DASH Diet and Preeclampsia Prevention: A Literature Review
Abstract
:1. Introduction
1.1. Pathophysiology of Preeclampsia
1.2. Classification and Clinical Manifestations
1.3. Risk Factors and Prediction
1.4. Prevention Strategies
1.4.1. Pharmacological Interventions
1.4.2. Non-Pharmacological Interventions
1.5. DASH Diet: Overview and Potential Application in Preeclampsia
1.5.1. Fundamentals of the DASH Diet
- 4–5 servings of vegetables per day
- 4–5 servings of fruits per day
- 6–8 servings of whole grains per day
- 2–3 servings of low-fat dairy products per day
- 2 or fewer servings of lean meats, poultry, and fish per day
- 4–5 servings of nuts, seeds, and legumes per week
- Limited intake of fats and sweets
- Sodium restriction (2300 mg per day in the standard DASH diet, 1500 mg per day in the low-sodium DASH diet)
1.5.2. DASH Diet in Women’s Health
2. Materials and Methods
2.1. Search Strategy
2.2. Study Selection
- Studies examining the DASH diet as a whole dietary pattern in relation to preeclampsia prevention or risk reduction.
- Studies focusing on pregnant women or women of reproductive age.
- Published original research studies, including randomized controlled trials, cohort studies, case-control studies, and cross-sectional studies.
- Studies including methods for evaluating adherence to the DASH diet.
- Studies focusing only on specific ingredients, vitamins, or trace elements rather than the DASH diet as a whole.
- Studies focusing only on other pregnancy complications without mentioning preeclampsia or gestational hypertensive disorders.
- Studies focusing only on blood pressure management in non-pregnant populations without assessing preeclampsia or gestational hypertensive disorders as outcomes.
- Literature reviews, systematic reviews, and case reports (though these were examined for potential primary sources).
2.3. Data Extraction and Synthesis
2.4. Quality Assessment
- Study design: We assessed whether the design (randomized controlled trial, cohort, case-control, cross-sectional) was appropriate for addressing the research question.
- Sample size: We considered the number of participants in each study.
- DASH diet assessment methods: We evaluated the tools used to measure diet adherence, including the number of food items assessed and whether the tools were validated.
- Outcome measures: We assessed the clarity and relevance of the reported outcomes related to preeclampsia or its pathophysiological mechanisms.
- Confounding factors: We examined which potential confounders were considered in each study.
- Reporting of results: We assessed the clarity and completeness of the reported findings.
3. Results
3.1. DASH Diet and Preeclampsia Incidence
3.2. DASH Diet and Blood Pressure During Pregnancy
3.3. DASH Diet and Pregnancy Outcomes
3.4. DASH Diet and Metabolic Parameters in Pregnancy
3.5. DASH Diet in Different Populations
3.6. Sodium Intake and Hypertensive Disorders
3.7. Long-Term Health Implications
3.8. DASH Diet Adherence and Genotypic Considerations
4. Discussion
4.1. Interpretation of Key Findings
4.2. Mechanisms of Action
4.3. Comparison with Other Dietary Interventions
4.4. DASH Diet Adherence and Implementation Strategies
4.5. Population-Specific Considerations
4.6. Integration with Other Preventive Strategies
4.7. Clinical Implications and Practice Recommendations
4.8. Limitations of Current Evidence
4.9. Future Research Directions
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- GBD 2015 Maternal Mortality Collaborators. Global, regional, and national levels of maternal mortality, 1990–2015: A systematic analysis for the Global Burden of Disease Study 2015. Lancet 2016, 388, 1775–1812. [Google Scholar] [CrossRef] [PubMed]
- GBD 2015 Child Mortality Collaborators. Global, regional, national, and selected subnational levels of stillbirths, neonatal, infant, and under-5 mortality, 1980–2015: A systematic analysis for the Global Burden of Disease Study 2015. Lancet 2016, 388, 1725–1774. [Google Scholar] [CrossRef]
- Magee, L.A.; Brown, M.A.; Hall, D.R.; Gupte, S.; Hennessy, A.; Karumanchi, S.A.; Kenny, L.C.; McCarthy, F.; Myers, J.; Poon, L.C.; et al. The 2021 International Society for the Study of Hypertension in Pregnancy classification, diagnosis & management recommendations for international practice. Pregnancy Hypertens 2022, 27, 148–169. [Google Scholar]
- Brown, M.A.; Lindheimer, M.D.; de Swiet, M.; Van Assche, A.; Moutquin, J.M. The classification and diagnosis of the hypertensive disorders of pregnancy: Statement from the International Society for the Study of Hypertension in Pregnancy (ISSHP). Hypertens Pregnancy 2001, 20, ix–xiv. [Google Scholar] [CrossRef] [PubMed]
- Ghulmiyyah, L.; Sibai, B. Maternal mortality from preeclampsia/eclampsia. Semin. Perinatol. 2012, 36, 56–59. [Google Scholar] [CrossRef]
- Giordano, J.C.; Parpinelli, M.A.; Cecatti, J.G.; Haddad, S.M.; Costa, M.L.; Surita, F.G.; Pinto e Silva, J.L.; Sousa, M.H. The burden of eclampsia: Results from a multicenter study on surveillance of severe maternal morbidity in Brazil. PLoS ONE 2014, 9, e97401. [Google Scholar] [CrossRef] [PubMed]
- Lai, J.; Syngelaki, A.; Nicolaides, K.H.; von Dadelszen, P.; Magee, L.A. Impact of new definitions of preeclampsia at term on identification of adverse maternal and perinatal outcomes. Am. J. Obstet Gynecol. 2021, 224, 518.e1–518.e11. [Google Scholar] [CrossRef]
- Lisonkova, S.; Joseph, K.S. Incidence of preeclampsia: Risk factors and outcomes associated with early- versus late-onset disease. Am. J. Obstet. Gynecol. 2013, 209, 544.e1–544.e12. [Google Scholar] [CrossRef]
- Roberts, J.M.; Hubel, C.A. The two stage model of preeclampsia: Variations on the theme. Placenta 2009, 30 (Suppl. A), S32–S37. [Google Scholar] [CrossRef]
- Redman, C.W.; Sargent, I.L. Latest advances in understanding preeclampsia. Science 2005, 308, 1592–1594. [Google Scholar] [CrossRef]
- Poon, L.C.; Shennan, A.; Hyett, J.A.; Kapur, A.; Hadar, E.; Divakar, H.; McAuliffe, F.; da Silva Costa, F.; von Dadelszen, P.; McIntyre, H.D.; et al. The International Federation of Gynecology and Obstetrics (FIGO) initiative on pre-eclampsia: A pragmatic guide for first-trimester screening and prevention. Int. J. Gynaecol. Obstet. 2019, 145 (Suppl. 1), 1–33. [Google Scholar] [CrossRef] [PubMed]
- Weissgerber, T.L.; Mudd, L.M. Preeclampsia and diabetes. Curr. Diab. Rep. 2015, 15, 9. [Google Scholar] [CrossRef] [PubMed]
- Levine, R.J.; Maynard, S.E.; Qian, C.; Lim, K.H.; England, L.J.; Yu, K.F.; Schisterman, E.F.; Thadhani, R.; Sachs, B.P.; Epstein, F.H.; et al. Circulating angiogenic factors and the risk of preeclampsia. N. Engl. J. Med. 2004, 350, 672–683. [Google Scholar] [CrossRef] [PubMed]
- Masini, G.; Foo, L.F.; Tay, J.; Wilkinson, I.B.; Valensise, H.; Gyselaers, W.; Lees, C.C. Reply: Preeclampsia has 2 phenotypes that require different treatment strategies. Am. J. Obstet. Gynecol. 2022, 227, 114–115. [Google Scholar] [CrossRef]
- Gibbone, E.; Huluta, I.; Wright, A.; Nicolaides, K.H.; Charakida, M. Maternal cardiac function at midgestation and development of preeclampsia. J. Am. Coll. Cardiol. 2022, 79, 52–62. [Google Scholar] [CrossRef]
- Rolnik, D.L.; Wright, D.; Poon, L.C.; O’Gorman, N.; Syngelaki, A.; de Paco Matallana, C.; Akolekar, R.; Cicero, S.; Janga, D.; Singh, M.; et al. Aspirin versus placebo in pregnancies at high risk for preterm preeclampsia. N. Engl. J. Med. 2017, 377, 613–622. [Google Scholar] [CrossRef]
- Duley, L.; Meher, S.; Hunter, K.E.; Seidler, A.L.; Askie, L.M. Antiplatelet agents for preventing pre-eclampsia and its complications. Cochrane Database Syst. Rev. 2019, 10, CD004659. [Google Scholar] [CrossRef]
- Abalos, E.; Cuesta, C.; Grosso, A.L.; Chou, D.; Say, L. Global and regional estimates of preeclampsia and eclampsia: A systematic review. Eur. J. Obstet. Gynecol. Reprod. Biol. 2013, 170, 1–7. [Google Scholar] [CrossRef]
- Schoenaker, D.A.; Soedamah-Muthu, S.S.; Mishra, G.D. The association between dietary factors and gestational hypertension and pre-eclampsia: A systematic review and meta-analysis of observational studies. BMC Med. 2014, 12, 157. [Google Scholar] [CrossRef]
- Qiu, C.; Coughlin, K.B.; Frederick, I.O.; Sorensen, T.K.; Williams, M.A. Dietary fiber intake in early pregnancy and risk of subsequent preeclampsia. Am. J. Hypertens. 2008, 21, 903–909. [Google Scholar] [CrossRef]
- Frederick, I.O.; Williams, M.A.; Dashow, E.; Kestin, M.; Zhang, C.; Leisenring, W.M. Dietary fiber, potassium, magnesium and calcium in relation to the risk of preeclampsia. J. Reprod. Med. 2005, 50, 332–344. [Google Scholar] [PubMed]
- Borgen, I.; Aamodt, G.; Harsem, N.; Haugen, M.; Meltzer, H.M.; Brantsæter, A.L. Maternal sugar consumption and risk of preeclampsia in nulliparous Norwegian women. Eur. J. Clin. Nutr. 2012, 66, 920–925. [Google Scholar] [CrossRef] [PubMed]
- Khoury, J.; Henriksen, T.; Christophersen, B.; Tonstad, S. Effect of a cholesterol-lowering diet on maternal, cord, and neonatal lipids, and pregnancy outcome: A randomized clinical trial. Am. J. Obstet. Gynecol. 2005, 193, 1292–1301. [Google Scholar] [CrossRef]
- Karayiannis, D.; Kontogianni, M.D.; Mendorou, C.; Mastrominas, M.; Yiannakouris, N. Adherence to the Mediterranean diet and IVF success rate among non-obese women attempting fertility. Hum. Reprod. 2018, 33, 494–502. [Google Scholar] [CrossRef] [PubMed]
- Martínez-González, M.A.; Gea, A.; Ruiz-Canela, M. The Mediterranean diet and cardiovascular health. Circ. Res. 2019, 124, 779–798. [Google Scholar] [CrossRef]
- Baroutis, D.; Kalampokas, T.; Katsianou, E.; Psarris, A.; Daskalakis, G.; Panoulis, K.; Eleftheriades, M. The Role of the Mediterranean Diet in Assisted Reproduction: A Literature Review. Nutrients 2024, 16, 2807. [Google Scholar] [CrossRef]
- Appel, L.J.; Moore, T.J.; Obarzanek, E.; Vollmer, W.M.; Svetkey, L.P.; Sacks, F.M.; Bray, G.A.; Vogt, T.M.; Cutler, J.A.; Windhauser, M.M.; et al. A clinical trial of the effects of dietary patterns on blood pressure. N. Engl. J. Med. 1997, 336, 1117–1124. [Google Scholar] [CrossRef]
- Sacks, F.M.; Svetkey, L.P.; Vollmer, W.M.; Appel, L.J.; Bray, G.A.; Harsha, D.; Obarzanek, E.; Conlin, P.R.; Miller, E.R.; Simons-Morton, D.G.; et al. Effects on blood pressure of reduced dietary sodium and the Dietary Approaches to Stop Hypertension (DASH) diet. N. Engl. J. Med. 2001, 344, 3–10. [Google Scholar] [CrossRef]
- Chiavaroli, L.; Viguiliouk, E.; Nishi, S.K.; Blanco Mejia, S.; Rahelić, D.; Kahleová, H.; Salas-Salvadó, J.; Kendall, C.W.; Sievenpiper, J.L. DASH Dietary Pattern and Cardiometabolic Outcomes: An Umbrella Review of Systematic Reviews and Meta-Analyses. Nutrients 2019, 11, 338. [Google Scholar] [CrossRef]
- Steinberg, D.; Bennett, G.G.; Svetkey, L. The DASH Diet, 20 Years Later. JAMA 2017, 317, 1529–1530. [Google Scholar] [CrossRef]
- Bray, G.A.; Vollmer, W.M.; Sacks, F.M.; Obarzanek, E.; Svetkey, L.P.; Appel, L.J.; DASH Collaborative Research Group. A further subgroup analysis of the effects of the DASH diet and three dietary sodium levels on blood pressure: Results of the DASH-Sodium Trial. Am. J. Cardiol. 2004, 94, 222–227. [Google Scholar] [CrossRef] [PubMed]
- Sacks, F.M.; Campos, H. Dietary therapy in hypertension. N. Engl. J. Med. 2010, 362, 2102–2112. [Google Scholar] [CrossRef]
- Martin, H.; Richert, L.; Berthelot, A. Magnesium deficiency induces apoptosis in primary cultures of rat hepatocytes. J. Nutr. 2003, 133, 2505–2511. [Google Scholar] [CrossRef]
- Aburto, N.J.; Hanson, S.; Gutierrez, H.; Hooper, L.; Elliott, P.; Cappuccio, F.P. Effect of increased potassium intake on cardiovascular risk factors and disease: Systematic review and meta-analyses. BMJ 2013, 346, f1378. [Google Scholar] [CrossRef]
- Chen, S.T.; Maruthur, N.M.; Appel, L.J. The effect of dietary patterns on estimated coronary heart disease risk: Results from the Dietary Approaches to Stop Hypertension (DASH) trial. Circ. Cardiovasc. Qual. Outcomes 2010, 3, 484–489. [Google Scholar] [CrossRef] [PubMed]
- Burton, G.J.; Jauniaux, E. Oxidative stress. Best Pract. Res. Clin. Obstet. Gynaecol. 2011, 25, 287–299. [Google Scholar] [CrossRef]
- Asemi, Z.; Samimi, M.; Tabassi, Z.; Sabihi, S.S.; Esmaillzadeh, A. A randomized controlled clinical trial investigating the effect of DASH diet on insulin resistance, inflammation, and oxidative stress in gestational diabetes. Nutrition 2013, 29, 619–624. [Google Scholar] [CrossRef] [PubMed]
- Selhub, J. Folate, vitamin B12 and vitamin B6 and one carbon metabolism. J. Nutr. Health Aging 2002, 6, 39–42. [Google Scholar]
- Ueland, P.M.; Hustad, S.; Schneede, J.; Refsum, H.; Vollset, S.E. Biological and clinical implications of the MTHFR C677T polymorphism. Trends Pharmacol. Sci. 2001, 22, 195–201. [Google Scholar] [CrossRef]
- Braekke, K.; Ueland, P.M.; Harsem, N.K.; Karlsen, A.; Blomhoff, R.; Staff, A.C. Homocysteine, cysteine, and related metabolites in maternal and fetal plasma in preeclampsia. Pediatr. Res. 2007, 62, 319–324. [Google Scholar] [CrossRef]
- Makedos, G.; Papanicolaou, A.; Hitoglou, A.; Kalogiannidis, I.; Makedos, A.; Vrazioti, V.; Goutzioulis, M. Homocysteine, folic acid and B12 serum levels in pregnancy complicated with preeclampsia. Arch. Gynecol. Obstet. 2007, 275, 121–124. [Google Scholar] [CrossRef] [PubMed]
- Clarke, R.; Halsey, J.; Lewington, S.; Lonn, E.; Armitage, J.; Manson, J.E.; Bønaa, K.H.; Spence, J.D.; Nygård, O.; Jamison, R.; et al. Effects of lowering homocysteine levels with B vitamins on cardiovascular disease, cancer, and cause-specific mortality: Meta-analysis of 8 randomized trials. Arch. Intern. Med. 2010, 170, 1622–1631. [Google Scholar]
- Martí-Carvajal, A.J.; Solà, I.; Lathyris, D.; Dayer, M. Homocysteine-lowering interventions for preventing cardiovascular events. Cochrane Database Syst. Rev. 2017, 8, CD006612. [Google Scholar] [PubMed]
- Heidari, Z.; Mohammadi, E.; Aghamohammadi, V.; Jalali, S.; Rezazadeh, A.; Sedaghat, F.; Assadi, M.; Rashidkhani, B. Dietary Approaches to Stop Hypertension (DASH) diets and breast cancer among women: A case control study. BMC Cancer 2020, 20, 708. [Google Scholar] [CrossRef]
- Wong, J.M.; Jenkins, D.J. Carbohydrate digestibility and metabolic effects. J. Nutr. 2007, 137, 2539S–2546S. [Google Scholar] [CrossRef]
- Fung, T.T.; Chiuve, S.E.; McCullough, M.L.; Rexrode, K.M.; Logroscino, G.; Hu, F.B. Adherence to a DASH-style diet and risk of coronary heart disease and stroke in women. Arch. Intern. Med. 2008, 168, 713–720. [Google Scholar] [CrossRef] [PubMed]
- Roberts, J.M.; Gammill, H.S. Preeclampsia: Recent insights. Hypertension 2005, 46, 1243–1249. [Google Scholar] [CrossRef]
- Arvizu, M.; Stuart, J.J.; Rich-Edwards, J.W.; Gaskins, A.J.; Rosner, B.; Chavarro, J.E. Prepregnancy adherence to dietary recommendations for the prevention of cardiovascular disease in relation to risk of hypertensive disorders of pregnancy. Am. J. Clin. Nutr. 2020, 112, 1429–1437. [Google Scholar] [CrossRef]
- Cao, Y.; Liu, Y.; Zhao, X.; Duan, D.; Dou, W.; Fu, W.; Chen, H.; Bo, Y.; Qiu, Y.; Chen, G.; et al. Adherence to a Dietary Approaches to Stop Hypertension (DASH)-style Diet in Relation to Preeclampsia: A Case-Control Study. Sci. Rep. 2020, 10, 9078. [Google Scholar] [CrossRef]
- Belfort, G.P.; de Carvalho Padilha, P.; Farias, D.R.; da Silva, L.B.; dos Santos, K.; Gomes, E.D.S.; Lima, T.S.; Bornia, R.B.R.; Rezende, K.B.; Saunders, C. Effect of the Dietary Approaches to Stop Hypertension (DASH) diet on the development of preeclampsia and metabolic outcomes in pregnant women with pre-existing diabetes mellitus: A randomised, controlled, single-blind trial. J. Nutr. Sci. 2023, 12, e73. [Google Scholar] [CrossRef]
- Vesco, K.K.; Karanja, N.; King, J.C.; Gillman, M.W.; Leo, M.C.; Perrin, N.; McEvoy, C.T.; Eckhardt, C.L.; Smith, K.S.; Stevens, V.J. Efficacy of a group-based dietary intervention for limiting gestational weight gain among obese women: A randomized trial. Obesity 2014, 22, 1989–1996. [Google Scholar] [CrossRef] [PubMed]
- Courtney, A.U.; O’Brien, E.C.; Crowley, R.K.; Geraghty, A.A.; Brady, M.B.; Kilbane, M.T.; Twomey, P.J.; McKenna, M.J.; McAuliffe, F.M. DASH (Dietary Approaches to Stop Hypertension) dietary pattern and maternal blood pressure in pregnancy. J. Hum. Nutr. Diet. 2020, 33, 686–697. [Google Scholar] [CrossRef] [PubMed]
- Wiertsema, C.J.; Mensink-Bout, S.M.; Duijts, L.; Mulders, A.G.; Jaddoe, V.W.; Gaillard, R. Associations of DASH Diet in Pregnancy with Blood Pressure Patterns, Placental Hemodynamics, and Gestational Hypertensive Disorders. J. Am. Heart Assoc. 2021, 10, e017503. [Google Scholar] [CrossRef] [PubMed]
- dos Santos, K.; Rosado, E.L.; da Fonseca, A.C.P.; Belfort, G.P.; da Silva, L.B.G.; Ribeiro-Alves, M.; Zembrzuski, V.M.; Campos, M., Jr.; Zajdenverg, L.; Drehmer, M.; et al. A Pilot Study of Dietetic, Phenotypic, and Genotypic Features Influencing Hypertensive Disorders of Pregnancy in Women with Pregestational Diabetes Mellitus. Life 2023, 13, 1104. [Google Scholar] [CrossRef]
- Najafian, M.; Shariati, M.; Nikbakht, R.; Masihi, S. Investigating Dietary Approaches to Stop Hypertension (DASH) on Pregnancy Outcomes of Pregnant Women with Chronic and Gestational Hypertension. J. Obstet. Gynecol. Cancer Res. 2023, 8, 438–445. [Google Scholar] [CrossRef]
- Jiang, F.; Li, Y.; Xu, P.; Li, J.; Chen, X.; Yu, H.; Gao, B.; Xu, B.; Li, X.; Chen, W. The efficacy of the Dietary Approaches to Stop Hypertension diet with respect to improving pregnancy outcomes in women with hypertensive disorders. J. Hum. Nutr. Diet. 2019, 32, 713–718. [Google Scholar] [CrossRef]
- Fulay, A.P.; Rifas-Shiman, S.L.; Oken, E.; Perng, W. Associations of the dietary approaches to stop hypertension (DASH) diet with pregnancy complications in Project Viva. Eur. J. Clin. Nutr. 2018, 72, 1385–1395. [Google Scholar] [CrossRef]
- Miller, C.; Boushey, C.; Benny, P.; Ma, S.; Huang, J.; Lim, E.; Lee, M.J. Diet quality predicts hypertensive disorders of pregnancy in Asian and Pacific Islander Cohort. Nutr. Health 2024, 30, 243–252. [Google Scholar] [CrossRef]
- Arvizu, M.; Bjerregaard, A.A.; Madsen, M.T.; Granström, C.; Halldorsson, T.I.; Olsen, S.F.; Gaskins, A.J.; Rich-Edwards, J.W.; Rosner, B.A.; Chavarro, J.E. Sodium Intake During Pregnancy, but Not Other Diet Recommendations Aimed at Preventing Cardiovascular Disease, Is Positively Related to Risk of Hypertensive Disorders of Pregnancy. J. Nutr. 2020, 150, 159–166. [Google Scholar] [CrossRef]
- Timpka, S.; Stuart, J.J.; Tanz, L.J.; Rimm, E.B.; Franks, P.W.; Rich-Edwards, J.W. Lifestyle in progression from hypertensive disorders of pregnancy to chronic hypertension in Nurses’ Health Study II: Observational cohort study. BMJ 2017, 358, j3024. [Google Scholar] [CrossRef]
- Li, S.; Gan, Y.; Chen, M.; Wang, M.; Wang, X.; Santos, H.O.; Okunade, K.; Kathirgamathamby, V. Effects of the Dietary Approaches to Stop Hypertension (DASH) on Pregnancy/Neonatal Outcomes and Maternal Glycemic Control: A Systematic Review and Meta-analysis of Randomized Clinical Trials. Complement. Ther. Med. 2020, 54, 102551. [Google Scholar] [CrossRef] [PubMed]
- Girard, A.W.; Olude, O. Nutrition education and counselling provided during pregnancy: Effects on maternal, neonatal and child health outcomes. Paediatr. Perinat. Epidemiol. 2012, 26, 191–204. [Google Scholar] [CrossRef]
- Juraschek, S.P.; Miller ER3rd Weaver, C.M.; Appel, L.J. Effects of Sodium Reduction and the DASH Diet in Relation to Baseline Blood Pressure. J. Am. Coll. Cardiol. 2017, 70, 2841–2848. [Google Scholar] [CrossRef] [PubMed]
- Gay, H.C.; Rao, S.G.; Vaccarino, V.; Ali, M.K. Effects of Different Dietary Interventions on Blood Pressure: Systematic Review and Meta-Analysis of Randomized Controlled Trials. Hypertension 2016, 67, 733–739. [Google Scholar] [CrossRef]
- Weissmann-Brenner, A.; Simchen, M.J.; Zilberberg, E.; Kalter, A.; Weisz, B.; Achiron, R.; Dulitzky, M. Maternal and neonatal outcomes of large for gestational age pregnancies. Acta Obstet. Gynecol. Scand. 2012, 91, 844–849. [Google Scholar] [CrossRef]
- Yan, J.; Chang, Y.; Yin, C. Elective cesarean section for macrosomia? Zhonghua Yi Xue Za Zhi = Chin. Med. J. Free China Ed. 1994, 53, 141–145. [Google Scholar]
- Mijatovic-Vukas, J.; Capling, L.; Cheng, S.; Stamatakis, E.; Louie, J.; Cheung, N.W.; Markovic, T.; Ross, G.; Senior, A.; Brand-Miller, J.C.; et al. Associations of diet and physical activity with risk for gestational diabetes mellitus: A systematic review and meta-analysis. Nutrients 2018, 10, 698. [Google Scholar] [CrossRef]
- Lopes, H.F.; Martin, K.L.; Nashar, K.; Morrow, J.D.; Goodfriend, T.L.; Egan, B.M. DASH diet lowers blood pressure and lipid-induced oxidative stress in obesity. Hypertension 2003, 41, 422–430. [Google Scholar] [CrossRef] [PubMed]
- Sibai, B.; Dekker, G.; Kupferminc, M. Pre-eclampsia. Lancet 2005, 365, 785–799. [Google Scholar] [CrossRef]
- Buppasiri, P.; Lumbiganon, P.; Thinkhamrop, J.; Ngamjarus, C.; Laopaiboon, M.; Medley, N. Calcium supplementation (other than for preventing or treating hypertension) for improving pregnancy and infant outcomes. Cochrane Database Syst. Rev. 2015, 2, CD007079. [Google Scholar] [CrossRef]
- Soltani, S.; Chitsazi, M.J.; Salehi-Abargouei, A. The effect of dietary approaches to stop hypertension (DASH) on serum inflammatory markers: A systematic review and meta-analysis of randomized trials. Clin. Nutr. 2018, 37, 542–550. [Google Scholar] [CrossRef] [PubMed]
- Eichelmann, F.; Schwingshackl, L.; Fedirko, V.; Aleksandrova, K. Effect of plant-based diets on obesity-related inflammatory profiles: A systematic review and meta-analysis of intervention trials. Obes. Rev. 2016, 17, 1067–1079. [Google Scholar] [CrossRef] [PubMed]
- Cornelius, D.C. Preeclampsia: From Inflammation to Immunoregulation. Clin. Med. Insights Blood Disord. 2018, 11, 1179545X17752325. [Google Scholar] [CrossRef]
- Azadbakht, L.; Fard, N.R.; Karimi, M.; Baghaei, M.H.; Surkan, P.J.; Rahimi, M.; Esmaillzadeh, A.; Willett, W.C. Effects of the Dietary Approaches to Stop Hypertension (DASH) eating plan on cardiovascular risks among type 2 diabetic patients: A randomized crossover clinical trial. Diabetes Care 2011, 34, 55–57. [Google Scholar] [CrossRef]
- Hauth, J.C.; Clifton, R.G.; Roberts, J.M.; Myatt, L.; Spong, C.Y.; Leveno, K.J.; Varner, M.W.; Wapner, R.J.; Thorp, J.M., Jr.; Mercer, B.M.; et al. Maternal insulin resistance and preeclampsia. Am. J. Obstet. Gynecol. 2011, 204, 327.e1–327.e3276. [Google Scholar] [CrossRef]
- Harsha, D.W.; Lin, P.H.; Obarzanek, E.; Karanja, N.M.; Moore, T.J.; Caballero, B. Dietary Approaches to Stop Hypertension: A summary of study results. J. Am. Diet. Assoc. 1999, 99, S35–S39. [Google Scholar] [CrossRef]
- Chatzi, L.; Mendez, M.; Garcia, R.; Roumeliotaki, T.; Ibarluzea, J.; Tardón, A.; Amiano, P.; Lertxundi, A.; Iñiguez, C.; Vioque, J.; et al. Mediterranean diet adherence during pregnancy and fetal growth: INMA (Spain) and RHEA (Greece) mother-child cohort studies. Br. J. Nutr. 2012, 107, 135–145. [Google Scholar] [CrossRef] [PubMed]
- Di Renzo, G.C.; Brillo, E.; Romanelli, M.; Porcaro, G.; Capanna, F.; Kanninen, T.T.; Gerli, S.; Clerici, G. Potential effects of chocolate on human pregnancy: A randomized controlled trial. J. Matern.-Fetal Neonatal Med. 2018, 31, 1991–1996. [Google Scholar] [CrossRef]
- Timmermans, S.; Steegers-Theunissen, R.P.; Vujkovic, M.; den Breeijen, H.; Russcher, H.; Lindemans, J.; Mackenbach, J.; Hofman, A.; Lesaffre, E.E.; Jaddoe, V.V.; et al. The Mediterranean diet and fetal size parameters: The Generation R Study. Br. J. Nutr. 2012, 108, 1399–1409. [Google Scholar] [CrossRef]
- Hernandez, T.L.; Van Pelt, R.E.; Anderson, M.A.; Daniels, L.J.; West, N.A.; Donahoo, W.T.; Friedman, J.E.; Barbour, L.A. A higher-complex carbohydrate diet in gestational diabetes mellitus achieves glucose targets and lowers postprandial lipids: A randomized crossover study. Diabetes Care 2014, 37, 1254–1262. [Google Scholar] [CrossRef]
- Grant, S.M.; Wolever, T.M.; O’Connor, D.L.; Nisenbaum, R.; Josse, R.G. Effect of a low glycaemic index diet on blood glucose in women with gestational hyperglycaemia. Diabetes Res. Clin. Pract. 2011, 91, 15–22. [Google Scholar] [CrossRef] [PubMed]
- Pistollato, F.; Sumalla Cano, S.; Elio, I.; Masias Vergara, M.; Giampieri, F.; Battino, M. Plant-Based and Plant-Rich Diet Patterns during Gestation: Beneficial Effects and Possible Shortcomings. Adv. Nutr. 2015, 6, 581–591. [Google Scholar] [CrossRef] [PubMed]
- Dodd, J.M.; Turnbull, D.; McPhee, A.J.; Deussen, A.R.; Grivell, R.M.; Yelland, L.N.; Crowther, C.A.; Wittert, G.; Owens, J.A.; Robinson, J.S. Antenatal lifestyle advice for women who are overweight or obese: LIMIT randomised trial. BMJ 2014, 348, g1285. [Google Scholar] [CrossRef]
- Kazemian, E.; Sotoudeh, G.; Dorosty-Motlagh, A.R.; Eshraghian, M.R.; Bagheri, M. Maternal obesity and energy intake as risk factors of pregnancy-induced hypertension among Iranian women. J. Health Popul. Nutr. 2014, 32, 486–493. [Google Scholar] [CrossRef]
- Lucas, C.; Charlton, K.E.; Yeatman, H. Nutrition advice during pregnancy: Do women receive it and can health professionals provide it? Matern. Child Health J. 2014, 18, 2465–2478. [Google Scholar] [CrossRef]
- Flynn, A.C.; Seed, P.T.; Patel, N.; Barr, S.; Bell, R.; Briley, A.L.; Godfrey, K.M.; Nelson, S.M.; Oteng-Ntim, E.; Robinson, S.M.; et al. Dietary patterns in obese pregnant women; influence of a behavioral intervention of diet and physical activity in the UPBEAT randomized controlled trial. Int. J. Behav. Nutr. Phys. Act. 2016, 13, 124. [Google Scholar] [CrossRef] [PubMed]
- Jing, W.; Huang, Y.; Liu, X.; Luo, B.; Yang, Y.; Liao, S. The effect of a personalized intervention on weight gain and physical activity among pregnant women in China. Int. J. Gynecol. Obstet. 2015, 129, 138–141. [Google Scholar] [CrossRef]
- Allen, R.; Rogozinska, E.; Sivarajasingam, P.; Khan, K.S.; Thangaratinam, S. Effect of diet-and lifestyle-based metabolic risk-modifying interventions on preeclampsia: A meta-analysis. Acta Obstet. Gynecol. Scand. 2014, 93, 973–985. [Google Scholar] [CrossRef] [PubMed]
- Steegers, E.A.; von Dadelszen, P.; Duvekot, J.J.; Pijnenborg, R. Pre-eclampsia. Lancet 2010, 376, 631–644. [Google Scholar] [CrossRef]
- Bryce, A.; Butler-Smith, S.; Brookbank, L.; Fellows, J.; Martin, U.; Webster, L.M.; Webster, P.; Mackillop, L. NICE guidance on the management of hypertension in pregnancy: An update on the management of hypertension in pregnancy. J. Hum. Hypertens. 2021, 35, 26–28. [Google Scholar]
- Villa, P.M.; Kajantie, E.; Räikkönen, K.; Pesonen, A.K.; Hämäläinen, E.; Vainio, M.; Taipale, P.; Laivuori, H. Aspirin in the prevention of pre-eclampsia in high-risk women: A randomised placebo-controlled PREDO Trial and a meta-analysis of randomised trials. BJOG Int. J. Obstet. Gynaecol. 2013, 120, 64–74. [Google Scholar] [CrossRef] [PubMed]
- Roberts, J.M.; Bodnar, L.M.; Patrick, T.E.; Powers, R.W. The role of obesity in preeclampsia. Pregnancy Hypertens 2011, 1, 6–16. [Google Scholar] [CrossRef]
- Barakat, R.; Pelaez, M.; Cordero, Y.; Perales, M.; Lopez, C.; Coteron, J.; Mottola, M.F. Exercise during pregnancy protects against hypertension and macrosomia: Randomized clinical trial. Am. J. Obstet. Gynecol. 2016, 214, 649.e1–649.e8. [Google Scholar] [CrossRef]
- Proctor, E.; Silmere, H.; Raghavan, R.; Hovmand, P.; Aarons, G.; Bunger, A.; Griffey, R.; Hensley, M. Outcomes for implementation research: Conceptual distinctions, measurement challenges, and research agenda. Adm. Policy Ment. Health Ment. Health Serv. Res. 2011, 38, 65–76. [Google Scholar] [CrossRef] [PubMed]
- Poston, L.; Briley, A.L.; Barr, S.; Bell, R.; Croker, H.; Coxon, K.; Essex, H.N.; Hunt, C.; Hayes, L.; Howard, L.M.; et al. Developing a complex intervention for diet and activity behaviour change in obese pregnant women (the UPBEAT trial); assessment of behavioural change and process evaluation in a pilot randomised controlled trial. BMC Pregnancy Childbirth 2013, 13, 148. [Google Scholar] [CrossRef]
- Eriksson, J.G.; Sandboge, S.; Salonen, M.K.; Kajantie, E.; Osmond, C. Long-term consequences of maternal overweight in pregnancy on offspring later health: Findings from the Helsinki Birth Cohort Study. Ann. Med. 2014, 46, 434–438. [Google Scholar] [CrossRef]
- Kaiser, L.; Allen, L.H.; American Dietetic Association. Position of the American Dietetic Association: Nutrition and lifestyle for a healthy pregnancy outcome. J. Am. Diet. Assoc. 2008, 108, 553–561. [Google Scholar] [PubMed]
- Landaas, J.A.; Vik, T.; Paulssen, R.H.; Varhaug, J.E.; Myklebust, S. Quality of randomized controlled trials reporting in the primary treatment of brain tumors. J. Clin. Epidemiol. 2005, 58, 79–84. [Google Scholar]
- Shim, J.S.; Oh, K.; Kim, H.C. Dietary assessment methods in epidemiologic studies. Epidemiol. Health 2014, 36, e2014009. [Google Scholar] [CrossRef]
- Rebholz, C.M.; Crews, D.C.; Grams, M.E.; Steffen, L.M.; Levey, A.S.; Miller, E.R.; Appel, L.J.; Coresh, J. DASH (Dietary Approaches to Stop Hypertension) diet and risk of subsequent kidney disease. Am. J. Kidney Dis. 2016, 68, 853–861. [Google Scholar] [CrossRef]
- Zeisel, S.H. Epigenetic mechanisms for nutrition determinants of later health outcomes. Am. J. Clin. Nutr. 2009, 89, 1488S–1493S. [Google Scholar] [CrossRef] [PubMed]
- Koletzko, B.; Godfrey, K.M.; Poston, L.; Szajewska, H.; van Goudoever, J.B.; de Waard, M.; Brands, B.; Grivell, R.M.; Deussen, A.R.; Dodd, J.M.; et al. Nutrition during pregnancy, lactation and early childhood and its implications for maternal and long-term child health: The early nutrition project recommendations. Ann. Nutr. Metab. 2019, 74, 93–106. [Google Scholar] [CrossRef] [PubMed]
- Taddei, S.; Virdis, A.; Ghiadoni, L.; Versari, D.; Salvetti, A. Endothelium, aging, and hypertension. Curr. Hypertens. Rep. 2006, 8, 84–89. [Google Scholar] [CrossRef] [PubMed]
First Author (Year) | Country | Study Design | Sample Size and Characteristics | DASH Diet Assessment Method | Study Duration/Follow-Up | Key Outcomes Measured | Key Findings | Confounders Controlled |
---|---|---|---|---|---|---|---|---|
Arvizu et al. (2020) [48] | USA | Prospective cohort | 16,892 singleton pregnancies among 11,535 women from the Nurses’ Health Study II | DASH score based on food frequency questionnaire evaluating intake of food groups | Pre-pregnancy dietary patterns and subsequent pregnancies | Preeclampsia risk | Women in the highest quintile of DASH score had a 35% lower risk of preeclampsia compared to those in the lowest quintile (RR: 0.65; 95% CI: 0.48, 0.87; p-trend = 0.01) | Age, BMI, parity, family history, smoking, physical activity, energy intake |
Cao et al. (2020) [49] | China | Case-control | 449 preeclampsia cases and 449 controls | DASH-style diet score based on food frequency questionnaire | Prenatal diet evaluated during the last three months of pregnancy | Preeclampsia risk | Participants in the fourth quartile of DASH score were 45% less likely to have preeclampsia than those in the first quartile (adjusted OR: 0.53; 95% CI: 0.36, 0.78; p-trend = 0.001) | Age, BMI, education, physical activity, parity, family history of hypertension, energy intake, GDM (Gestational Diabetes Mellitus) |
Belfort et al. (2023) [50] | Brazil | Randomized controlled trial | 87 women with pre-existing diabetes mellitus undergoing pregnancy | DASH diet intervention vs. standard diet | Nutrition intervention from enrollment till delivery (18 weeks) | Preeclampsia incidence, oxidative stress markers | No statistically significant difference in preeclampsia incidence between groups (22.9% in standard diet vs. 12.1% in DASH diet group, p = 0.25); Glutathione peroxidase levels significantly increased in DASH diet group | Maternal age, gestational age, BMI, glycated hemoglobin |
Vesco et al. (2014) [51] | USA | Randomized controlled trial | 114 obese women (56 intervention, 58 control) | DASH diet with sodium restriction plus moderate physical activity vs. standard care | Throughout pregnancy until delivery | Gestational weight gain, preeclampsia incidence | Preeclampsia incidence: 9% in intervention group vs. 10% in control group (p = 0.101) (OR: 0.85; 95% CI: 0.24–2.96); Intervention group gained less weight during pregnancy | Maternal age, pre-pregnancy BMI, parity, race/ethnicity, smoking, baseline blood pressure |
Courtney et al. (2020) [52] | Ireland | Observational study | 511 women from the ROLO study in the National Maternity Hospital | DASH score based on food frequency questionnaire | Throughout pregnancy with assessments in each trimester | Maternal blood pressure | Higher DASH score associated with lower diastolic blood pressure in trimesters 1 and 3; For each 5-unit increase in DASH score, 0.8 mmHg lower DBP in trimester 1 (p = 0.001) and 0.76 mmHg lower DBP in trimester 3 (p = 0.05) | Maternal age, BMI, education, parity, smoking, physical activity, energy intakes |
Wiertsema et al. (2021) [53] | Netherlands | Population-based cohort | 3414 Dutch women | DASH score | Throughout pregnancy with measurements in each trimester | Blood pressure patterns, placental hemodynamics, gestational hypertensive disorders | Lower DASH score quartiles associated with higher mid-pregnancy diastolic blood pressure; Higher DASH score associated with lower mid-pregnancy diastolic blood pressure (−0.45 [95% CI: −0.78 to −0.12] mm Hg per SD increase); Lower DASH quartiles associated with higher mid- and late-pregnancy umbilical artery pulsatility index | Maternal age, gestational age, parity, pre-pregnancy BMI, education, ethnicity, smoking, folic acid supplement use, energy intake |
dos Santos et al. (2023) [54] | Brazil | Nutrigenetic trial, part of the RCT DASDIA (DASH diet for pregnant women with Diabetes), | 70 pregnant women with pregestational diabetes mellitus (n = 29 DASH diet group vs. n = 41 traditional diet group) | Traditional vs. DASH diet groups | Throughout pregnancy | Blood pressure trajectory | No significant differences in blood pressure trajectory between diet groups; Both groups showed normal physiological patterns with increases only after 32.5 weeks | Age, genetic polymorphisms (FTO and ADRB2), pregestational BMI, DM type, chronic diseases, educational and marital status, ethnicity |
Najafian et al. (2023) [55] | Iran | Randomized controlled trial | 60 pregnant women with gestational or chronic hypertension | DASH diet vs. control diet | 1–2 months intervention, follow up until delivery | Blood pressure, preeclampsia incidence, pregnancy outcomes (birth weight and Apgar score) | After intervention, systolic and diastolic blood pressure significantly lower in DASH diet group (p < 0.05); Lower incidence of preeclampsia (p = 0.035), preterm delivery (p = 0.020), and placental abruption (p = 0.007) in DASH diet group | Baseline blood pressure, gestational age, BMI, maternal age, parity |
Jiang et al. (2019) [56] | China | Randomized controlled trial | 85 pregnant women with gestational or chronic hypertension | DASH diet modified for pregnancy needs vs. medical nutrition therapy | 12 weeks intervention, follow up until delivery | Preeclampsia incidence, pregnancy outcomes | Preeclampsia incidence: 43.2% in DASH group vs. 65.9% in control group (p = 0.036); Significant differences in gestational age at delivery and newborn body length | Maternal age, pre-pregnancy BMI, parity, baseline blood pressure |
Fulay et al. (2018) [57] | USA | Longitudinal cohort | 1760 women in Project Viva, a Boston-area longitudinal cohort | DASH diet score based on food frequency questionnaire | Early pregnancy | Pregnancy outcomes and complications | No association between DASH diet during early pregnancy and hypertensive disorders of pregnancy | Maternal age, race/ethnicity, education, parity, pre-pregnancy BMI, smoking, energy intake |
Miller et al. (2024) [58] | USA | Cohort study | 55 participants in an Asian and Pacific Islander cohort | DASH diet quality score | Throughout gestation | Hypertensive disorders of pregnancy | Participants who did not develop hypertensive disorders had better diet quality; Every point higher on DASH diet score associated with ~30% reduced odds of developing hypertensive disorders | Maternal age, BMI, ethnicity, parity, pre-existing conditions |
Arvizu et al. (2020) [59] | Denmark | Cohort study | Danish National Birth Cohort | Sodium intake assessment | Prenatal diet during pregnancy | Hypertensive disorders of pregnancy | Women with highest sodium intake (median 3.70 g/d) had 54% (95% CI: 16%, 104%) higher risk of gestational hypertension and 20% (95% CI: 1%, 42%) higher risk of preeclampsia than women with lowest intake (median 2.60 g/d) | Maternal age, parity, socioeconomic status, smoking, alcohol consumption, physical activity |
Timpka et al. (2017) [60] | USA | Observational cohort | 54,588 parous female from Nurses’ Health Study II | Lifestyle factors including dietary pattern based on food frequency questionnaires | From pregnancy through follow-up (median 32 years) | Progression from hypertensive disorders of pregnancy to chronic hypertension | Being overweight or obese was the only lifestyle factor consistently associated with a higher risk of chronic hypertension after hypertensive disorders of pregnancy | Age, family history, race/ethnicity, physical activity, smoking |
Study (Year) | Study Design | Sample Size/Population | Key Findings Related to Hypertensive Disorders/Preeclampsia | Strength of Association |
---|---|---|---|---|
Arvizu et al. (2020) [48] | Prospective cohort | 16,892 singleton pregnancies among 11,535 women | Women in highest quintile of DASH score had 35% lower preeclampsia risk compared to lowest quintile (RR: 0.65; 95% CI: 0.48, 0.87; p-trend = 0.01) | Strong inverse association |
Cao et al. (2020) [49] | Case-control | 449 preeclampsia cases and 449 controls | Fourth quartile of DASH score associated with 47% lower preeclampsia risk (adjusted OR: 0.53; 95% CI: 0.36, 0.78; p-trend = 0.001) | Strong inverse association |
Belfort et al. (2023) [50] | Randomized controlled trial | Women with pre-existing diabetes mellitus | No statistically significant difference in preeclampsia incidence between DASH diet (12.1%) and standard diet (22.9%) groups (p = 0.25) | Non-significant trend toward benefit |
Vesco et al. (2014) [51] | Randomized controlled trial | 114 obese women | Preeclampsia rate in DASH intervention group (9%) vs. control group (10%) showed non-significant trend toward benefit (p = 0.101) (OR: 0.85; 95% CI: 0.24–2.96) | Non-significant trend toward benefit |
Courtney et al. (2020) [52] | Observational study | 511 women | Higher DASH score associated with lower diastolic blood pressure in trimesters 1 and 3; For each 5-unit increase in DASH score, 0.8 mmHg lower DBP in T1 (p = 0.001) and 0.76 mmHg lower DBP in T3 (p = 0.05) | Significant effect on blood pressure |
Wiertsema et al. (2021) [53] | Population-based cohort | 3414 Dutch women | Higher DASH score associated with lower mid-pregnancy diastolic blood pressure (−0.45 mm Hg per SD increase, 95% CI: −0.78 to −0.12); No associations with gestational hypertensive disorders | Significant effect on blood pressure, no effect on hypertensive disorders |
dos Santos et al. (2023) [54] | Nutrigenetic trial | 70 pregnant women with pregestational diabetes | No significant differences in blood pressure trajectory between DASH and traditional diet groups | No significant effect |
Najafian et al. (2023) [55] | Randomized controlled trial | 60 pregnant women with hypertension | DASH diet group had significantly lower incidence of preeclampsia (p = 0.035) and significantly lower systolic and diastolic blood pressure (p < 0.05) | Strong beneficial effect |
Jiang et al. (2019) [56] | Randomized controlled trial | 85 pregnant women with hypertension | Preeclampsia incidence: 43.2% in DASH group vs. 65.9% in control group (p = 0.036) | Significant beneficial effect |
Fulay et al. (2018) [57] | Longitudinal cohort | 1760 women | No association between DASH diet during early pregnancy and hypertensive disorders of pregnancy | No significant effect |
Miller et al. (2024) [58] | Cohort study | 55 Asian and Pacific Islander women | Every point higher on DASH diet score associated with approximately 30% reduced odds of developing hypertensive disorders | Significant beneficial effect |
Arvizu et al. (2020) [59] | Cohort study | Danish National Birth Cohort | Higher sodium intake (DASH diet component) associated with 54% higher risk of gestational hypertension (95% CI: 16%, 104%) and 20% higher risk of preeclampsia (95% CI: 1%, 42%) | Significant effect of sodium intake |
Timpka et al. (2017) [60] | Observational cohort | Nurses’ Health Study II | Being overweight/obese was the only lifestyle factor consistently associated with a higher risk of chronic hypertension after pregnancy hypertensive disorders | No direct DASH diet association measured |
Outcome Category | Study (Year) | Study Design | Population | Key Findings | Statistical Significance |
---|---|---|---|---|---|
Maternal Blood Pressure | Courtney et al. (2020) [52] | Observational | 511 women | 0.8 mmHg lower DBP in T1 and 0.76 mmHg lower DBP in T3 per 5-unit increase in DASH score | Significant (p = 0.001 for T1, p = 0.05 for T3) |
Wiertsema et al. (2021) [53] | Cohort | 3414 Dutch women | Lower mid-pregnancy diastolic blood pressure (−0.45 mm Hg per SD increase in DASH score) | Significant (95% CI: −0.78 to −0.12) | |
Birth Outcomes | Vesco et al. (2014) [51] | RCT | 114 obese women | Lower proportion of LGA babies (9% vs. 26%) | Significant (OR: 0.28, 95% CI: 0.09–0.84) |
Jiang et al. (2019) [56] | RCT | 85 hypertensive women | Significant differences in gestational age at delivery and newborn body length | Significant (p < 0.05) | |
Najafian et al. (2023) [55] | RCT | 60 hypertensive women | Lower incidence of preterm delivery | Significant (p = 0.020) | |
Placental Function | Wiertsema et al. (2021) [53] | Cohort | 3414 Dutch women | Higher maternal DASH score associated with lower mid- and late pregnancy umbilical artery pulsatility index | Significant (p ≤ 0.05) |
Najafian et al. (2023) [55] | RCT | 60 hypertensive women | Lower incidence of placental abruption | Significant (p = 0.007) | |
Metabolic Parameters | Belfort et al. (2023) [50] | RCT | Women with pre-existing diabetes | Increased glutathione peroxidase levels; decreased glycated hemoglobin | Significant (p = 0.03 for glutathione peroxidase) |
DASH Diet Adherence Factors | Courtney et al. (2020) [52] | Observational | 511 women | Higher DASH score linked to taking supplements, not smoking, healthy BMI, older age, appropriate weight gain, higher education | Significant associations |
Santos et al. (2023) [54] | RCT | 70 diabetic women | 40.7% of DASH group maintained high dietary compliance at delivery | Reported compliance rate | |
Long-term Implications | Timpka et al. (2017) [60] | Cohort | Nurses’ Health Study II | Overweight/obesity was key factor in progression from hypertensive disorders to chronic hypertension | Significant association |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baroutis, D.; Katsianou, E.; Athanasiou, D.; Giannakaki, A.-G.; Antsaklis, P.; Theodora, M.; Daskalakis, G.; Eleftheriades, M. DASH Diet and Preeclampsia Prevention: A Literature Review. Nutrients 2025, 17, 2025. https://doi.org/10.3390/nu17122025
Baroutis D, Katsianou E, Athanasiou D, Giannakaki A-G, Antsaklis P, Theodora M, Daskalakis G, Eleftheriades M. DASH Diet and Preeclampsia Prevention: A Literature Review. Nutrients. 2025; 17(12):2025. https://doi.org/10.3390/nu17122025
Chicago/Turabian StyleBaroutis, Dimitris, Eleni Katsianou, Diamantis Athanasiou, Aikaterini-Gavriela Giannakaki, Panagiotis Antsaklis, Marianna Theodora, George Daskalakis, and Makarios Eleftheriades. 2025. "DASH Diet and Preeclampsia Prevention: A Literature Review" Nutrients 17, no. 12: 2025. https://doi.org/10.3390/nu17122025
APA StyleBaroutis, D., Katsianou, E., Athanasiou, D., Giannakaki, A.-G., Antsaklis, P., Theodora, M., Daskalakis, G., & Eleftheriades, M. (2025). DASH Diet and Preeclampsia Prevention: A Literature Review. Nutrients, 17(12), 2025. https://doi.org/10.3390/nu17122025