The Effect of a Four-Month Low-Carbohydrate Diet on Visceral Adipose Tissue in Obese Subjects with Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD)
Abstract
1. Introduction
2. Materials and Methods
2.1. Participant Selection
2.2. Blood Test, Indirect Calorimetry, Anthropometric Measurements, and Bioelectrical Impedance Analysis
2.3. Ultrasound Examination of Fatty Liver
- Score of 2 signified definite positive fatty liver;
- Score of 1 indicated probable positive fatty liver;
- Score of 0 denoted negative for fatty liver.
- 1–2: mild fat infiltration;
- 3–5: moderate fat infiltration;
- 6: severe fat infiltration;
- 0: no fatty liver present.
2.4. Diet Intervention
2.5. Statistical Analysis
3. Results
4. Discussion
4.1. Effectiveness of StD on VAT Reduction
4.2. Improvement in Hepatic Steatosis Grading
4.3. Impact on Anthropometric and Metabolic Parameters
4.4. Improvements in Hepatic and Metabolic Biomarkers
5. Study Limitations
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ALD | Alcoholic Liver Disease |
ALT | Alanine Amino Transferase |
ASA | Abdominal Subcutaneous Adipose |
BMI | Body Mass Index |
CRP | C-Reactive Protein |
FFAs | Free Fatty Acids |
GEE | Generalized Estimating Equation |
GGT | Gamma Glutamyl Transpeptidase |
HCD | High-Carbohydrate Diet |
HDL | High-Density Lipoprotein Cholesterol |
HFC | Hepatic Fat Content |
HOMA IR | Homeostatic Model Assessment Insulin Resistance |
HSCs | Hepatic Stellate Cells |
IHLC | Intrahepatic Lipid Content |
IR | Insulin Resistance |
LCD | Low-Carbohydrate Diet |
LFD | Hypocaloric Low-Fat Diet |
MASLD | Metabolic Dysfunction-Associated Steatotic Liver Disease |
MED | Mediterranean Diet |
MUFAs | Monounsaturated Fatty Acids |
NAFLD | Non-Alcoholic Fatty Liver Disease |
NASH | Non-Alcoholic Steatohepatitis |
PA | Physical Activity |
PDGF | Platelet-Derived Growth Factor |
PUFAs | Polyunsaturated Fatty Acids |
SFAs | Saturated Fatty Acids |
Std | Strong Diet |
TC | Total Cholesterol |
TGs | Triglycerides |
TGF-Β | Growth Factor-Β |
VAT | Visceral Adipose Tissue |
VLCD | Very Low-Calorie Diet |
WHR | Waist-to-Hip Ratio |
References
- Hagström, H.; Nasr, P.; Ekstedt, M.; Hammar, U.; Stål, P.; Hultcrantz, R.; Kechagias, S. Fibrosis Stage but Not NASH Predicts Mortality and Time to Development of Severe Liver Disease in Biopsy-Proven NAFLD. J. Hepatol. 2017, 67, 1265–1273. [Google Scholar] [CrossRef]
- Zelber-Sagi, S.; Nitzan-Kaluski, D.; Goldsmith, R.; Webb, M.; Blendis, L.; Halpern, Z.; Oren, R. Long Term Nutritional Intake and the Risk for Non-Alcoholic Fatty Liver Disease (NAFLD): A Population Based Study. J. Hepatol. 2007, 47, 711–717. [Google Scholar] [CrossRef]
- Vilar-Gomez, E.; Martinez-Perez, Y.; Calzadilla-Bertot, L.; Torres-Gonzalez, A.; Gra-Oramas, B.; Gonzalez-Fabian, L.; Friedman, S.L.; Diago, M.; Romero-Gomez, M. Weight Loss Through Lifestyle Modification Significantly Reduces Features of Nonalcoholic Steatohepatitis. Gastroenterology 2015, 149, 367–378.e5. [Google Scholar] [CrossRef] [PubMed]
- Després, J.-P. Body Fat Distribution and Risk of Cardiovascular Disease: An Update. Circulation 2012, 126, 1301–1313. [Google Scholar] [CrossRef]
- Calzadilla-Bertot, L.; Jeffrey, G.P.; Wang, Z.; Huang, Y.; Garas, G.; Wallace, M.; De Boer, B.; George, J.; Eslam, M.; Phu, A.; et al. Predicting Liver-Related Events in NAFLD: A Predictive Model. Hepatology 2023, 78, 1240–1251. [Google Scholar] [CrossRef] [PubMed]
- Devi, J.; Raees, A.; Butt, A.S. Redefining Non-Alcoholic Fatty Liver Disease to Metabolic Associated Fatty Liver Disease: Is This Plausible? World J. Hepatol. 2022, 14, 158–167. [Google Scholar] [CrossRef]
- Powell, E.E.; Wong, V.W.-S.; Rinella, M. Non-Alcoholic Fatty Liver Disease. Lancet 2021, 397, 2212–2224. [Google Scholar] [CrossRef] [PubMed]
- Huttasch, M.; Roden, M.; Kahl, S. Obesity and MASLD: Is Weight Loss the (Only) Key to Treat Metabolic Liver Disease? Metabolism 2024, 157, 155937. [Google Scholar] [CrossRef]
- Chan, W.-K.; Chuah, K.-H.; Rajaram, R.B.; Lim, L.-L.; Ratnasingam, J.; Vethakkan, S.R. Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD): A State-of-the-Art Review. J. Obes. Metab. Syndr. 2023, 32, 197–213. [Google Scholar] [CrossRef]
- Sogabe, M.; Okahisa, T.; Tsujigami, K.; Fukuno, H.; Hibino, S.; Yamanoi, A. Visceral Fat Predominance Is Associated with Non-alcoholic Fatty Liver Disease in Japanese Women with Metabolic Syndrome. Hepatol. Res. 2014, 44, 515–522. [Google Scholar] [CrossRef]
- Bouchi, R.; Takeuchi, T.; Akihisa, M.; Ohara, N.; Nakano, Y.; Nishitani, R.; Murakami, M.; Fukuda, T.; Fujita, M.; Minami, I.; et al. Increased Visceral Adiposity with Normal Weight Is Associated with the Prevalence of Non-alcoholic Fatty Liver Disease in Japanese Patients with Type 2 Diabetes. J. Diabetes Investig. 2016, 7, 607–614. [Google Scholar] [CrossRef]
- Ludwig, D.S.; Ebbeling, C.B. The Carbohydrate-Insulin Model of Obesity: Beyond “Calories In, Calories Out”. JAMA Intern. Med. 2018, 178, 1098. [Google Scholar] [CrossRef] [PubMed]
- Ludwig, D.S. The Glycemic Index: Physiological Mechanisms Relating to Obesity, Diabetes, and Cardiovascular Disease. JAMA 2002, 287, 2414. [Google Scholar] [CrossRef] [PubMed]
- Browning, J.D.; Baker, J.A.; Rogers, T.; Davis, J.; Satapati, S.; Burgess, S.C. Short-Term Weight Loss and Hepatic Triglyceride Reduction: Evidence of a Metabolic Advantage with Dietary Carbohydrate Restriction. Am. J. Clin. Nutr. 2011, 93, 1048–1052. [Google Scholar] [CrossRef] [PubMed]
- Kirk, E.; Reeds, D.N.; Finck, B.N.; Mayurranjan, M.S.; Patterson, B.W.; Klein, S. Dietary Fat and Carbohydrates Differentially Alter Insulin Sensitivity During Caloric Restriction. Gastroenterology 2009, 136, 1552–1560. [Google Scholar] [CrossRef]
- Gepner, Y.; Shelef, I.; Komy, O.; Cohen, N.; Schwarzfuchs, D.; Bril, N.; Rein, M.; Serfaty, D.; Kenigsbuch, S.; Zelicha, H.; et al. The Beneficial Effects of Mediterranean Diet over Low-Fat Diet May Be Mediated by Decreasing Hepatic Fat Content. J. Hepatol. 2019, 71, 379–388. [Google Scholar] [CrossRef]
- Chiloiro, M.; Caruso, M.G.; Cisternino, A.M.; Inguaggiato, R.; Reddavide, R.; Bonfiglio, C.; Guerra, V.; Notarnicola, M.; De Michele, G.; Correale, M.; et al. Ultrasound Evaluation and Correlates of Fatty Liver Disease: A Population Study in a Mediterranean Area. Metab. Syndr. Relat. Disord. 2013, 11, 349–358. [Google Scholar] [CrossRef]
- Liang, K.-Y.; Zeger, S.L. Longitudinal Data Analysis Using Generalized Linear Models. Biometrika 1986, 73, 13–22. [Google Scholar] [CrossRef]
- Ahrens, A.; Hansen, C.B.; Schaffer, M.E. Lassopack: Model Selection and Prediction with Regularized Regression in Stata. Stata J. 2020, 20, 176–235. [Google Scholar] [CrossRef]
- Belsley, D.A.; Kuh, E.; Welsch, R.E. Regression Diagnostics: Identifying Influential Data and Sources of Collinearity; Wiley: New York, NY, USA, 1980. [Google Scholar]
- Ko, Y.-H.; Wong, T.-C.; Hsu, Y.-Y.; Kuo, K.-L.; Yang, S.H. The Correlation Between Body Fat, Visceral Fat, and Nonalcoholic Fatty Liver Disease. Metab. Syndr. Relat. Disord. 2017, 15, 304–311. [Google Scholar] [CrossRef]
- Alferink, L.J.M.; Kiefte-de Jong, J.C.; Erler, N.S.; De Knegt, R.J.; Hoorn, E.J.; Ikram, M.A.; Janssen, H.L.A.; Metselaar, H.J.; Franco, O.H.; Darwish Murad, S. Diet-Dependent Acid Load—The Missing Link Between an Animal Protein–Rich Diet and Nonalcoholic Fatty Liver Disease? J. Clin. Endocrinol. Metab. 2019, 104, 6325–6337. [Google Scholar] [CrossRef]
- Taskinen, M.-R.; Packard, C.J.; Borén, J. Dietary Fructose and the Metabolic Syndrome. Nutrients 2019, 11, 1987. [Google Scholar] [CrossRef] [PubMed]
- Gepner, Y.; Shelef, I.; Schwarzfuchs, D.; Zelicha, H.; Tene, L.; Yaskolka Meir, A.; Tsaban, G.; Cohen, N.; Bril, N.; Rein, M.; et al. Effect of Distinct Lifestyle Interventions on Mobilization of Fat Storage Pools: CENTRAL Magnetic Resonance Imaging Randomized Controlled Trial. Circulation 2018, 137, 1143–1157. [Google Scholar] [CrossRef] [PubMed]
- Baratta, F.; Pastori, D.; Polimeni, L.; Bucci, T.; Ceci, F.; Calabrese, C.; Ernesti, I.; Pannitteri, G.; Violi, F.; Angelico, F.; et al. Adherence to Mediterranean Diet and Non-Alcoholic Fatty Liver Disease: Effect on Insulin Resistance. Am. J. Gastroenterol. 2017, 112, 1832–1839. [Google Scholar] [CrossRef] [PubMed]
- Zelber-Sagi, S.; Ivancovsky-Wajcman, D.; Fliss Isakov, N.; Webb, M.; Orenstein, D.; Shibolet, O.; Kariv, R. High Red and Processed Meat Consumption Is Associated with Non-Alcoholic Fatty Liver Disease and Insulin Resistance. J. Hepatol. 2018, 68, 1239–1246. [Google Scholar] [CrossRef]
- Rietman, A.; Sluik, D.; Feskens, E.J.M.; Kok, F.J.; Mensink, M. Associations between Dietary Factors and Markers of NAFLD in a General Dutch Adult Population. Eur. J. Clin. Nutr. 2018, 72, 117–123. [Google Scholar] [CrossRef]
- Alferink, L.J.; Kiefte-de Jong, J.C.; Erler, N.S.; Veldt, B.J.; Schoufour, J.D.; De Knegt, R.J.; Ikram, M.A.; Metselaar, H.J.; Janssen, H.L.; Franco, O.H.; et al. Association of Dietary Macronutrient Composition and Non-Alcoholic Fatty Liver Disease in an Ageing Population: The Rotterdam Study. Gut 2019, 68, 1088–1098. [Google Scholar] [CrossRef]
- Tappy, L.; Lê, K.-A. Metabolic Effects of Fructose and the Worldwide Increase in Obesity. Physiol. Rev. 2010, 90, 23–46. [Google Scholar] [CrossRef]
- Softic, S.; Stanhope, K.L.; Boucher, J.; Divanovic, S.; Lanaspa, M.A.; Johnson, R.J.; Kahn, C.R. Fructose and Hepatic Insulin Resistance. Crit. Rev. Clin. Lab. Sci. 2020, 57, 308–322. [Google Scholar] [CrossRef]
- Stanhope, K.L.; Schwarz, J.M.; Keim, N.L.; Griffen, S.C.; Bremer, A.A.; Graham, J.L.; Hatcher, B.; Cox, C.L.; Dyachenko, A.; Zhang, W.; et al. Consuming Fructose-Sweetened, Not Glucose-Sweetened, Beverages Increases Visceral Adiposity and Lipids and Decreases Insulin Sensitivity in Overweight/Obese Humans. J. Clin. Investig. 2009, 119, 1322–1334. [Google Scholar] [CrossRef]
- Geidl-Flueck, B.; Hochuli, M.; Németh, Á.; Eberl, A.; Derron, N.; Köfeler, H.C.; Tappy, L.; Berneis, K.; Spinas, G.A.; Gerber, P.A. Fructose- and Sucrose- but Not Glucose-Sweetened Beverages Promote Hepatic de Novo Lipogenesis: A Randomized Controlled Trial. J. Hepatol. 2021, 75, 46–54. [Google Scholar] [CrossRef]
- Simons, N.; Veeraiah, P.; Simons, P.I.; Schaper, N.C.; Kooi, M.E.; Schrauwen-Hinderling, V.B.; Feskens, E.J.; Van Der Ploeg, E.; Van Den Eynde, M.D.; Schalkwijk, C.G.; et al. Effects of Fructose Restriction on Liver Steatosis (FRUITLESS); a Double-Blind Randomized Controlled Trial. Am. J. Clin. Nutr. 2021, 113, 391–400. [Google Scholar] [CrossRef]
- Ma, J.; Fox, C.S.; Jacques, P.F.; Speliotes, E.K.; Hoffmann, U.; Smith, C.E.; Saltzman, E.; McKeown, N.M. Sugar-Sweetened Beverage, Diet Soda, and Fatty Liver Disease in the Framingham Heart Study Cohorts. J. Hepatol. 2015, 63, 462–469. [Google Scholar] [CrossRef]
- Călinoiu, L.F.; Vodnar, D.C. Whole Grains and Phenolic Acids: A Review on Bioactivity, Functionality, Health Benefits and Bioavailability. Nutrients 2018, 10, 1615. [Google Scholar] [CrossRef]
- Shapiro, H.; Theilla, M.; Attal-Singer, J.; Singer, P. Effects of Polyunsaturated Fatty Acid Consumption in Diabetic Nephropathy. Nat. Rev. Nephrol. 2011, 7, 110–121. [Google Scholar] [CrossRef] [PubMed]
- Semmler, G.; Bachmayer, S.; Wernly, S.; Wernly, B.; Niederseer, D.; Huber-Schönauer, U.; Stickel, F.; Aigner, E.; Datz, C. Nut Consumption and the Prevalence and Severity of Non-Alcoholic Fatty Liver Disease. PLoS ONE 2020, 15, e0244514. [Google Scholar] [CrossRef] [PubMed]
- Ruisinger, J.F.; Gibson, C.A.; Backes, J.M.; Smith, B.K.; Sullivan, D.K.; Moriarty, P.M.; Kris-Etherton, P. Statins and Almonds to Lower Lipoproteins (the STALL Study). J. Clin. Lipidol. 2015, 9, 58–64. [Google Scholar] [CrossRef] [PubMed]
- Musa-Veloso, K.; Venditti, C.; Lee, H.Y.; Darch, M.; Floyd, S.; West, S.; Simon, R. Systematic Review and Meta-Analysis of Controlled Intervention Studies on the Effectiveness of Long-Chain Omega-3 Fatty Acids in Patients with Nonalcoholic Fatty Liver Disease. Nutr. Rev. 2018, 76, 581–602. [Google Scholar] [CrossRef]
- Zelber-Sagi, S.; Salomone, F.; Mlynarsky, L. The Mediterranean Dietary Pattern as the Diet of Choice for Non-alcoholic Fatty Liver Disease: Evidence and Plausible Mechanisms. Liver Int. 2017, 37, 936–949. [Google Scholar] [CrossRef]
- Friedman, S.L. Hepatic Stellate Cells: Protean, Multifunctional, and Enigmatic Cells of the Liver. Physiol. Rev. 2008, 88, 125–172. [Google Scholar] [CrossRef]
- Friedman, S.L.; Neuschwander-Tetri, B.A.; Rinella, M.; Sanyal, A.J. Mechanisms of NAFLD Development and Therapeutic Strategies. Nat. Med. 2018, 24, 908–922. [Google Scholar] [CrossRef]
- De Amicis, R.; Foppiani, A.; Leone, A.; Sileo, F.; Menichetti, F.; Mambrini, S.P.; Pellizzari, M.; Tucci, M.; Martini, D.; Del Bo, C.; et al. How Sustainable Are Hypocaloric and Balanced Diets for Weight Loss? Nutr. Metab. 2025, 22, 58. [Google Scholar] [CrossRef]
- European Association for the Study of the Liver (EASL); European Association for the Study of Diabetes (EASD); European Association for the Study of Obesity (EASO). EASL-EASD-EASO Clinical Practice Guidelines for the Management of Non-Alcoholic Fatty Liver Disease. Obes. Facts 2016, 9, 65–90. [Google Scholar] [CrossRef]
- Properzi, C.; O’Sullivan, T.A.; Sherriff, J.L.; Ching, H.L.; Jeffrey, G.P.; Buckley, R.F.; Tibballs, J.; MacQuillan, G.C.; Garas, G.; Adams, L.A. Ad Libitum Mediterranean and Low-Fat Diets Both Significantly Reduce Hepatic Steatosis: A Randomized Controlled Trial. Hepatology 2018, 68, 1741–1754. [Google Scholar] [CrossRef]
- Younossi, Z.M.; Koenig, A.B.; Abdelatif, D.; Fazel, Y.; Henry, L.; Wymer, M. Global Epidemiology of Nonalcoholic Fatty Liver Disease—Meta-analytic Assessment of Prevalence, Incidence, and Outcomes. Hepatology 2016, 64, 73–84. [Google Scholar] [CrossRef] [PubMed]
- Castera, L.; Friedrich-Rust, M.; Loomba, R. Noninvasive Assessment of Liver Disease in Patients with Nonalcoholic Fatty Liver Disease. Gastroenterology 2019, 156, 1264–1281.e4. [Google Scholar] [CrossRef] [PubMed]
- Ferraioli, G.; Wong, V.W.-S.; Castera, L.; Berzigotti, A.; Sporea, I.; Dietrich, C.F.; Choi, B.I.; Wilson, S.R.; Kudo, M.; Barr, R.G. Liver Ultrasound Elastography: An Update to the World Federation for Ultrasound in Medicine and Biology Guidelines and Recommendations. Ultrasound Med. Biol. 2018, 44, 2419–2440. [Google Scholar] [CrossRef] [PubMed]
Variable a | Baseline | 4 Months | p-Value ε |
---|---|---|---|
N | 474 | 474 | |
VAT (cm3) | 73.98 (49.46) | 55.74 (53.86) | <0.001 |
MASLD (%) | |||
No | 0 (0.00) | 63 (13.3) | 0.09 |
Yes | 474 (100) | 411 (86.7) | |
Degree of NAFLD (%) | |||
Absent | 0 (0.0) | 63 (13.3) | <0.001 |
Mild | 111 (26.9) | 200 (42.2) | |
Moderate | 146 (35.4) | 155 (32.7) | |
Severe | 155 (37.6) | 56 (11.8) | |
SAT (cm3) | 27.73 (17.68) | 20.99 (23.92) | <0.001 |
Age (years) | 56.55 (12.63) | ||
Gender (%) | |||
Female | 326 (68.8) | ||
Male | 148 (31.2) | ||
Anthropometric Measurements | |||
Weight (kg) | 106.32 (16.51) | 94.36 (15.26) | <0.001 |
BMI (kg/m2) | 41.01 (5.08) | 37.66 (27.11) | 0.008 |
Categories of BMI (%) | |||
<25 | 0 (0.0) | 1 (0.2) | <0.001 |
25–29.9 | 0 (0.0) | 24 (5.1) | |
30–34.9 | 19 (4.0) | 178 (37.6) | |
35–40 | 220 (46.5) | 168 (35.4) | |
>40 | 234 (49.5) | 103 (21.7) | |
Waist circumference (cm) | 122.31 (11.25) | 111.75 (11.02) | <0.001 |
Hip circumference (cm) | 129.66 (11.83) | 121.17 (10.86) | <0.001 |
WHR | 0.95 (0.08) | 0.92 (0.07) | <0.001 |
Lean mass (Kg) | 61.71 (12.10) | 57.87 (14.22) | <0.001 |
Muscle mass (Kg) | 35.18 (10.99) | 20.87 (17.52) | <0.001 |
Fat mass (Kg) | 44.20 (10.92) | 34.03 (11.27) | <0.001 |
Blood test | |||
ALT (U/L) | 34.18 (23.25) | 23.50 (9.97) | <0.001 |
GGT (U/L) | 36.44 (36.33) | 25.46 (25.15) | <0.001 |
TC (mg/dL) | 195.94 (37.17) | 191.50 (96.70) | 0.37 |
HDL (mg/dL) | 50.47 (12.11) | 52.73 (12.50) | 0.012 |
TG (mg/dL) | 146.08 (76.10) | 106.06 (75.25) | <0.001 |
Glucose (mg/dL) | 109.39 (31.81) | 98.58 (19.80) | <0.001 |
Insulin (UI/mL) | 18.85 (13.46) | 12.17 (11.11) | <0.001 |
HOMA IR | 5.14 (4.20) | 3.05 (3.21) | <0.001 |
CRP (mg/L) | 3.55 (4.94) | 2.98 (4.20) | 0.100 |
VAT | β | 95% CI | p-Value |
---|---|---|---|
Time | |||
Baseline | 0 | ||
4 months | −11.43 | −17.44; −5.41 | <0.001 |
NAFLD degree of severity | |||
Severe | 0 | ||
Moderate | −15.62 | −27.64; −3.67 | 0.011 |
Mild | −21.75 | −34.38; −9.12 | 0.001 |
Absent | −34.58 | −51.52; −17.65 | <0.001 |
Time # Degree of NAFLD Severity | Contrast | p-Value | 95% CI |
---|---|---|---|
(4 vs. 0) # Severe | −7.25 | 0.443 | −25.80, 11.29 |
(4 vs. 0) # Moderate | −16.70 | 0.005 | −28.44, −4.96 |
(4 vs. 0) # Mild | −5.67 | 0.431 | −19.78, 8.45 |
(4 vs. 0) # Absent | Not estimatable |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rotolo, O.; Bonfiglio, C.; Reddavide, R.; Cisternino, A.M.; Inguaggiato, R.; Giannelli, G. The Effect of a Four-Month Low-Carbohydrate Diet on Visceral Adipose Tissue in Obese Subjects with Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD). Nutrients 2025, 17, 2905. https://doi.org/10.3390/nu17172905
Rotolo O, Bonfiglio C, Reddavide R, Cisternino AM, Inguaggiato R, Giannelli G. The Effect of a Four-Month Low-Carbohydrate Diet on Visceral Adipose Tissue in Obese Subjects with Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD). Nutrients. 2025; 17(17):2905. https://doi.org/10.3390/nu17172905
Chicago/Turabian StyleRotolo, Ornella, Caterina Bonfiglio, Rosa Reddavide, Anna Maria Cisternino, Rosa Inguaggiato, and Gianluigi Giannelli. 2025. "The Effect of a Four-Month Low-Carbohydrate Diet on Visceral Adipose Tissue in Obese Subjects with Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD)" Nutrients 17, no. 17: 2905. https://doi.org/10.3390/nu17172905
APA StyleRotolo, O., Bonfiglio, C., Reddavide, R., Cisternino, A. M., Inguaggiato, R., & Giannelli, G. (2025). The Effect of a Four-Month Low-Carbohydrate Diet on Visceral Adipose Tissue in Obese Subjects with Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD). Nutrients, 17(17), 2905. https://doi.org/10.3390/nu17172905