. 2014, 23, 545–554. [Google Scholar] [CrossRef]
- He, L.; He, T.; Farrar, S.; Ji, L.; Liu, T.; Ma, X. Antioxidants Maintain Cellular Redox Homeostasis by Elimination of Reactive Oxygen Species. Cell Physiol. Biochem. 2017, 44, 532–553. [Google Scholar] [CrossRef]
- Gupta, R.K.; Patel, A.K.; Shah, N.; Chaudhary, A.K.; Jha, U.K.; Yadav, U.C.; Gupta, P.K.; Pakuwal, U. Oxidative stress and antioxidants in disease and cancer: A review. Asian Pac. J. Cancer Prev. 2014, 15, 4405–4409. [Google Scholar] [CrossRef] [PubMed]
- Bakrim, S.; El Omari, N.; El Yaagoubi, O.M.; Khalid, A.; Abdalla, A.N.; Hamza, S.M.A.; Ibrahim, S.E.; Atifi, F.; Zaid, Y.; Bouyahya, A.; et al. Epi-nutrients for cancer prevention: Molecular mechanisms and emerging insights. Cell Biol. Toxicol. 2025, 41, 116. [Google Scholar] [CrossRef]
- Yang, C.S.; Wang, H.; Li, G.X.; Yang, Z.; Guan, F.; Jin, H. Cancer prevention by tea: Evidence from laboratory studies. Pharmacol. Res. 2011, 64, 113–122. [Google Scholar] [CrossRef]
- Woo, H.D.; Lee, J.; Choi, I.J.; Kim, C.G.; Lee, J.Y.; Kwon, O.; Kim, J. Dietary flavonoids and gastric cancer risk in a Korean population. Nutrients 2014, 6, 4961–4973. [Google Scholar] [CrossRef]
- Papadimitriou, N.; Markozannes, G.; Kanellopoulou, A.; Critselis, E.; Alhardan, S.; Karafousia, V.; Kasimis, J.C.; Katsaraki, C.; Papadopoulou, A.; Zografou, M.; et al. An umbrella review of the evidence associating diet and cancer risk at 11 anatomical sites. Nat. Commun. 2021, 12, 4579. [Google Scholar] [CrossRef]
- Tsugane, S.; Sasazuki, S. Diet and the risk of gastric cancer: Review of epidemiological evidence. Gastric Cancer 2007, 10, 75–83. [Google Scholar] [CrossRef] [PubMed]
- Kong, S.Y.; Goodman, M.; Judd, S.; Bostick, R.M.; Flanders, W.D.; McClellan, W. Oxidative balance score as predictor of all-cause, cancer, and noncancer mortality in a biracial US cohort. Ann. Epidemiol. 2015, 25, 256–262.e251. [Google Scholar] [CrossRef]
- Hao, X.; Chen, X.; Ren, C.; Pan, Y.; Xu, Z.; Wang, Q.; Liu, X. Association between composite dietary antioxidant index and erectile dysfunction: A cross-sectional study from NHANES. BMC Public Health 2024, 24, 3362. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.; Tan, Z.; Duan, Z.; Chen, J.; Yang, Z.; Lin, X. Association between the composite dietary antioxidant index and infertility: The national health and nutrition examination survey 2013–2020. BMC Public Health 2024, 24, 2376. [Google Scholar] [CrossRef] [PubMed]
- Hajam, Y.A.; Rani, R.; Ganie, S.Y.; Sheikh, T.A.; Javaid, D.; Qadri, S.S.; Pramodh, S.; Alsulimani, A.; Alkhanani, M.F.; Harakeh, S.; et al. Oxidative Stress in Human Pathology and Aging: Molecular Mechanisms and Perspectives. Cells 2022, 11, 552. [Google Scholar] [CrossRef]
- Robards, J.; Evandrou, M.; Falkingham, J.; Vlachantoni, A. Marital status, health and mortality. Maturitas 2012, 73, 295–299. [Google Scholar] [CrossRef]
- Tonelli, C.; Chio, I.I.C.; Tuveson, D.A. Transcriptional Regulation by Nrf2. Antioxid. Redox. Signal. 2018, 29, 1727–1745. [Google Scholar] [CrossRef]
- Reczek, C.R.; Chandel, N.S. ROS Promotes Cancer Cell Survival through Calcium Signaling. Cancer Cell 2018, 33, 949–951. [Google Scholar] [CrossRef] [PubMed]

| Variables | Total (N = 672) | Cases (N = 336) | Controls (N = 336) | p Value |
|---|---|---|---|---|
| Age, years, mean ± std | 55.31 ± 10.83 | 56.76 ± 10.34 | 53.86 ± 11.13 | <0.001 |
| Age groups, years | ||||
| ≤55 | 320 (47.6) | 132 (39.3) | 188 (56.0) | <0.001 |
| >55 | 352 (52.4) | 204 (60.7) | 148 (44.0) | |
| Sex | 1.000 | |||
| Male | 380 (56.5) | 190 (56.5) | 190 (56.5) | |
| Female | 292 (43.5) | 146 (43.5) | 146 (43.5) | |
| BMI (kg/m2) | 0.068 | |||
| <24 | 415 (61.8) | 196 (58.3) | 219 (65.2) | |
| ≥24 | 257 (38.2) | 140 (41.7) | 117 (34.8) | |
| Marital status | 0.011 | |||
| Married | 611 (90.9) | 315 (93.8) | 296 (88.1) | |
| Single/Separated/Divorced/Widowed | 61 (9.1) | 21 (6.2) | 40 (11.9) | |
| Education level | 0.157 | |||
| Primary school or below | 276 (41.1) | 143 (42.6) | 133 (39.6) | |
| Secondary school | 177 (26.3) | 90 (26.8) | 87 (25.9) | |
| High school | 105 (15.6) | 58 (17.3) | 47 (14.0) | |
| College | 51 (7.6) | 20 (5.9) | 31 (9.2) | |
| University or above | 63 (9.4) | 25 (7.4) | 38 (11.3) | |
| Occupation | 0.361 | |||
| Farmers/Manual workers | 199 (29.6) | 99 (29.5) | 100 (29.8) | |
| Other occupations | 239 (35.6) | 112 (33.3) | 127 (37.8) | |
| Homemakers/Retired/Unemployed | 234 (34.8) | 125 (37.2) | 109 (32.4) | |
| Average monthly household income, RMB | 0.167 | |||
| <3000 | 64 (9.5) | 26 (7.7) | 38 (11.3) | |
| 3000–6000 | 229 (34.1) | 123 (36.6) | 106 (31.6) | |
| >6000 | 379 (56.4) | 187 (55.7) | 192 (57.1) | |
| Smoking | 0.019 | |||
| Yes | 233 (34.7) | 131 (39.0) | 102 (30.4) | |
| No | 439 (65.3) | 205 (61.0) | 234 (69.6) | |
| Alcohol drinking | 0.916 | |||
| Yes | 107 (15.9) | 53 (15.8) | 54 (16.1) | |
| No | 565 (84.1) | 283 (84.2) | 282 (83.9) | |
| Daily life stress | <0.001 | |||
| None/Low | 409 (60.9) | 227 (67.6) | 182 (54.2) | |
| Moderate/High | 263 (39.1) | 109 (32.4) | 154 (48.8) | |
| CDAI, mean ± std | 0.22 ± 4.43 | −0.04 ± 4.61 | 0.47 ± 4.23 | 0.134 |
| CDAI | 0.009 | |||
| Q1 (<−1.95) | 208 (31.0) | 124 (36.9) | 84 (25.0) | |
| Q2 (−1.95 to−0.12) | 150 (22.3) | 66 (19.6) | 84 (25.0) | |
| Q3 (−0.12 to 2.05) | 143 (21.3) | 70 (20.8) | 84 (25.0) | |
| Q4 (≥2.05) | 166 (24.7) | 76 (22.6) | 84 (25.0) | |
| Variables | Univariate Logistic Regression | Multivariable Logistic Regression * | ||||
|---|---|---|---|---|---|---|
| Cases (N = 336) | Controls (N = 336) | OR (95%CI) | p Value | OR (95%CI) | p Value | |
| Vitamin A (μgRE) | ||||||
| Q1 (<392.41) | 111 (34.8) | 84 (25.0) | Reference | Reference | ||
| Q2 (392.41–505.53) | 55 (16.4) | 84 (25.0) | 0.47 (0.30–0.73) | < 0.001 | 0.68 (0.42–1.10) | 0.113 |
| Q3 (505.53–673.75) | 77 (22.9) | 84 (25.0) | 0.66 (0.43–0.99) | 0.049 | 0.86 (0.53–1.39) | 0.537 |
| Q4 (≥673.75) | 87 (25.9) | 84 (25.0) | 0.74 (0.49–1.12) | 0.157 | 1.01 (0.60–1.68) | 0.979 |
| Vitamin C (mg) | ||||||
| Q1 (<70.14) | 125 (37.2) | 84 (25.0) | Reference | Reference | ||
| Q2 (70.14–102.38) | 82 (24.4) | 84 (25.0) | 0.66 (0.44–0.99) | 0.044 | 0.72 (0.47–1.12) | 0.146 |
| Q3 (102.38–142.81) | 69 (20.5) | 84 (25.0) | 0.55 (0.36–0.84) | 0.006 | 0.58 (0.37–0.92) | 0.019 |
| Q4 (≥142.81) | 60 (17.9) | 84 (25.0) | 0.48 (0.31–0.74) | <0.001 | 0.48 (0.30–0.77) | 0.002 |
| Vitamin E (mg) | ||||||
| Q1 (<6.85) | 116 (34.5) | 84 (25.0) | Reference | Reference | ||
| Q2 (6.85–9.33) | 70 (20.8) | 84 (25.0) | 0.60 (0.40–0.92) | 0.019 | 0.89 (0.55–1.45) | 0.643 |
| Q3 (9.33–11.77) | 48 (14.3) | 81 (24.1) | 0.43 (0.27–0.68) | <0.001 | 0.72 (0.42–1.24) | 0.235 |
| Q4 (≥11.77) | 102 (30.4) | 87 (25.9) | 0.95 (0.71–1.29) | 0.423 | 1.36 (0.76–2.43) | 0.297 |
| Zn (mg) | ||||||
| Q1 (<11.83) | 95 (28.3) | 84 (25.0) | Reference | |||
| Q2 (11.83–14.43) | 73 (21.7) | 84 (25.0) | 0.77 (0.50–1.18) | 0.229 | ||
| Q3 (14.43–17.40) | 82 (24.4) | 84 (25.0) | 0.86 (0.57–1.32) | 0.495 | ||
| Q4 (≥17.40) | 86 (25.6) | 84 (25.0) | 0.91 (0.60–1.38) | 0.642 | ||
| Se (μg) | ||||||
| Q1 (<50.48) | 123 (36.6) | 84 (25.0) | Reference | Reference | ||
| Q2 (50.48–67.37) | 66 (19.6) | 84 (25.0) | 0.54 (0.35–0.82) | 0.004 | 0.52 (0.32–0.83) | 0.006 |
| Q3 (67.37–84.75) | 59 (17.6) | 84 (25.0) | 0.48 (0.31–0.74) | <0.001 | 0.50 (0.30–0.82) | 0.006 |
| Q4 (≥84.75) | 88 (26.2) | 84 (25.0) | 0.72 (0.48–1.08) | 0.108 | 0.67 (0.38–1.15) | 0.147 |
| Mn (mg) | ||||||
| Q1 (<4.18) | 116 (34.5) | 84 (25.0) | Reference | Reference | ||
| Q2 (4.18–5.10) | 71 (21.1) | 84 (25.0) | 0.61 (0.40–0.93) | 0.023 | 0.68 (0.43–1.09) | 0.107 |
| Q3 (5.10–6.64) | 64 (19.0) | 84 (25.0) | 0.55 (0.36–0.85) | 0.007 | 0.65 (0.39–1.08) | 0.094 |
| Q4 (≥6.64) | 85 (25.4) | 84 (25.0) | 0.73 (0.49–1.11) | 0.108 | 0.80 (0.49–1.32) | 0.388 |
| β-carotene (μg) | ||||||
| Q1 (<3494.10) | 85 (25.3) | 84 (25.0) | Reference | |||
| Q2 (3494.10–5025.91) | 87 (25.9) | 84 (25.0) | 1.02 (0.67–1.57) | 0.915 | ||
| Q3 (5025.91–8729.60) | 106 (31.5) | 84 (25.0) | 1.24 (0.82–1.89) | 0.298 | ||
| Q4 (≥8729.60) | 58 (17.3) | 84 (25.0) | 0.68 (0.44–1.07) | 0.096 | ||
| Model 1 * | p Value | Model 2 # | p Value | |
|---|---|---|---|---|
| CDAI | ||||
| Q1 | Reference | Reference | ||
| Q2 | 0.53 (0.35–0.81) | 0.004 | 0.56 (0.36–0.87) | 0.010 |
| Q3 | 0.57 (0.37–0.86) | 0.008 | 0.59 (0.38–0.90) | 0.016 |
| Q4 | 0.61 (0.40–0.93) | 0.021 | 0.60 (0.39–0.92) | 0.020 |
| p for trend | 0.020 | 0.019 |
| Subgroups | CDAI-Q1 | CDAI-Q2 | p Value | CDAI-Q3 | p Value | CDAI-Q4 * | p Value | p-Trend |
|---|---|---|---|---|---|---|---|---|
| Age groups, years | ||||||||
| ≤55 | Reference | 0.65 (0.35–1.23) | 0.184 | 0.83 (0.44–1.56) | 0.562 | 0.60 (0.32–1.12) | 0.109 | 0.189 |
| >55 | Reference | 0.48 (0.26–0.90) | 0.022 | 0.42 (0.23–0.76) | 0.004 | 0.61 (0.34–1.10) | 0.101 | 0.044 |
| Marital status | ||||||||
| Married | Reference | 0.67 (0.42–1.06) | 0.087 | 0.64 (0.41–1.00) | 0.052 | 0.65 (0.41–1.01) | 0.054 | 0.046 |
| Single/Separated/ Divorced/Widowed | Reference | 0.08 (0.01–0.48) | 0.006 | 0.20 (0.04–1.08) | 0.061 | 0.33 (0.07–1.51) | 0.152 | 0.130 |
| Smoking | ||||||||
| Yes | Reference | 0.60 (0.29–1.25) | 0.172 | 0.53 (0.24–1.15) | 0.106 | 0.50 (0.24–1.07) | 0.073 | 0.071 |
| No | Reference | 0.54 (0.31–0.94) | 0.028 | 0.63 (0.37–1.07) | 0.087 | 0.68 (0.40–1.14) | 0.141 | 0.143 |
| Daily life stress | ||||||||
| None/Low | Reference | 0.76 (0.43–1.36) | 0.351 | 0.49 (0.28–0.85) | 0.011 | 0.59 (0.35–1.00) | 0.050 | 0.019 |
| Moderate/High | Reference | 0.37 (0.18–0.75) | 0.006 | 0.76 (0.38–1.50) | 0.427 | 0.65 (0.31–1.37) | 0.259 | 0.533 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, X.; Wang, Q.; Zou, F.; Wu, Y.; Li, S.; Zeng, W.; Lin, Y. Assessing the Impact of Composite Dietary Antioxidant Index on Gastric Cancer Risk: A Case–Control Study in Southeast China. Nutrients 2025, 17, 3473. https://doi.org/10.3390/nu17213473
Chen X, Wang Q, Zou F, Wu Y, Li S, Zeng W, Lin Y. Assessing the Impact of Composite Dietary Antioxidant Index on Gastric Cancer Risk: A Case–Control Study in Southeast China. Nutrients. 2025; 17(21):3473. https://doi.org/10.3390/nu17213473
Chicago/Turabian StyleChen, Xinyu, Qingying Wang, Fengqin Zou, Yaqing Wu, Sifang Li, Wanling Zeng, and Yulan Lin. 2025. "Assessing the Impact of Composite Dietary Antioxidant Index on Gastric Cancer Risk: A Case–Control Study in Southeast China" Nutrients 17, no. 21: 3473. https://doi.org/10.3390/nu17213473
APA StyleChen, X., Wang, Q., Zou, F., Wu, Y., Li, S., Zeng, W., & Lin, Y. (2025). Assessing the Impact of Composite Dietary Antioxidant Index on Gastric Cancer Risk: A Case–Control Study in Southeast China. Nutrients, 17(21), 3473. https://doi.org/10.3390/nu17213473

