Biological vs. Chronological Overnight Fasting: Influence of Last Evening Meal on Morning Glucose in Dysglycemia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. 24-H Controlled Diet
2.3. Variable Determination and Measurement
- -
- Last Eating Occasion (LEO)—Postprandial Glucose Response (PPGR): a standardized fixed 3 h glucose excursion, beginning with the first CGM reading immediately after the initiation of LEO, and terminating 3 h after.
- -
- Chronological Overnight Fast (COF): starting at the beginning of the LEO, captured by the mCC app, until wake time the next morning, as measured by actigraph.
- -
- Biological Overnight Fast (BOF): time between the return of glucose levels to same-day FG (day 13) after LEO excursion, and the FG reading at wake-time (as measured by actigraph) the next day (day 14). In other words, the BOF period excludes the individualized LEO excursion, not the 3 h fixed LEO-PPGR itself.
- -
- CGM glucose outcomes: peak glucose as the maximum glucose read and total area under the curve (tAUC) calculated using the trapezoidal method during 3 h fixed LEO-PPGR; average glucose from reads in the defined period (LEO-PPGR, COF, or BOF); next-day Fasting Glucose (FG) calculated from the average of the 3 CGM reads before wake time, determined by actigraphy, on day 14.
- -
- The Matsuda index was calculated with the ratio of plasma glucose and insulin concentrations during the OGTT, on day 14 [19].
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
BOF | Biological Overnight Fast |
CGM | Continuous Glucose Monitor |
COF | Chronological Overnight Fast |
CRC | Clinical Research Center |
FG | Next-day Fasting Glucose |
HbA1c | Hemoglobin A1c |
LEO | Last Eating Occasion of the day |
LEO-PPGR | The 3h Postprandial Glucose Response after Last Eating Occasion |
mCC | myCircadianClock |
NY-TREAT | New York Time-Restricted EATing |
OGTT | Oral Glucose Tolerance Test |
PPGR | Postprandial Glucose Response |
tAUC | Total Area Under the Curve |
References
- American Diabetes Association Professional Practice Committee; ElSayed, N.A.; Aleppo, G.; Bannuru, R.R.; Bruemmer, D.; Collins, B.S.; Ekhlaspour, L.; Gaglia, J.L.; Hilliard, M.E.; Johnson, E.L.; et al. 2. Diagnosis and Classification of Diabetes: Standards of Care in Diabetes—2024. Diabetes Care 2023, 47 (Suppl. S1), S20–S42. [Google Scholar] [CrossRef]
- Gannon, M.C.; Nuttall, F.Q.; Westphal, S.A.; Fang, S.; Ercan-Fang, N. Acute metabolic response to high-carbohydrate, high-starch meals compared with moderate-carbohydrate, low-starch meals in subjects with type 2 diabetes. Diabetes Care 1998, 21, 1619–1626. [Google Scholar] [CrossRef] [PubMed]
- Arauz-Pacheco, C.; Clements, G.; Cercone, S.; Brinkley, L.; Raskin, P. Effects of a large supper on glucose levels the following morning in patients with type 2 diabetes. J. Diabetes Its Complicat. 1998, 12, 61–64. [Google Scholar] [CrossRef] [PubMed]
- Mason, I.C.; Qian, J.; Adler, G.K.; Scheer, F.A.J.L. Impact of circadian disruption on glucose metabolism: Implications for type 2 diabetes. Diabetologia 2020, 63, 462–472. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Basu, R.; Barosa, C.; Jones, J.; Dube, S.; Carter, R.; Basu, A.; Rizza, R.A. Pathogenesis of Prediabetes: Role of the Liver in Isolated Fasting Hyperglycemia and Combined Fasting and Postprandial Hyperglycemia. J. Clin. Endocrinol. Metab. 2013, 98, E409–E417. [Google Scholar] [CrossRef]
- Porter, J.; Horne, J. Bed-time food supplements and sleep: Effects of different carbohydrate levels. Electroencephalogr. Clin. Neurophysiol. 1981, 51, 426–433. [Google Scholar] [CrossRef] [PubMed]
- Rizza, R.A. Pathogenesis of fasting and postprandial hyperglycemia in type 2 diabetes: Implications for therapy. Diabetes 2010, 59, 2697–2707. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Phillip, M.; Battelino, T.; Atlas, E.; Kordonouri, O.; Bratina, N.; Miller, S.; Biester, T.; Stefanija, M.A.; Muller, I.; Nimri, R.; et al. Nocturnal glucose control with an artificial pancreas at a diabetes camp. N. Engl. J. Med. 2013, 368, 824–833. [Google Scholar] [CrossRef]
- Ceriello, A.; Monnier, L.; Owens, D. Glycaemic variability in diabetes: Clinical and therapeutic implications. Lancet Diabetes Endocrinol. 2019, 7, 221–230. [Google Scholar] [CrossRef] [PubMed]
- Liarakos, A.L.; Lim, J.Z.M.; Leelarathna, L.; Wilmot, E.G. The use of technology in type 2 diabetes and prediabetes: A narrative review. Diabetologia 2024, 67, 2059–2074. [Google Scholar] [CrossRef] [PubMed]
- Hall, H.; Perelman, D.; Breschi, A.; Limcaoco, P.; Kellogg, R.; McLaughlin, T.; Snyder, M.; Locasale, J. Glucotypes reveal new patterns of glucose dysregulation. PLOS Biol. 2018, 16, e2005143. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lejk, A.; Chrzanowski, J.; Cieślak, A.; Fendler, W.; Myśliwiec, M. Reduced Carbohydrate Diet Influence on Postprandial Glycemia—Results of a Short, CGM-Based, Interventional Study in Adolescents with Type 1 Diabetes. Nutrients 2022, 14, 4689. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Devlin, B.L.; Parr, E.B.; Radford, B.E.; Hawley, J.A. Lower nocturnal blood glucose response to a potato-based mixed evening meal compared to rice in individuals with type 2 diabetes. Clin. Nutr. 2020, 40, 2200–2209. [Google Scholar] [CrossRef] [PubMed]
- Gill, S.; Panda, S. A Smartphone App Reveals Erratic Diurnal Eating Patterns in Humans that Can Be Modulated for Health Benefits. Cell Metab. 2015, 22, 789–798. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Santos–Báez, L.S.; Garbarini, A.; Shaw, D.; Cheng, B.; Popp, C.J.; Manoogian, E.N.; Panda, S.; Laferrère, B. Time-restricted eating to improve cardiometabolic health: The New York Time-Restricted EATing randomized clinical trial—Protocol overview. Contemp. Clin. Trials 2022, 120, 106872. [Google Scholar] [CrossRef]
- Manoogian, E.N.C.; Wei-Shatzel, J.; Panda, S. Assessing temporal eating pattern in free living humans through the myCircadianClock app. Int. J. Obes. 2022, 46, 696–706. [Google Scholar] [CrossRef]
- Karlsson, M.; Olsson, E.; Becker, W.; Karlström, B.; Cederholm, T.; Sjögren, P. Ability to predict resting energy expenditure with six equations compared to indirect calorimetry in octogenarian men. Exp. Gerontol. 2017, 92, 52–55. [Google Scholar] [CrossRef]
- Mifflin, M.D.; St Jeor, S.T.; Hill, L.A.; Scott, B.J.; Daugherty, S.A.; Koh, Y.O. A new predictive equation for resting energy expenditure in healthy individuals. Am. J. Clin. Nutr. 1990, 51, 241–247. [Google Scholar] [CrossRef]
- Gutch, M.; Kumar, S.; Razi, S.M.; Gupta, K.K.; Gupta, A. Assessment of insulin sensitivity/resistance. Indian J. Endocrinol. Metab. 2015, 19, 160–164. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- de Almeida, R.S.; Marot, L.P.; Latorraca, C.d.O.C.; Oliveira, R.d.Á.; Crispim, C.A. Is Evening Carbohydrate Intake in Healthy Individuals Associated with Higher Postprandial Glycemia and Insulinemia When Compared to Morning Intake? A Systematic Review and Meta-Analysis of Randomized Crossover Studies. J. Am. Nutr. Assoc. 2022, 42, 349–360. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, K.; Tajiri, E.; Hatamoto, Y.; Ando, T.; Shimoda, S.; Yoshimura, E. Eating Dinner Early Improves 24-h Blood Glucose Levels and Boosts Lipid Metabolism after Breakfast the Next Day: A Randomized Cross-Over Trial. Nutrients 2021, 13, 2424. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Díaz-Rizzolo, D.A.; Baez, L.S.S.; Popp, C.J.; Borhan, R.; Sordi-Guth, A.; Manoogian, E.N.C.; Panda, S.; Cheng, B.; Laferrère, B. Late eating is associated with poor glucose tolerance, independent of body weight, fat mass, energy intake and diet composition in prediabetes or early onset type 2 diabetes. Nutr. Diabetes 2024, 14, 90. [Google Scholar] [CrossRef] [PubMed]
- Shrestha, L.; Jha, B.; Yadav, B.; Sharma, S. Correlation between fasting blood glucose, postprandial blood glucose and glycated hemoglobin in non-insulin treated type 2 diabetic subjects. Sunsari Tech. Coll. J. 2013, 1, 18–21. [Google Scholar] [CrossRef]
- Monnier, L.; Lapinski, H.; Colette, C. Contributions of fasting and postprandial plasma glucose increments to the overall diurnal hyperglycemia of type 2 diabetic patients: Variations with increasing levels of HbA(1c). Diabetes Care 2003, 26, 881–885. [Google Scholar] [CrossRef] [PubMed]
- Ben-Yacov, O.; Godneva, A.; Rein, M.; Shilo, S.; Kolobkov, D.; Koren, N.; Dolev, N.C.; Shmul, T.T.; Wolf, B.C.; Kosower, N.; et al. Personalized Postprandial Glucose Response–Targeting Diet Versus Mediterranean Diet for Glycemic Control in Prediabetes. Diabetes Care 2021, 44, 1980–1991. [Google Scholar] [CrossRef] [PubMed]
- Jarrett, R.J.; Keen, H. Diurnal variation of oral glucose tolerance: A possible pointer to the evolution of diabetes mellitus. BMJ 1969, 2, 341–344. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Van Cauter, E.; Polonsky, K.S.; Scheen, A.J. Roles of circadian rhythmicity and sleep in human glucose regulation. Endocr. Rev. 1997, 18, 716–738. [Google Scholar] [CrossRef] [PubMed]
- Nuttall, F.Q.; Gannon, M.C. Metabolic response of people with type 2 diabetes to a high protein diet. Nutr. Metab. 2004, 1, 6. [Google Scholar] [CrossRef] [PubMed]
- Axelsen, M.; Lönnroth, P.; Lenner, R.A.; Taskinen, M.-R.; Smith, U. Suppression of nocturnal fatty acid concentrations by bedtime carbohydrate supplement in type 2 diabetes: Effects on insulin sensitivity, lipids, and glycemic control. Am. J. Clin. Nutr. 2000, 71, 1108–1114. [Google Scholar] [CrossRef] [PubMed]
- Dyer-Parziale, M. The effect of extend bar containing uncooked cornstarch on night-time glycemic excursion in subjects with type 2 diabetes. Diabetes Res. Clin. Pract. 2001, 53, 137–139. [Google Scholar] [CrossRef] [PubMed]
- Axelsen, M.; Lenner, R.A.; Lönnroth, P.; Smith, U. Breakfast glycaemic response in patients with type 2 diabetes: Effects of bedtime dietary carbohydrates. Eur. J. Clin. Nutr. 1999, 53, 706–710. [Google Scholar] [CrossRef] [PubMed]
- Axelsen, M.; Lönnroth, P.; Lenner, R.A.; Smith, U. Suppression of the nocturnal free fatty acid levels by bedtime cornstarch in NIDDM subjects. Eur. J. Clin. Investig. 2003, 27, 157–163. [Google Scholar] [CrossRef] [PubMed]
- Nuttall, F.Q.; Almokayyad, R.M.; Gannon, M.C. Comparison of a carbohydrate-free diet vs. fasting on plasma glucose, insulin and glucagon in type 2 diabetes. Metabolism 2015, 64, 253–262. [Google Scholar] [CrossRef] [PubMed]
- Fromentin, C.; Tomé, D.; Nau, F.; Flet, L.; Luengo, C.; Azzout-Marniche, D.; Sanders, P.; Fromentin, G.; Gaudichon, C. Dietary proteins contribute little to glucose production, even under optimal gluconeogenic conditions in healthy humans. Diabetes 2013, 62, 1435–1442. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Abbie, E.; Francois, M.E.; Chang, C.R.; Barry, J.C.; Little, J.P. A low-carbohydrate protein-rich bedtime snack to control fasting and nocturnal glucose in type 2 diabetes: A randomized trial. Clin. Nutr. 2020, 39, 3601–3606. [Google Scholar] [CrossRef] [PubMed]
- Boden, G.; Chen, X.; Urbain, J.L. Evidence for a circadian rhythm of insulin sensitivity in patients with NIDDM caused by cyclic changes in hepatic glucose production. Diabetes 1996, 45, 1044–1050. [Google Scholar] [CrossRef] [PubMed]
- Stumvoll, M.; Tataranni, P.A.; Stefan, N.; Vozarova, B.; Bogardus, C. Glucose allostasis. Diabetes 2003, 52, 903–909. [Google Scholar] [CrossRef] [PubMed]
- Isherwood, C.M.; van der Veen, D.R.; Hassanin, H.; Skene, D.J.; Johnston, J.D. Human glucose rhythms and subjective hunger anticipate meal timing. Curr. Biol. 2023, 33, 1321–1326.e3. [Google Scholar] [CrossRef] [PubMed]
- Jones, S.E.; Lane, J.M.; Wood, A.R.; van Hees, V.T.; Tyrrell, J.; Beaumont, R.N.; Jeffries, A.R.; Dashti, H.S.; Hillsdon, M.; Ruth, K.S.; et al. Genome-wide association analyses of chronotype in 697,828 individuals provides insights into circadian rhythms. Nat. Commun. 2019, 10, 343. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Stutz, B.; Krueger, B.; Goletzke, J.; Jankovic, N.; Alexy, U.; Herder, C.; Dierkes, J.; Berg-Beckhoff, G.; Jakobsmeyer, R.; Reinsberger, C.; et al. Glycemic response to meals with a high glycemic index differs between morning and evening: A randomized cross-over controlled trial among students with early or late chronotype. Eur. J. Nutr. 2024, 63, 1593–1604. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Barua, S.; Glantz, N.; Larez, A.; Bevier, W.; Sabharwal, A.; Kerr, D. A probabilistic computation framework to estimate the dawn phenomenon in type 2 diabetes using continuous glucose monitoring. Sci. Rep. 2024, 14, 2915. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ahlqvist, E.; Storm, P.; Käräjämäki, A.; Martinell, M.; Dorkhan, M.; Carlsson, A.; Vikman, P.; Prasad, R.B.; Aly, D.M.; Almgren, P.; et al. Novel subgroups of adult-onset diabetes and their association with outcomes: A data-driven cluster analysis of six variables. Lancet Diabetes Endocrinol. 2018, 6, 361–369. [Google Scholar] [CrossRef] [PubMed]
- Hutchins, K.M.; Betts, J.A.; Thompson, D.; Hengist, A.; Gonzalez, J.T. Continuous glucose monitor overestimates glycemia, with the magnitude of bias varying by postprandial test and individual—A randomized crossover trial. Am. J. Clin. Nutr. 2025, 121, 1025–1034. [Google Scholar] [CrossRef] [PubMed]
- Hengist, A.; Ong, J.A.; McNeel, K.; Guo, J.; Hall, K.D. Imprecision nutrition? Intraindividual variability of glucose responses to duplicate presented meals in adults without diabetes. Am. J. Clin. Nutr. 2024, 121, 74–82. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
Next-Day FG | |||
---|---|---|---|
r | p Value | ||
LEO-PPGR | Mean Glucose (mg/dL) | 0.704 | <0.001 |
Glucose Peak (mg/dL) | 0.535 | 0.001 | |
Glucose tAUC (min. mg/dL) | 0.708 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Diaz-Rizzolo, D.A.; Yao, H.; Santos-Báez, L.S.; Popp, C.J.; Borhan, R.; Sordi-Guth, A.; DeBonis, D.; Manoogian, E.N.C.; Panda, S.; Cheng, B.; et al. Biological vs. Chronological Overnight Fasting: Influence of Last Evening Meal on Morning Glucose in Dysglycemia. Nutrients 2025, 17, 2026. https://doi.org/10.3390/nu17122026
Diaz-Rizzolo DA, Yao H, Santos-Báez LS, Popp CJ, Borhan R, Sordi-Guth A, DeBonis D, Manoogian ENC, Panda S, Cheng B, et al. Biological vs. Chronological Overnight Fasting: Influence of Last Evening Meal on Morning Glucose in Dysglycemia. Nutrients. 2025; 17(12):2026. https://doi.org/10.3390/nu17122026
Chicago/Turabian StyleDiaz-Rizzolo, Diana A., Haley Yao, Leinys S. Santos-Báez, Collin J. Popp, Rabiah Borhan, Ana Sordi-Guth, Danny DeBonis, Emily N. C. Manoogian, Satchidananda Panda, Bin Cheng, and et al. 2025. "Biological vs. Chronological Overnight Fasting: Influence of Last Evening Meal on Morning Glucose in Dysglycemia" Nutrients 17, no. 12: 2026. https://doi.org/10.3390/nu17122026
APA StyleDiaz-Rizzolo, D. A., Yao, H., Santos-Báez, L. S., Popp, C. J., Borhan, R., Sordi-Guth, A., DeBonis, D., Manoogian, E. N. C., Panda, S., Cheng, B., & Laferrère, B. (2025). Biological vs. Chronological Overnight Fasting: Influence of Last Evening Meal on Morning Glucose in Dysglycemia. Nutrients, 17(12), 2026. https://doi.org/10.3390/nu17122026