The Impact of Dietary Nutrient Intake on Red Blood Cell Distribution Width-Coefficient of Variation in Pregnant Women: A Cross-Sectional Observational Pilot Study
Abstract
1. Introduction
2. Materials and Methods
2.1. Characteristics of the Study Participants
2.2. Complete Blood Count
2.3. Nutritional Analysis
2.4. Statistical Analysis
3. Results
3.1. Group Characteristics
3.2. Complete Blood Count (CBC)
3.3. Macronutrients
3.4. Micronutrients
4. Discussion
Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| CBC | Complete Blood Count |
| RIs | Reference Intervals |
| RDW-CV | Red Cell Distribution Width—Coefficient of Variation |
| WBC | White Blood Cell |
| TIBC | Total Iron-Binding Capacity |
| TSAT | Transferrin Saturation |
| HGB | Hemoglobin |
| HCT | Haematocrit |
| MCV | Mean Corpuscular Volume |
| PLT | Platelet Count |
| NEU | Neutrophils |
| LYM | Lymphocytes |
| MON | Monocytes |
| EOS | Eosinophils |
| BAS | Basophils |
| EAR | Estimated Average Requirement |
| EER | Estimated Energy Requirement |
| UI | Tolerable Upper Intake Level |
| AI | Adeqate Intake |
| Zinc | Zn |
| Phosphorus | P |
| Magnesium | Mg |
| Potassium | K |
| Calcium | Ca |
| Iron | Fe |
| Folic acid | B9 |
| Riboflavin | B2 |
References
- Di Renzo, G.C.; Spano, F.; Giardina, I.; Brillo, E.; Clerici, G.; Roura, L.C. Iron Deficiency Anemia in Pregnancy. Women’s Health 2015, 11, 891–900. [Google Scholar] [CrossRef]
- Jouanne, M.; Oddoux, S.; Noël, A.; Voisin-Chiret, A.S. Nutrient Requirements during Pregnancy and Lactation. Nutrients 2021, 13, 692. [Google Scholar] [CrossRef]
- Beucher, G.; Grossetti, E.; Simonet, T.; Leporrier, M.; Dreyfus, M. Anémie Par Carence Martiale et Grossesse. Prévention et Traitement. J. Gynécologie Obs. Biol. Reprod. 2011, 40, 185–200. [Google Scholar] [CrossRef]
- Gοugοutsi, V.; Pouliakis, A.; Argyrios, T.; Tolia, M.; Nazos, N.-A.; Panagopoulos, P.; Kokoris, S. The Critical Role of the Early Evaluation of Iron and Vitamin B12 Deficiency in Pregnancy. Cureus 2024, 16, e67592. [Google Scholar] [CrossRef]
- Abu-Ouf, N.M.; Jan, M.M. The Impact of Maternal Iron Deficiency and Iron Deficiency Anemia on Child’s Health. Saudi Med. J. 2015, 36, 146–149. [Google Scholar] [CrossRef] [PubMed]
- Milman, N.; Taylor, C.L.; Merkel, J.; Brannon, P.M. Iron Status in Pregnant Women and Women of Reproductive Age in Europe. Am. J. Clin. Nutr. 2017, 106, 1655S–1662S. [Google Scholar] [CrossRef] [PubMed]
- Biete, A.; Gonçalves, V.S.S.; Crispim, S.P.; Franceschini, S.C.C.; Carmo, A.S.; Pizato, N. Ultra-Processed Foods and Schooling Are Independently Associated with Lower Iron and Folate Consumption by Pregnant Women Followed in Primary Health Care. Int. J. Environ. Res. Public Health 2023, 20, 6063. [Google Scholar] [CrossRef] [PubMed]
- Means, R.T. Iron Deficiency and Iron Deficiency Anemia: Implications and Impact in Pregnancy, Fetal Development, and Early Childhood Parameters. Nutrients 2020, 12, 447. [Google Scholar] [CrossRef]
- Chaparro, C.M.; Suchdev, P.S. Anemia Epidemiology, Pathophysiology, and Etiology in Low- and Middle-Income Countries. Ann. N. Y. Acad. Sci. 2019, 1450, 15–31. [Google Scholar] [CrossRef]
- Stach, K.; Stach, W.; Augoff, K. Vitamin B6 in Health and Disease. Nutrients 2021, 13, 3229. [Google Scholar] [CrossRef]
- Binesh, A.; Venkatachalam, K. Copper in Human Health and Disease: A Comprehensive Review. J. Biochem. Mol. Toxicol. 2024, 38, e70052. [Google Scholar] [CrossRef]
- Lima, F.D.S.; Gonçalves, C.E.D.S.; Fock, R.A. Zinc and Aging: A Narrative Review of the Effects on Hematopoiesis and Its Link with Diseases. Nutr. Rev. 2024, 82, 1125–1137. [Google Scholar] [CrossRef]
- Wieringa, F.T.; Dahl, M.; Chamnan, C.; Poirot, E.; Kuong, K.; Sophonneary, P.; Sinuon, M.; Greuffeille, V.; Hong, R.; Berger, J.; et al. The High Prevalence of Anemia in Cambodian Children and Women Cannot Be Satisfactorily Explained by Nutritional Deficiencies or Hemoglobin Disorders. Nutrients 2016, 8, 348. [Google Scholar] [CrossRef]
- Zhou, Y.; Lyu, Y.; Ye, W.; Shi, H.; Peng, Y.; Wen, Z.; Narayan, A.; Huang, X.; Chang, S.; Yang, Y.; et al. The Prevalence of Anemia among Pregnant Women in China: A Systematic Review and Meta-Analysis. Nutrients 2024, 16, 1854. [Google Scholar] [CrossRef]
- Daru, J.; Zamora, J.; Fernández-Félix, B.M.; Vogel, J.; Oladapo, O.T.; Morisaki, N.; Tunçalp, Ö.; Torloni, M.R.; Mittal, S.; Jayaratne, K.; et al. Risk of Maternal Mortality in Women with Severe Anaemia during Pregnancy and Post Partum: A Multilevel Analysis. Lancet Glob. Health 2018, 6, e548–e554. [Google Scholar] [CrossRef]
- Mayasari, N.R.; Bai, C.-H.; Hu, T.-Y.; Chao, J.C.-J.; Chen, Y.C.; Huang, Y.L.; Wang, F.-F.; Tinkov, A.A.; Skalny, A.V.; Chang, J.-S. Associations of Food and Nutrient Intake with Serum Hepcidin and the Risk of Gestational Iron-Deficiency Anemia among Pregnant Women: A Population-Based Study. Nutrients 2021, 13, 3501. [Google Scholar] [CrossRef] [PubMed]
- Influence of an Energy Deficient and Low Carbohydrate Acute Dietary Manipulation on Iron Regulation in Young Females. Available online: https://mro.massey.ac.nz/items/7bbb44b4-c945-41c0-9f7e-c860d373f0db?utm_source=chatgpt.com (accessed on 23 October 2025).
- Khammarnia, M.; Ansari-Moghaddam, A.; Kakhki, F.G.; Clark, C.C.T.; Barahouei, F.B. Maternal Macronutrient and Energy Intake during Pregnancy: A Systematic Review and Meta-Analysis. BMC Public Health 2024, 24, 478. [Google Scholar] [CrossRef] [PubMed]
- Bręborowicz, G.H.; Czajkowski, K. Położnictwo i Ginekologia. Położnictwo Tom 1; Wydawnictwo Lekarskie PZWL: Warszawa, Poland, 2020; Volume 1; ISBN 978-83-200-6061-4. [Google Scholar]
- Dembińska-Kieć, A.; Naskalski, J.W.; Solnica, B. Diagnostyka Laboratoryjna z Elementami Biochemii Klinicznej; Edra Urban & Partner: Wrocław, Poland, 2022. [Google Scholar]
- Mosby’s® Diagnostic and Laboratory Test Reference, 17th Edition-9780323828666. Available online: https://evolve.elsevier.com/cs/product/9780323828666?role=student (accessed on 17 October 2025).
- Garg, R. Beyond Anemia: Red Cell Distribution Width as a Universal Biomarker in Contemporary Medicine. J. Hematol. Allied Sci. 2025, 5, 115–124. [Google Scholar] [CrossRef]
- Alghamdi, M. Red Blood Cell Distribution Width: A Potential Inexpensive Marker for Disease Activity in Patients with Rheumatic Diseases; Scoping Review. Open Access Rheumatol. 2023, 15, 173–180. [Google Scholar] [CrossRef] [PubMed]
- Sultana, G.S.; Haque, S.A.; Sultana, T.; Rahman, Q.; Ahmed, A.N.N. Role of Red Cell Distribution Width (RDW) in the Detection of Iron Deficiency Anaemia in Pregnancy within the First 20 Weeks of Gestation. Bangladesh Med. Res. Counc. Bull. 2011, 37, 102–105. [Google Scholar] [CrossRef]
- Paliogiannis, P.; Zinellu, A.; Mangoni, A.A.; Capobianco, G.; Dessole, S.; Cherchi, P.L.; Carru, C. Red Blood Cell Distribution Width in Pregnancy: A Systematic Review. Biochem. Med. 2018, 28, 389–398. [Google Scholar] [CrossRef]
- Dugdale, A.E. Predicting Iron and Folate Deficiency Anaemias from Standard Blood Testing: The Mechanism and Implications for Clinical Medicine and Public Health in Developing Countries. Theor. Biol. Med. Model. 2006, 3, 34. [Google Scholar] [CrossRef]
- Kai, Y.; Ying, P.; Bo, Y.; Furong, Y.; Jin, C.; Juanjuan, F.; Pingping, T.; Fasu, Z. Red Blood Cell Distribution Width-Standard Deviation but Not Red Blood Cell Distribution Width-Coefficient of Variation as a Potential Index for the Diagnosis of Iron-Deficiency Anemia in Mid-Pregnancy Women. Open Life Sci. 2021, 16, 1213–1218. [Google Scholar] [CrossRef]
- Samuel, T.M.; Sakwinska, O.; Makinen, K.; Burdge, G.C.; Godfrey, K.M.; Silva-Zolezzi, I. Preterm Birth: A Narrative Review of the Current Evidence on Nutritional and Bioactive Solutions for Risk Reduction. Nutrients 2019, 11, 1811. [Google Scholar] [CrossRef]
- Kim, S.Y.; Lee, S.M.; Sung, S.J.; Han, S.J.; Kim, B.J.; Park, C.-W.; Park, J.S.; Jun, J.K. Red Cell Distribution Width as a Potential Prognostic Biomarker in Fetal Growth Restriction. J. Matern. Fetal Neonatal Med. 2021, 34, 883–888. [Google Scholar] [CrossRef]
- Fatima, N.; Yaqoob, S.; Rana, L.; Imtiaz, A.; Iqbal, M.J.; Bashir, Z.; Shaukat, A.; Naveed, H.; Sultan, W.; Afzal, M.; et al. Micro-Nutrient Sufficiency in Mothers and Babies: Management of Deficiencies While Avoiding Overload during Pregnancy. Front. Nutr. 2025, 12, 1476672. [Google Scholar] [CrossRef]
- Black, R.E.; Victora, C.G.; Walker, S.P.; Bhutta, Z.A.; Christian, P.; de Onis, M.; Ezzati, M.; Grantham-McGregor, S.; Katz, J.; Martorell, R.; et al. Maternal and Child Undernutrition and Overweight in Low-Income and Middle-Income Countries. Lancet 2013, 382, 427–451. [Google Scholar] [CrossRef] [PubMed]
- Tobias, D.K.; Hu, F.B.; Chavarro, J.; Rosner, B.; Mozaffarian, D.; Zhang, C. Healthful Dietary Patterns and Type 2 Diabetes Mellitus Risk among Women with a History of Gestational Diabetes Mellitus. Arch. Intern. Med. 2012, 172, 1566–1572. [Google Scholar] [CrossRef] [PubMed]
- Rychlik, E.; Stoś, K.; Woźniak, A.; Mojska, H. Normy żywienia dla populacji Polski—2024 r. Narodowe Centrum Edukacji Żywieniowej. 2024. Available online: https://ncez.pzh.gov.pl/abc-zywienia/zasady-zdrowego-zywienia/normy-zywieniowe-2024/ (accessed on 10 September 2025).
- Canada, H. Reference Guide to Understanding and Using the Data. Available online: https://www.canada.ca/en/health-canada/services/food-nutrition/food-nutrition-surveillance/health-nutrition-surveys/canadian-community-health-survey-cchs/reference-guide-understanding-using-data-2015.html (accessed on 15 September 2025).
- Kunachowicz, H.; Iwanow, K.; Ratkovska, B.; Przygoda, B.; Nadolna, I. Nowelizacja tabel składu i wartości odżywczej żywności. Zmiany w ciągu ostatnich lat. Zyw. Człowieka I Metabolizm. Supl. 2005, 32, 1. [Google Scholar]
- Lakens, D. Calculating and Reporting Effect Sizes to Facilitate Cumulative Science: A Practical Primer for t-Tests and ANOVAs. Front. Psychol. 2013, 4, 863. [Google Scholar] [CrossRef] [PubMed]
- Sullivan, G.M.; Feinn, R. Using Effect Size—Or Why the P Value Is Not Enough. J. Grad. Med. Educ. 2012, 4, 279–282. [Google Scholar] [CrossRef]
- Stevens, G.A.; Finucane, M.M.; De-Regil, L.M.; Paciorek, C.J.; Flaxman, S.R.; Branca, F.; Peña-Rosas, J.P.; Bhutta, Z.A.; Ezzati, M. Global, Regional, and National Trends in Haemoglobin Concentration and Prevalence of Total and Severe Anaemia in Children and Pregnant and Non-Pregnant Women for 1995–2011: A Systematic Analysis of Population-Representative Data. Lancet Glob. Health 2013, 1, e16–e25. [Google Scholar] [CrossRef]
- Hemoglobin: Part 4—Hematocrit (Hct), Packed Cell Volume (PCV). 2020. Available online: https://labpedia.net/hematocrit-hct-packed-cell-volume-pcv/ (accessed on 22 October 2025).
- Lewkowitz, A.K.; Tuuli, M.G. Identifying and Treating Iron Deficiency Anemia in Pregnancy. Hematol. Am. Soc. Hematol. Educ. Program. 2023, 2023, 223–228. [Google Scholar] [CrossRef] [PubMed]
- Patel, P.; Balanchivadze, N. Hematologic Findings in Pregnancy: A Guide for the Internist. Cureus 2021, 13, e15149. [Google Scholar] [CrossRef] [PubMed]
- Bailey, R.L.; West, K.P., Jr.; Black, R.E. The Epidemiology of Global Micronutrient Deficiencies. Ann. Nutr. Metab. 2015, 66, 22–33. [Google Scholar] [CrossRef]
- Projekty—Przeprowadzenie Kompleksowych Badań Epidemiologicznych Dotyczących Sposobu Żywienia i Stanu Odżywienia Kobiet Ciężarnych Wraz z Identyfikacją Czynników Ryzyka Zaburzeń Odżywiania, Oceną Poziomu Aktywności Fizycznej, Poziomu Wiedzy Żywieniowej Oraz Występowania Nierówności w Zdrowiu” (Punkt 3.1.1. w Ramach Celu Operacyjnego NPZ 1. Poprawa Sposobu Żywienia, Stanu Odżywienia Oraz Aktywności Fizycznej Społeczeństwa)—Instytut Matki i Dziecka. Available online: https://bazawiedzy.imid.med.pl/info/projectmain/IMIDbd789a7b8bf74d68ab6f3c250f1dac42/ (accessed on 26 June 2025).
- Bojar, I.; Owoc, A.; Humeniuk, E.; Wierzba, W.; Fronczak, A. Inappropriate Consumption of Vitamins and Minerals by Pregnant Women in Poland. Ann. Agric. Environ. Med. 2012, 19, 263–266. [Google Scholar] [PubMed]
- Iglesias-Vázquez, L.; Suliburska, J.; Kocyłowski, R.; Bakinowska, E.; Arija, V. Nutrient Intake among Pregnant Women in Spain and Poland: A Comparative Analysis. Nutrients 2023, 15, 3225. [Google Scholar] [CrossRef]
- Saucedo, R.; Ortega-Camarillo, C.; Ferreira-Hermosillo, A.; Díaz-Velázquez, M.F.; Meixueiro-Calderón, C.; Valencia-Ortega, J. Role of Oxidative Stress and Inflammation in Gestational Diabetes Mellitus. Antioxidants 2023, 12, 1812. [Google Scholar] [CrossRef]
- Grzeszczak, K.; Łanocha-Arendarczyk, N.; Malinowski, W.; Ziętek, P.; Kosik-Bogacka, D. Oxidative Stress in Pregnancy. Biomolecules 2023, 13, 1768. [Google Scholar] [CrossRef]
- Pathophysiology | Iron Deficiency Anemia. Available online: https://u.osu.edu/irondeficiencyanemia/pathophysiology/?utm_source=chatgpt.com (accessed on 24 October 2025).
- Aparicio, E.; Jardí, C.; Bedmar, C.; Pallejà, M.; Basora, J.; Arija, V.; The ECLIPSES Study Group. Nutrient Intake during Pregnancy and Post-Partum: ECLIPSES Study. Nutrients 2020, 12, 1325. [Google Scholar] [CrossRef]

| Parameters | RIs * | RDW-CV | ||
|---|---|---|---|---|
| Reference Range | Elevated | p-Value | ||
| Total WBC (103/µL) | 5.7–15 | 11.70 ± 3.51 (10.14; 13.25) | 12.51 ± 3.55 (9.78; 15.24) | 0.327 b |
| HGB (g/dL) | 11–14 | 11.02 ± 1.18 (10.5; 11.54) | 10.44 ± 0.83 (9.8; 11.08) | 0.195 a |
| HCT (%) | 28–40 | 32.17 ± 2.99 (30.84; 33.49) | 31.60 ± 2.43 (29.73; 33.47) | 0.618 a |
| MCV (fL) | 82–92 | 90.53 ± 4.28 (88.64; 92.43) | 87.2 ± 3.34 (84.63; 89.77) | 0.046 a |
| PLT (103/mm3) | 150–400 | 223.59 ± 69.42 (192.81; 254.37) | 234 ± 48.58 (196.66; 271.34) | 0.686 a |
| NEU (%) | 40–80 | 72.58 ± 4.43 (70.62; 74.54) | 73.24 ± 6.97 (67.89; 78.6) | 0.752 a |
| LYM (%) | 20–45 | 18.39 ± 4.65 (16.33; 20.45) | 17.41 ± 5.61 (13.1; 21.73) | 0.619 a |
| MON (%) | 2–8 | 8.02 ± 1.65 (7.28; 8.75) | 8.16 ± 1.54 (6.97; 9.34) | 0.832 a |
| EOS (%) | 2–4 | 1.07 ± 0.85 (0.69; 1.44) | 1.09 ± 0.96 (0.35; 1.83) | 0.794 b |
| BAS (%) | 0.5–1 | 0.21 ± 0.11 (0.16; 0.26) | 0.18 ± 0.07 (0.13; 0.23) | 0.586 b |
| LMR | 2–10 | 2.30 ± 0.74 (2.05; 2.79) | 2.16 ± 0.75 (1.58; 2.74) | 0.462 a |
| Parameters | % E * | RDW-CV | p-Value | |
|---|---|---|---|---|
| Reference Range | Elevated | |||
| Energy (Kcal) | - | 2159.41 ± 431.24 (1968.21; 2350.61) | 1780.89 ± 306.55 (1545.26; 2016.52) | 0.039 b |
| Proteins (%) | 10–20 | 17.35 ± 2.66 (16.17; 18.53) | 16.79 ± 1.81 (15.40; 18.18) | 0.571 a |
| Fats (%) | 20–35 | 30.73 ± 4.80 (28.60; 32.86) | 28.16 ± 7.37 (22.49; 33.83) | 0.257 a |
| Carbohydrates (%) | 45–65 | 51.92 ± 5.53 (49.47; 54.37) | 55.05 ± 6.67 (49.92; 60.17) | 0.188 a |
| Parameters | EAR/AI * | RDW-CV | p-Value | ||
|---|---|---|---|---|---|
| Reference Range | ↑ ** | Elevated | |||
| Zinc (mg/day) | 9.5 | 11.39 ± 2.27 (10.38; 12.39) | 9.52 ± 1.71 (8.20; 10.84) | 0.035 a | |
| Phosphorus (mg/day) | 580 | 1536.48 ± 247.24 (1426.86; 1646.1) | 1210.94 ± 198.30 (1058.52; 1363.37) | 0.002 a | |
| Magnesium (mg/day) | 300 | 343.50 ± 86.34 (305.22; 381.78) | 310.67 ± 75.01 (253.01; 368.32) | 0.305 c | |
| Potassium (mg/day) | 3500 * | 3572.80 ± 694.50 (3264.88; 3880.72) | 3680.38 ± 670.80 (3164.76; 4196) | 0.983 b | |
| Calcium (mg/day) | 800 | 895.76 ± 155.25 (826.93; 964.6) | 689.33 ± 150.93 (573.32; 805.35) | 0.002 a | |
| Iron (mg/day) | 23 | 12.52 ± 3.20 (11.10; 13.93) | 10.94 ± 2.45 (9.06; 12.82) | 0.196 a | |
| Vitamin B1 (mg/day) | 1.2 | 1.44 ± 0.46 (1.23; 1.64) | 1.38 ± 0.32 (1.14; 1.62) | 0.983 b | |
| Vitamin B3 (mg/day) | 14 | 19.84 ± 5.45 (17.42; 22.25) | 17.43 ± 3.31 (14.89; 19.98) | 0.230 a | |
| Vitamin B6 (mg/day) | 1.6 | 2.36 ± 0.53 (2.13; 2.59) | 2.44 ± 0.44 (2.10; 2.78) | 0.673 a | |
| Vitamin B9 (µg/day) | 520 | 360.16 ± 90.87 (319.87; 400.45) | 386.48 ± 106.96 (304.26; 468.7) | 0.492 a | |
| Vitamin B12 (µg/day) | 2.2 | 4.00 ± 1.46 (3.35; 4.64) | 2.83 ± 0.83 (2.20; 3.47) | 0.024 b | |
| Vitamin C (mg/day) | 70 | 141.35 ± 87.21 (102.68; 180.02) | ↑ | 213.73 ± 74.57 (156.41; 271.05) | 0.039 b |
| Vitamin A (µg/day) | 530 | 1451.16 ± 573.53 (1196.87; 1705.45) | 1229.08 ± 418.35 (907.51; 1550.65) | 0.303 a | |
| Vitamin D (µg/day) | 15 * | 3.08 ± 2.00 (2.19; 3.97) | 2.10 ± 0.74 (1.53; 2.67) | 0.184 b | |
| Vitamin E (mg/day) | 10 * | 10.57 ± 3.82 (8.88; 12.26) | 9.12 ± 2.77 (6.99; 11.25) | 0.313 a | |
| Parameters | RDW-CV | p-Value | ||
|---|---|---|---|---|
| Reference Range | ↑ * | Elevated | ||
| Zinc (mg/1000) | 5.33 ± 0.85 (4.95; 5.71) | 5.44 ± 1.02 (4.65; 6.22) | 0.766 a | |
| Phosphorus (mg/1000) | 725.71 ± 128.28 (668.84; 782.59) | 691.75 ± 122.17 (597.84; 785.66) | 0.503 a | |
| Calcium (mg/1000) | 425.93 ± 85.78 (387.89; 463.96) | 398.24 ± 106.41 (316.45; 480.03) | 0.453 a | |
| Vitamin B12 (µg/1000) | 1.92 ± 0.88 (1.53; 2.31) | 1.60 ± 0.46 (1.25; 1.96) | 0.396 b | |
| Vitamin C (mg/1000) | 65.58 ± 40.07 (47.81; 83.35) | ↑ | 121.86 ± 45.53 (86.86; 156.86) | 0.004 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Antosiak-Cyrak, K.; Demuth, A.; Czerniak, U.; Ratajczak, J.; Bryl, E.; Kowalski, P.; Wochna, K.; Lewandowska, M.; Domaszewska, K. The Impact of Dietary Nutrient Intake on Red Blood Cell Distribution Width-Coefficient of Variation in Pregnant Women: A Cross-Sectional Observational Pilot Study. Nutrients 2025, 17, 3396. https://doi.org/10.3390/nu17213396
Antosiak-Cyrak K, Demuth A, Czerniak U, Ratajczak J, Bryl E, Kowalski P, Wochna K, Lewandowska M, Domaszewska K. The Impact of Dietary Nutrient Intake on Red Blood Cell Distribution Width-Coefficient of Variation in Pregnant Women: A Cross-Sectional Observational Pilot Study. Nutrients. 2025; 17(21):3396. https://doi.org/10.3390/nu17213396
Chicago/Turabian StyleAntosiak-Cyrak, Katarzyna, Anna Demuth, Urszula Czerniak, Joanna Ratajczak, Ewa Bryl, Piotr Kowalski, Krystian Wochna, Magdalena Lewandowska, and Katarzyna Domaszewska. 2025. "The Impact of Dietary Nutrient Intake on Red Blood Cell Distribution Width-Coefficient of Variation in Pregnant Women: A Cross-Sectional Observational Pilot Study" Nutrients 17, no. 21: 3396. https://doi.org/10.3390/nu17213396
APA StyleAntosiak-Cyrak, K., Demuth, A., Czerniak, U., Ratajczak, J., Bryl, E., Kowalski, P., Wochna, K., Lewandowska, M., & Domaszewska, K. (2025). The Impact of Dietary Nutrient Intake on Red Blood Cell Distribution Width-Coefficient of Variation in Pregnant Women: A Cross-Sectional Observational Pilot Study. Nutrients, 17(21), 3396. https://doi.org/10.3390/nu17213396

